A NOTE ON THE ANGLES IN AN
n-DIMENSIONAL SIMPLEX
by A. P. GUINAND
(Received 13th October, 1958)

1. Introduction. Three different sets of equations connecting the sums of angles in an
n-dimensional simplex have been given by Sommerville [7], Hohn [5], and Peschl [6].Y The
equivalence of the first two sets of equations has been proved by Sprott [7].

In the present note it is shown that results are simplified if we consider averages instead
of sums, and that the averages form a sequence which is self-reciprocal with respect to the
transformationi

w=5-0 ().

T =

The equivalence of the sets of equations is then easily proved by symbolic methods.§
2. Forms of the equations. Given an n-dimensional simplex in spherical or
Euclidean space, let s, denote the sum of the angles at its <n Z 1) (n — k)-cells, each measured

as a fraction of the whole angle at the (n — k)-flat concerned. Let s, = 1, and let s,,,; be the
content of the simplex as a fraction of the whole space.| Then the three sets of equations are

n+1 k n+1 k '
(-1 (r) Sp = (-1t (n i1 r) s (0<r <in), (Sommerville)
k=r k=n+1-r -
P -
RIAC (Z: i _b s =5, (1<p<2in]+2), (Hohn)
1y 2% ] fn-21+2k-1
121 k ( 9% -1 > Boisaioakse = S (0 << i), (Peschl)
where By, runs through the Bernoulli numbers B, = §, B, = -3, .. ..

In each set there are only [47] + 1 independent equations. An independent set is obtained
from Hohn’s equations if we take the set of alternate values of p which includes p = n +1.

Now put
n+1
Ay = Sg r )

so that a, is the average angle at an (n — k)-cell, expressed as a fraction of the whole angle at
an (n - k)-flat. In terms of the a, the equations become, respectively,

t See also Coxeter [2].

1 Cf. Hardy [4].

§ These results were suggested by similarities with equations arising in a problem about Fourier
transforms. Cf. Guinand [3].

Il That is, in the Euclidean case, 8, 4 = 0. Peschl[6] also shows that the same equations hold in hyper-
bolic space with an appropriate reinterpretation of sy ;.
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"S- (n;:;r) @ =5 (-1 (Z) Gk (0 STS )

k=r L =0

S -1 () m = o (1 <r<2mme,

rZ (2r-* ~1) (2) B2, =0 (reven,2 <r<<n+2).
=0

In these forms all three sets of equations can readily be expressed in the symbolic or
umbral notation. If we put
o = a,, B* = B,

then the equations can be written, respectively,

@' (l =)=+ = g1 —a)" (0 < r < 4n), (S)
(I-a) =a (1<r<2[n]+2), (H)
(B+a)" = (2B +a)" (reven,2 <r << n+2). ()

3. Equivalence of the sets of equations. Denote the sets of equations by S, H, P
as above. Let H, denote the set

(l-a) =a" (rodd,l <r<n+l), (H,)
and H, the set
(L-a) =a" (reven,2 <r < n+2). (H,)

Then the equivalence of the four sets S, H;, H,, P can be proved by the following stages.

(i) H, > H. Suppose that (1-a)” =a” for 1 <r<<2¢-1. Then any symbolic
polynomial in a of degree not greater than 2¢ — 1 is unchanged in value if a is replaced by 1 - a.
The polynomial (1 —a)* —a® is of degree 2¢ — 1 only ; hence it is equal to a® — (1 — )%, and
therefore

(1 —a)% = a%.
Now by H, the result (1 —«)" = a" is true for r = 1; hence it is true for » = 1, 2. By H, it
is also true for r = 3, and hence for » = 4. Continuing this process, we see that it is true for
r=1,2,3, ..., 2[4n] +2, as required.

