
TLP 18 (5-6): 846–873, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000364 First published online 18 July 2018

846

Logic programming as a service

ROBERTA CALEGARI and ENRICO DENTI

Alma Mater Studiorum—Università di Bologna, Bologna, Italy

(e-mails: roberta.calegari@unibo.it, enrico.denti@unibo.it)

STEFANO MARIANI

Università di Modena e Reggio Emilia, Reggio Emilia, Italy

(e-mail: stefano.mariani@unimore.it)

ANDREA OMICINI

Alma Mater Studiorum—Università di Bologna, Cesena, Italy

(e-mail: andrea.omicini@unibo.it)

submitted 31 March 2017; revised 31 December 2017; accepted 14 June 2018

Abstract

New generations of distributed systems are opening novel perspectives for logic programming

(LP): On the one hand, service-oriented architectures represent nowadays the standard

approach for distributed systems engineering; on the other hand, pervasive systems mandate

for situated intelligence. In this paper, we introduce the notion of Logic Programming as a

Service (LPaaS) as a means to address the needs of pervasive intelligent systems through logic

engines exploited as a distributed service. First, we define the abstract architectural model by

re-interpreting classical LP notions in the new context; then we elaborate on the nature of LP

interpreted as a service by describing the basic LPaaS interface. Finally, we show how LPaaS

works in practice by discussing its implementation in terms of distributed tuProlog engines,

accounting for basic issues such as interoperability and configurability.

KEYWORDS: logic programming, distributed systems, service-oriented architecture, pervasive

systems, intelligent systems, LPaaS, situatedness

1 Introduction

Computation is moving towards pervasive, ubiquitous environments where devices,

software agents, and services are expected to seamlessly integrate and cooperate

in support of human users, anticipating their needs and more generally acting on

their behalf, delivering services in an ‘anywhere, anytime’ fashion (Finin et al. 2001;

Zambonelli et al. 2015). Even more, software agents, robots, sensors, etc. could

work together with people for a common goal, with the same level of efficiency

and expertise as human-only teams. Such systems could face important challenges

in several fields—from military network-centric operations, to gaming technologies,

simulation, computer security, transportation and logistics, and others (Parker 2008).

The above scenarios naturally fit a distributed approach: tasks are often dis-

tributed in space, time, or functionality, and their completion can clearly benefit

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

http://orcid.org/0000-0003-3794-2942
https://doi.org/10.1017/S1471068418000364


Logic programming as a service 847

from the chance of solving subproblems modularly and concurrently. At the same

time, the same scenarios inherently call for intelligence—namely, distributed situated

intelligence (Parker 2008) —to exploit domain knowledge, understand the local

context, and share information in support of intelligent applications and services

(Chen et al. 2003; Smart 2017).

Logic programming (LP henceforth) boasts a long-respected reputation in sup-

porting intelligence: Originally conceived for single solvers and later extended

towards concurrency and parallelism, LP has the potential to fully support pervasive

computing scenarios once it is suitably re-interpreted. Re-interpretation of LP should

develop along three main lines: (i) architecture—that is, the need to go beyond the

(originally monolithic) structure of LP systems, which is unsuitable for distributed

contexts such as IoT mobility/cloud ecosystems, typically grounded upon the service-

oriented computing paradigm (Erl 2005); (ii) situatedness—that is, enabling logic

theories, queries, and resolutions to be context-aware w.r.t. the (computational)

environment, space, and time; (iii) interaction—that is, the opportunity to re-think

the interaction patterns used by clients to query logic engines, which should lean

towards on-demand computation.

At the same time, LP declarativeness and explicit knowledge representation enable

knowledge sharing at the most adequate level of abstraction, while supporting

modularity and separation of concerns (Oliya and Pung 2011), which are specially

valuable in open and dynamic distributed systems (serendipitous interoperability,

Niezen 2013). As a further element, LP soundness and completeness straightfor-

wardly enable agents’ intelligent reasoning. Finally, LP extensions or logic-based

computational models—such as meta-reasoning about situations (Loke 2004) or

labelled variables systems (Calegari et al. 2018)—could be incorporated so as to

enable complex behaviours tailored to the situated components.

Although LP languages and technologies represent in principle a natural candidate

for injecting intelligence within computational systems (Brownlee 2011), and despite

the many practical application developed over the years—see Palù and Torroni

(2010), Martelli (1995) for a survey—the adoption of LP in pervasive contexts has

been historically hindered by technological obstacles—efficiency, integration issues—

as well as by some cultural resistance towards LP-based approaches outside the

academy. However, technology advancements, on the one hand, and the emergence

of the IoT context, on the other, are drastically changing such a scenario, possibly

allowing LP to unleash its full potential in real-world applications.

Along this line, in this paper, we present Logic Programming as a Service (LPaaS),

a novel approach intended as the natural evolution of distributed LP in pervasive

systems, explicitly designed to exploit context-awareness so as to promote the

distribution of situated intelligence within smart environments. As the name suggests,

the basic idea is to deliver LP-based intelligence as a service, granting ubiquitous

access to knowledge and on-demand reasoning via LP services, spread over the

network and configured to respond to specific local needs. Accordingly, some

classical LP notions need to be revised and extended: For instance, client/service

interaction is no longer bound to the traditional console-based query/response loop,

and is instead redesigned to provide the dynamism, flexibility, and expressiveness

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


848 R. Calegari et al.

required by the targeted application scenarios—e.g., IoT. Similarly, time and space

situatedness promotes novel forms of client/service interaction, enabling clients to

submit ‘situated’ queries where the notions of time and locus explicitly affect the

computation.

The remainder of the paper is organised as follows. After Section 2 reviews the

main works about the evolution of distributed LP, Section 3 introduces the vision

behind LPaaS, by discussing how the service perspective and the new situated di-

mension of computation mandate for a re-interpretation of some basic LP concepts.

Section 4 shows how such a re-interpretation affects LP at the architectural level,

by discussing more practically the logic-based service-oriented architecture (SOA)

supporting LPaaS. Section 5 defines the LPaaS service interface, and elaborates on

the interaction patterns. Section 6 presents a prototype implementation developed

on the top of the tuProlog system, while Section 7 discusses a case study in the

Smart House field. Related works are reported in Section 8.

2 Distributed LP: Evolution

Research on distributed intelligence has gained increasing popularity over the years

(Parker 2008). Starting from the seminal work of Clark and Gregory (1981), con-

currency, parallelism, and several approaches for distributing intelligence have been

explored—from LP languages specifically designed for distribution, to pure logic-

based models, rule-based systems, probabilistic graphical models, and ontologies. In

the following, we organise and describe some of the most relevant contributions to

the field and to our approach, motivating the need for further advancement.

Implicit Parallelism. The first efforts to advance beyond sequential LP start from

the programming schemes for the interpretation of logic programs—in particular,

towards implicit parallel evaluation, leading to explore AND-parallelism, OR-

parallelism, Search parallelism, and Stream-AND-parallelism.

Clark (1978) introduces a scheme that allows negative literals in queries; some

years later, the Naish scheme (Naish 1988) introduces co-routing among procedure

calls. Meanwhile, Wolfram et al. (1984) focus on AND-parallel evaluation: Their

asynchronous version corresponds to the execution models of parallel LP languages.

These schemes perform and adapt well to different forms of parallelism: However,

they are not meant to face distributed programming. Also, it is worth noting that

implicit parallelism lacks two important control mechanisms: synchronisation of

logic processes and control over the non-determinism of schedulers.

Explicit Parallelism. Later approaches focus on ‘extraction’ of parallelism via explicit

language constructs.

A first line of research moves from concurrent logic languages, rooted in the

Relational Language (Clark and Gregory 1981), generally acknowledged as the

first concurrent LP language. In Concurrent Prolog (Shapiro 1987), Guarded Horn

Clauses (Ueda 1986), and Parlog (Clark 1987), goal evaluation is carried out by

a network of fine-grained logic processes (i.e., atomic goals) that are executed in

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 849

parallel: Processes communicate via shared streams, i.e., bi-directional channels on

which data items flow.

An alternative research line follows the idea of extending Prolog with special

features for distributed execution, like message passing. This approach preserves

the operational semantics of sequential Prolog, augmenting the language with ad-

hoc communication primitives. One of the major references in this field is Delta

Prolog (Brogi and Gorrieri 1989), where Prolog is extended with constructs for

sequential and parallel composition of goals, inter-process communication and

synchronisation, and external non-determinism. Delta Prolog programs (Cunha

et al. 1989) using concurrency mechanisms do not lend themselves to the usual

declarative interpretation as Horn clauses, and are grounded instead on the theory

of Distributed Logic (Monteiro 1984). This approach extends Horn clause logic

with the notion of time-dependent events, on which process communication and

synchronisation are based, making distributed logic a special kind of temporal logic.