(ii) Hy, > H. Suppose that (1 —a)" = a” for 0 < r < 2¢ and also for r = 2¢+2. Then
the value of any symbolic polynomial in a of degree not greater than 2q is unchanged if a is
replaced by 1 —a. The polynomial

(g + D@t - (1 - )Pt} — {a+? - (1 —a)%+?}

is of degree 2g only ; hence, by an argument asin (i), it isequal tozero. Since (1 —a)%+2 = g%+2

by assumption, we have
(1 —a)ia+l = g2+l

Now by H, the result (1 —a)" = a’ is true for » = 2 and it is trivially true for r = 0.
Hence it is true for r = 1. By H, it is also true for » = 4; so it is true for» = 0, 1, 2, 4, and
and hence for r = 3. Continuing the process, we see that it is true forr = 0, 1,2, ..., 2[4n] +2,
as required.
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(i) H 5 8. By H any symbolic polynomial in a of degree not greater than n+1 is
unchanged in value if @ is replaced by 1 —a. Hence

a’ (1 - a)n—r—i-l = g7+l (1 - a)r

for 0 <» << n+1. This includes S.

(1v) S D H. The equations S run through the same set when 0 << r << 4n and when
n+l <r<<n+1. Ifnis odd, then the remaining equation with r = $n +% is an identity.
Hence S holds for 0 <<r << n+1. Thus for 0 << r << % we have both

ar(l _a)n—1‘+1 — an—r+1(]_ _a)r,
and

ar+1(1 _a)n—r = an-r(l _a)r+1_
Adding these results, we have

a"(l -a)* (1 -a+a)

It

a7 (1 -a)(a+1-a),
or
a™"(l-a)?" = a7 (1 —-a),

for 0 < r < n. Continuing this process, we get
a?(l —a) = a?(l —a)?
forallpandgqinp > 0,¢>= 0, p+¢g <n+1. On putting ¢ = 0 this gives H, as required.
(v) H > P. The Bernoulli numbers are determined by the formal expansion

O m
@ x
e =¥ B,

m=0 m!_e“—l'

Hence the function ¢ (z), defined by the formal expansion

é( 20{ B +a)" - (2B +a)"} fn—": ................................. (1)

m

is equal to
eBta)z _ p(2B+a)s — gax (eBz _ 62Bx)

Y S
R VT |

= et (dr sech da)....coveiminniininniiiinininis (2)

Now if we replace a by 1 —a in (@ - 3})7, it follows that H implies

forr =0,1,...,n+1. Hence
47 =0

for all odd 7 not greater than % +1. Hence the expansion of ¢ () in the form (2) has no even
powers of 2 lower than z"+2,
By (1) this implies that
B+a)y-2B+a)r =0

for r even and 0 < r < % +2, as required.
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(vi) P D H. Reversing the argument of (v), we see that P implies that (@ - %) = (3 —a)"
for 0 <7 << n+1. Hence we can replace (@ — 3) by (3 —a) in any polynomial in a — } of degree
not greater than n +1. Thus

o ={F+@-H ={E+G-a)} =(1-ay
for 0 < r < nm+1, as required.
(vii) H, = H, = H =8 = P. Since H includesH, and H,, (i) and (ii) give H, = H = H,.
Then (iii) and (iv) give H = 8§, and (v) and (vi) give S = P.

4. Remarks. If {p,}(r = 0, 1, 2, ...) is any sequence, and g, is defined by

w=30-1r(0)p G-012.0

r=

then
2 S
P =2 (—D'()qr-
r=0 7

Sequences connected by such a reciprocity may be called “ reciprocal sequences .t With
this terminology we can state the equations H thus :

The sequence {a;} (k = 0, 1, 2, ..., n+1) of angle averages at (n —k)-flats, expressed
as fractions of the whole angle at an (n — k)-flat, is a self-reciprocal sequence.

A general solution of the equations H is given if we put ¢" = ¢, where {c,} is any sequence.
Then

a’ = (F+e)+ (F -0,

4n /r 1\2%-1
a, =l' §0 (2 k) (—2'> Cr_ok

or

is a general solution of H.
1 Barrucand [1].
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