Besides enabling inter-process communication for logic programs, orthogonal

aspects such as their deployment are not considered, neither the issues brought

along by distribution—such as validity in time of logic theories and their global

consistency—are taken into account.

Agents, Communication, and Coordination for Distributed LP. Further steps towards

distributed LP come with Shared Prolog (Brogi and Ciancarini 1991), based on

parallel agents that are Prolog programs extended with a guard mechanism. The pro-

grammer controls the granularity of parallelism, coordinating agents’ communication

and synchronisation via a centralised data structure, the blackboard, inspired to the

model defined in (Nii 1986) as well as to the Linda coordination model (Gelernter

1985). The main idea is to exploit the blackboard within the logic framework to

coordinate logic processes. However, the inference engine is not situated in time and

space, i.e., the query result is independent from the entities’ position, the time flow,

and context/situation changes.

LP in Pervasive, Context-aware Systems. More recently, LP has been explored as a

promising solution to bring intelligence into pervasive context-aware systems.

Ranganathan and Campbell (2003) show that using first-order logic is a very

effective and powerful way of dealing with context, promoting an approach to

develop a flexible and expressive model supporting context-awareness, enabling

deduction of higher-level situations from perceptions about basic contexts—via rule-

based approaches. A key advantage of formally modelling the context is that the

expressiveness of the model itself can be clearly specified and automatically verified.

Loke (2004) emphasises that LP is generally useful for context reasoning, as well

as for supporting rule-based (meta)programming in context-aware applications, en-

abling, i.e., hierarchical description of complex situations in terms of other situations.

This approach encourages a high level of abstraction for representing and reasoning

about situations, and supports building context-aware systems incrementally through

modularity and separation of concerns. The focus on context-awareness of both

contributions is at the base of our choice of re-interpreting distributed LP by

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


850 R. Calegari et al.

targeting especially context-aware systems, as pervasive ones usually are—being the

IoT a prominent example.

Other works take different approaches: from pure logic-based models to rule-based

systems and probabilistic graphical models, up to ontologies.

Rule-based systems (Salber et al. 1999; Dey 2001; Etter et al. 2006; Wang et al.

2011) have been in use for decades for both model representation and reasoning in

context-aware applications. More recently, Nalepa and Bobek (2014) have proposed

a rule-based, learning middleware for storage and reasoning in a distributed scenario.

The idea is to delegate context acquisition to middleware, that is, a rule-based context

reasoning platform tailored to the needs of intelligent distributed mobile computing

devices. The need for a dedicated middleware layer is apparent in the aforementioned

works, further strengthening the idea that distributed LP is not confined to context

manipulation, and deserves instead general attention.

In Ranganathan et al. (2004), fuzzy and probabilistic logic is exploited to handle

the uncertainty of the environment and deal with the imperfections of data.

Probabilistic graphical models (Bettini et al. 2010) can be exploited to support

the modelling of, and the reasoning about, uncertain information in pervasive

systems, even if exact inference in complex probabilistic models can be a NP-hard

task. Description logic, usually used in combination with ontologies, is another LP

extension effective for modelling concepts, roles, individuals, and their relationships,

as well as to provide simple reasoning capabilities (Hu et al. 2012). However, only

simple classification tasks can be solved, and no mechanisms are provided to infer

more complex information from existing data. Also, design and implementation

are typically more difficult and time consuming than with other approaches. Since

uncertainty of information is the natural enemy of global consistency, our approach

moves from the choice of abandoning the idea of globally consistent (in terms of

both time and space) logic theories (or, knowledge bases—KB) in favour of locally

consistent ones.

3 The LPaaS vision

The evolution of LP in parallel, concurrent, and distributed scenarios is the main

motivation for re-interpreting the notion of distribution of LP in today’s context.

Since SOA is the de facto standard for distributed application development in both

the academia and the industry (Erl 2005), Section 3.1 focuses on how LP can be

re-interpreted in the service perspective. This perspective further emphasises the role

of situatedness, already brought along by distribution in itself: Thus, Section 3.2

discusses how being situated in space, time, and context affects LP computation.

The two novel perspectives are merged together in Section 3.3, which develops the

idea of LP as a situated service.

3.1 The service perspective

The service-oriented perspective deeply affects the way in which LP engines are

conceived, designed, and used—in particular, as far as the very nature of LP

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 851

encapsulation is concerned, the way in which clients interact (requiring statelessness),

and the assumptions about the surrounding context (locality) are concerned.

Encapsulation. A service hides both data representation and the computational

mechanisms behind a public interface exposed to its clients. In the context of LP en-

gines, this means that both the logic theory (the data) and the resolution process (the

computational mechanism) are inaccessible—and, in general, not observable—from

outside the boundary of the service interface. As a consequence, theory manipulation

mechanisms, such as assert/retract, are no longer directly applicable from the

client perspective: Since the logic theory is encapsulated by the service, dedicated

mechanisms are required for its handling. For instance, in an IoT scenario, this

may happen via a separate ‘sensor API’ through which sensor devices regularly

update the KB of the LP service according to their perception of the surrounding

environment.

Accordingly, the logic theory of a LPaaS service can be either static or dynamic

(which are mutually exclusive configurations). The way in which the LP service can

be accessed obviously depends on that: Time is an issue for dynamic KB, not for

static ones.

Statelessness. Encapsulation makes it irrelevant how the encapsulated behaviour

is implemented: What actually matters are the inputs triggering, and the outputs

resulting from, that behaviour. Furthermore, in the SOA perspective, services are

usually redundantly distributed over a network of hosts for enhancing the service

availability and reliability: thus, it does not really matter who actually carries out

the encapsulated behaviour. In the context of LP, this means that interactions with

clients should be also allowed to be stateless—that is, include all the information

required by the resolution process, since a different component may serve a different

request. Notably, statelessness is the default for RESTful web services (WS), too.

It is worth emphasising here that statelessness does not contrast with the above

encapsulation property, since the former regards the invocation of LPaaS services—

hence the interaction between clients and servers—whereas the latter concerns LPaaS

services themselves—that is, their inner nature. In other words, statelessness implies

that servers are not supposed to track the state of interactions, so that a service

request should not assume or rely on previous interactions, whereas encapsulation

means that only the selected properties of the service are visible and modifiable from

the outside.

At the same time, in order to cope with data-intensive applications, where stateless

interaction may become cumbersome, LPaaS also supports stateful interaction—yet,

at the clients’ convenience and will. This is particularly handy for scenarios where

reasoning and inference should be based on continuous and possibly unbounded

streams of data, such as those coming from sensors in IoT deployments.

Locality. The distributed nature of the system drastically changes the perspective

over consistency: maintaining globally consistent information is typically unfeasible

in such systems. Furthermore, when pervasive systems enter the picture, even globally

available information is usually not a realistic assumption: For instance, in IoT

scenarios, heterogeneous data streams are continuously made available by sensor

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


852 R. Calegari et al.

devices scattered in specific portions of the physical environment. As a consequence,

encapsulation is inevitably bound to a specific, (local ) portion of the system—with

a notion of locality extending up to when/where availability and/or consistency are

inevitably lost.

In the context of LP, this means first of all resorting to a multi-theory logical

framework, exploiting the typical approach to modularity adopted in traditional LP

in order to allow for parallel and concurrent computation (Bugliesi et al. 1994).

Also, locality implies that each logic theory describes just what is locally true—

which basically means leaving aside in principle the global acceptation of the closed

world assumption (Reiter 1978) in favour of a more realistic locally closed world

assumption. Accordingly, every LP service is to be queried about what is locally

known to be true, with no need to resort to global knowledge of any sort—and with

no need to distribute the resolution process in any way.

3.2 The situatedness perspective

The distribution of LP service instances directly calls for situatedness, intended as the

property of the LP service to be immersed in the surrounding computational/physical

environment, whose changes may affect its computations (Mariani and Omicini

2015). As an example, new sensor data may change the replies of an LP service to

queries. Situatedness adds three new dimensions to LP computations: space, time,

and context.

Space. To be situated in space means that the spatial context where the LP service

is executing may affect its properties, computations, and the way it interacts with

clients.

Distribution per se constitutes a premise to spatial situatedness: Each LP instance

runs on a different device, thus on a different network host, therefore accessing the

different computational and network resources that are locally available. Moreover,

since LP services encapsulate the logic theory for their resolution process, the locally

gathered knowledge affects the result, once it is represented in terms of logic axions.

Also, more articulated forms of spatial situatedness may be envisioned: For

instance, mobile clients may request LP services from different locations at each

request, possibly even while moving, which means that the LP service must be able

to coherently identify and track clients so as to reply to the correct network address.

Finally, it is possible in principle to conceive logic theories—or even individual

axioms therein—with spatially bound validity, that is, that are true only in specific

points or regions in space—analogously to spatial tuples in Ricci et al. (2017).

Time. Complementarily, being situated in time means that the temporal context when

the LP service is executed may affect its properties, computations, and interactions

with clients. Yet again, distribution alone already brings about temporal issues:

Moving information in a network takes time; thus, aspects such as expiration of

requests, obsolescence of logic theories, and timeliness of replies should be taken

into account when designing the LP service.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 853

Furthermore, since reconstructing a global notion of time in pervasive systems

is either unfeasible or non-trivial, each LP service should operate on its own local

time—that is, computing deadlines, leasing times, and the like according to its local

perception of time. Also, in the same way as for spatial situatedness, temporal

situatedness may also imply that logic theories or individual axioms may have their

time-bounded validity—e.g., holding true up to a certain instant in time, and no

longer since then.

Context. Besides the space/time fabric, situatedness also regards the generic envi-

ronment within which LP services execute—that is, the computational and physical

context which may affect their working cycle: For instance, it may depend on the

available CPUs and RAM, whether an accelerometer is available on the current

hosting device, etc.

A basic level of contextual situatedness is already embedded in the very nature of

the LP service: In fact, locality of the resolution process implies that the logic theory

for goal resolution belongs to the context of the LP service, thus straightforwardly

affecting its behaviour. However, especially in the IoT scenarios envisioned for

LPaaS, the computational and physical contexts may both impact the LP service:

For example, sensor devices may continuously update the service KB with their latest

perceptions, while actuators may promptly provide feedback on success/failure of

physical actions.

3.3 Towards LP as a situated service

The above perspectives promote a radical re-interpretation of a few facets of LP,

moving LP itself towards the notion of LPaaS envisioned in this paper—that is, in

terms of a situated service. Such a notion articulates along four major lines:

• The preservation (with re-contextualisation) of the SLD resolution process.

• Stateless interactions.

• Time-sensitive computations.

• Space-sensitive computations.

The re-contextualisation of the SLD resolution process. The SLD resolution process

(Robinson 1965) remains a staple in LPaaS: Yet, it is re-contextualised in the situated

nature of the specific LP service. This means that, given the precise spatial, temporal,

and general contexts within which the service is operating when the resolution

process starts, the process follows the usual rules of SLD resolution: Situatedness is

accounted for through the service abstraction with respect to such three contexts.

With respect to the spatial context, the resolution process obviously takes place

in the hosting device where the LP service is running, thus taking into account

the specific properties of the computational and physical environment therein

available—CPU, RAM, network facilities, GPS positioning, etc.—there included

the specific logic theory the LP service relies on. As mentioned in Section 3.2, more

articulated forms of spatial situatedness—e.g., involving mobility of clients (and LP

services, in principle), or, virtual/physical regions of validity for logic axioms—could

be envisioned.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


854 R. Calegari et al.

The temporal context refers to the resolution process taking place on a frozen

snapshot of the LP service state—there including its KB, which stays unaffected

to external stimuli (possibly affecting the resolution process) until the process itself

terminates. This way, despite the dynamic nature of the KB—encapsulated by

the service abstraction—which could change, e.g., due to sensors’ perceptions—the

resolution process is guaranteed to operate on a consistent stable state of the logic

theory.

Finally, the resolution process depends on the general context of the specific

device hosting the LP service instance—thus considering the state of the KB therein

available, as assembled by, e.g., the set of sensors devices therein available, the service

agents gathering new local information, and so on.

Stateless interactions. A first change brought by LPaaS concerns interaction with

clients of the LP service.

In classical LP, interactions are necessarily stateful : The user first sets the logic

theory, then defines the goal, and then asks for one or more solutions, iteratively.

This implies that the LP engine is expected to store the logic theory to exploit as its

KB, to memorise the goal under demonstration, and to track how many solutions

have been already provided to the user—and all these items become part of the

state of the LP engine.

Instead, in LPaaS interactions are first of all (even though not exclusively) stateless:

Coherently with SOA, the LP service instance that actually serves each request may

be different at each time, e.g., due to redundancy of distributed software components

aimed at improving availability and reliability of the LP service. In such a perspective,

each client query (interaction) should be possibly self-contained, so that it does not

matter which specific service instance responds—because there is no need for it to

track the state of the interaction session.

It is worth emphasising that in the case of stateful interaction, adequate measures

need be taken to prevent possible problems related to different LPaaS service

instances serving repeated requests, requests from mobile clients, and similar situ-

ations. Two possible solutions could be considered for this concern: (i) the LPaaS

middleware could simply lock a service in case of stateful interaction, ensuring that

the client always interacts with the same service instance (this is essentially the

problem of conversational continuity, well documented in the literature; Gelernter,

1985); (ii) alternatively, the LPaaS middleware could take care of the hand-off of

the interaction from instance to instance, ensuring proper sharing of the information

needed to preserve statefulness across service instances.

Time-local computation. Another change stemming from the situated nature of LPaaS

is concerned with the relationship between the resolution process and the flow of

time.

In pure LP, the logic theory is simply assumed to be always valid, and time-

related aspects do not affect the resolution process; for instance, assertion/retraction

mechanisms are most typically regarded as extra-logic ones. As discussed above, in

LPaaS the consistency of the resolution process is guaranteed by the fact that the

possibly ever-changing KB encapsulated by the service is frozen in time when the

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 855

resolution process itself begins: Nevertheless, time situatedness requires by definition

that time affects the LP service computation in some way.

Accordingly, in LPaaS each axiom in the KB is decorated with a time interval,

indicating the time validity of each clause. Every time a new resolution process starts

in order to serve a LPaaS request, the logic theory used is the one containing all and

only the axioms holding true at the timestamp associated with the resolution process

itself. In the simplest case, such a timestamp is implicitly assigned by the LP server

as the current local time when the request for goal demonstration is first served.

Otherwise, it could also be explicitly assigned by clients along with the request—e.g.,

defining a specific time when asking for a goal demonstration.

Space-local computation. Analogously, classical LP has no notion of space situated-

ness: Be it a virtual or a physical space, the LP engine is a monolithic component

providing its ‘services’ only locally, to its co-located ‘clients’ working on the same

machine.

The LPaaS interpretation stems again from the very nature of service in modern

SOA-based applications—a computational unit providing its functionalities through

a network-reachable endpoint. Therefore, the resolution process in LPaaS is naturally

and inherently affected by the specific computational locus where a given LP service

instance is executing at a given moment—there including the locally available

resources.

4 The LPaaS architecture

LPaaS is a logic-based, service-oriented approach for distributed situated intelligence,

conceived and designed as the natural evolution of LP in nowadays pervasive

computing systems. Its purpose is to enable situated reasoning via explicit definition

of the spatio-temporal structure of the environment where situated entities act and

interact.

Along the lines traced in Section 3.3, we now elaborate more practically on how

encapsulation, statelessness, and locality—that is, the service perspective (Section

3.1)—are exploited in LPaaS according to the three dimensions of situatedness

described in Section 3.2—that is, time, space, and context. Then, we briefly describe

microservices (Familiar 2015) as a key enabler architecture for LPaaS.

4.1 Service architecture

Encapsulation. As it straightforwardly stems from SOA principles, encapsulation is

exploited in LPaaS so as to define a standard API that shields LPaaS clients from

the inner details of the service while providing suitable means of interaction.

Accordingly, each LP server node exposes its LP service to clients via two

interfaces, depicted in Figure 1:

Client Interface exposes methods for observation and usage. Client refers to any

kind of users, either individuals (humans, software agents) or groups entitled to

exploit the LPaaS services.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


856 R. Calegari et al.

Fig. 1. LPaaS configurator service Architecture (left) and client service architecture (right).

Configurator Interface enables service configuration and requires proper access cre-

dentials. Configurator refers to service managers—privileged agents with the right

of enforcing control and policies for that local portion of the system.

Applications can access the service as either Clients or Configurators, via the

corresponding interfaces. The service is initialised at deployment-time on the server

machine: Once started, it can be dynamically re-configured at run-time by any

configurator.

Locality. Situatedness is exploited as a means to consistently handle locality w.r.t.

context, time, and space.

In fact, dealing with situated logic theories means to give up with the idea of

global consistency in a closed world: In LPaaS, multiple KB are spread throughout

a network infrastructure, likely geographically distributed, executing within different

computational contexts, and possibly either fed by sensors or manipulated by service

agents perceiving the physical context. By allowing distributed access and reasoning

over its own locally situated knowledge base, each LPaaS node actively contributes

to the overall availability of the global knowledge.

Accordingly, pervasive application scenarios where logic theories represent local

knowledge inherently call for dynamic KB, autonomously evolving during the service

lifetime1. As such, each situated KB of a LPaaS service can be seen as representing

what is known to be true and relevant in a given location in space at a given

time, thus possibly changing over time—e.g., due to data streams coming from

sensor devices—and potentially different from any other KB located elsewhere—as

depicted in Figure 2.

Accordingly,

• each LPaaS clause has a lifetime, expressed as a time interval of validity—as

in the case of the current temperature in a room;

• as a result, at any point t in time a LPaaS service has precisely one logic theory

made of all and only the clauses that hold true at time t;

• each LPaaS resolution process is either implicitly (by the LPaaS server) or

explicitly (by the LPaaS client) labelled with a timestamp, used to determine

the KB to be used for the resolution itself—which then works as the standard

LP resolution.

1 Here, ‘autonomously’ means that in the LPaaS perspective the logic KB may evolve over time with no
need for a client to invoke assert/retract, or equivalent methods—which, in fact, are not included
in the LPaaS standard API detailed in Section 5.1—but, e.g., due to sensor devices’ perceptions
transparently feeding the LP service KB.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 857

Fig. 2. Situatedness of LPaaS: The same query (q) by the same client may be resolved

differently (r[s1], r[s2′ ], r[s2′′ ]) by distinct LPaaS services (LPaaS 1,LPaaS 2′ ,LPaaS 2′′ ) based

on their local computational, physical, and spatio-temporal context (S1, S2′ , S2′′ ).

Statelessness. Uncoupling is one of the main requirements for interaction in dis-

tributed systems: That is why LPaaS provides stateless client–server interaction as

one of its main features. The same holds true in particular for pervasive systems,

where instability is one of the main issues, as well as for mobile systems, with

any sort of mobility: physical mobility of users and devices; users who change their

computing device while using applications; service instances migrating from machine

to machine—as in a cloud-based environment.

The need for uncoupling promotes stateless interaction in LPaaS. Thus, for

instance, both LPaaS clients and service instances can freely move with no concerns

for requests tracking and identity/location bookeeping.

In order to balance the effect of statelessness on data-intensive interactions

between LP service and users, LPaaS also provides clients with the ability to ask

for more than one solution at a time, and even all of them, with a single request.

Nevertheless, LPaaS also makes it possible to obtain a stream of solutions from the

resolution process, rather than a single solution at a time in an individual interaction

session, to better meet the needs of fast-paced dynamic scenarios in which clients

want to be constantly updated by the LP service about some situation.

Accordingly, LPaaS provides clients with the means to obtain both stateless and

stateful client–server interaction:

Stateful once the logic theory to consider is settled, and the goal stated, the client

should be able to ask for any amount of solutions—possibly iteratively, possibly

at different times and from different places—with the service being responsible to

guarantee consistency and validity of solutions by keeping track of the related

interaction sessions with the same client.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


858 R. Calegari et al.

Stateless in this case, no session state is tracked by the server, so each client request

should contain all the information required to serve the request itself.

It is worth highlighting that nothing prevents the service from being stateful and

stateless simultaneously, because the LP server can manage multiple kinds of requests

concurrently; instead, of course, each client request in LPaaS is either stateful or

stateless.

4.2 Microservices as technology enablers

SOAs represent nowadays the standard approach for distributed system engineering

(Erl 2005): So, LPaaS adopts the Software as a Service (SaaS) architecture as its

reference (Cusumano 2010).

Accordingly, information technology resources are conceived as continuously

provided services: SaaS applications are supposed to be available 24/7, scale up

and down elastically, support resiliency to changes (i.e., in the form of suitable

fault-tolerance mechanisms), provide a responsive user experience on all popular

devices, and require neither user installation nor application updates.

In particular, LP services in LPaaS can be fruitfully interpreted as microservices

(Familiar 2015). Microservices are a recent architectural style for SaaS applica-

tions promoting usage of self-contained units of functionally with loosely coupled

dependencies on other services: As such, they can be designed, developed, tested,

and released independently. Thanks to their features, microservices are deserving

increasing attention also in the industry—pretty much like SOA in the mid 2000s—

where fast and easy deployment, fine-grained scalability, modularity, and overall

agility are particularly appreciated (Richards 2016).

Technically speaking, microservices are designed to expose their functionality

through standardised network-addressable APIs and data contracts, making it

possible to choose the programming language, operating system, and data store

that best fit the service needs and the developers’ skills set, without worrying about

interoperability. Microservices should also be dynamically configurable, possibly in

different forms and with different configuration levels. Obviously, actual support

to interoperability requires multiple levels of standardisation: To this end, LPaaS

defines its own interfaces for both configuration and exploitation, while relying on

widely adopted standards as far as the representation formats (i.e., JSON 2017) and

interaction protocols (i.e., REST over HTTP, or MQTT 2017) are concerned.

5 The LPaaS service

Following the reference architecture above, designing LPaaS amounts first of all at

defining the Configurator Interface and the Client Interface—as in Figure 1.

Generally speaking, the LP service should support (i) observational methods

to provide configuration and contextual information about the service, (ii) usage

methods to trigger computations and reasoning, as well as to ask for solutions,

and (iii) configuration methods to allow the configurator to set the LP service

configuration.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 859

Table 1. LPaaS Configurator Interface

setConfiguration(+ConfigurationList)

getConfiguration(-ConfigurationList)

resetConfiguration()

setTheory(+Theory)

getTheory(-Theory)

setGoals(+GoalList)

getGoals(-GoalList)

Observational methods make it possible to query the service about its config-

uration (stateful/stateless, static/dynamic), the state of the knowledge base, and

the admissible goals: As such, they belong to the Client Interface, but can be made

available also in the Configurator Interface for convenience. Usage methods, instead,

belong uniquely to the Client Interface: They allow clients to ask for one or more

solutions—one solution, n solutions, or all solutions available, for stateful or stateless

requests as well. Configurator methods belong uniquely to the Configurator Interface,

and are intended to set the service configuration, KB nature, and admissible goals.

5.1 Service interfaces

Adopting the Prolog notation for input/output (Deransart et al. 1996), the actual

Configurator methods are detailed in Table 1, while the Client Interface is detailed

in Table 2. Since the first is rather self-explanatory, we focus on the Client Interface.

The first thing worth noting is that usage predicates for stateless and stateful

requests are slightly different from each other. In the case of stateless requests, the

solve operation is conceptually atomic and self-contained—so, e.g., the Goal to

solve is always one of its arguments; instead, in the case of stateful requests it is up

to the server to keep track of the request state, so the goal is to be set only once by

the client before the first solve request is issued.

The second key aspect is the threefold impact of time awareness: Regardless of

whether the server is either computing or idle, time flows anyway, so predicates have

to be time-sensitive. Accordingly,

• solve predicates can also contain a Timeout parameter (server time) for the

resolution, so as to avoid blocking the server indefinitely: If the resolution

process does not complete within the given time, the request is cancelled, and

a negative response is returned;

• for stateful requests, the client could also ask for a stream of solutions,

which is particularly useful in IoT scenarios exploiting sensor devices, or

monitoring processes: To this end, solve takes a time argument (server time),

meaning that each new solution should be returned not faster than every time

milliseconds;

• when the KB is dynamic, all predicates take an additional Timestamp argument,

meaning that each theory has a time-bounded validity: This feature can be used

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


860 R. Calegari et al.

Fig. 3. The LPaaS Finite State Machine.

during the proof of a goal to ensure that only the clauses valid at the given

Timestamp are taken into account in that resolution process.

For the sake of convenience, solveAfter methods are provided for mimicking the

LP stateful interaction on a stateless request channel, fast-forwarding to the N+1

solution AfterN.

Finally, the reset primitive resets the resolution process, with no need to

reconfigure the service (i.e., re-select the goal); in contrast, the close primitive

actually closes the communication with the server, so the goal must be re-set before

re-querying the server.

5.2 Computational model

The computational model of the service is depicted by the Finite State Machine in

Figure 3, made of four states:

• ready (initial state) – where the service is started and the engine is configured;

• run – where the service is undergoing some resolution process triggered by

queries;

• pause – representing the temporary suspension of computations;

• no goal selected (final state) – when the client connection is closed.

In the ready state, the service can be queried about its properties and a new goal can

be set, thus defining a new resolution process. When a new query is submitted, the

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 861

Table 2. LPaaS client interface

STATIC KNOWLEDGE BASE

Stateless Stateful

getServiceConfiguration(-ConfigList)

getTheory(-Theory)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution) solve(-Solution)

solveN(+Goal, +NSol, -SolutionList) solveN(+N, -SolutionList)

solveAll(+Goal, -SolutionList) solveAll(-SolutionList)

solve(+Goal, -Solution, within(+Time)) solve(-Solution, within(+Time))

solveN(+Goal, +NSol, -SolutionList, within(+Time)) solveN(+NSol, -SolutionList, within(+Time))

solveAll(+Goal, -SolutionList, within(+Time)) solveAll(-SolutionList, within(+Time))

solveAfter(+Goal, +AfterN, -Solution)

solveNAfter(+Goal, +AfterN, +NSol, -SolutionList)

solveAllAfter(+Goal, +AfterN, -SolutionList)

solve(-Solution, every(@Time))

solveN(+N, -SolutionList, every(@Time))

solveAll(-SolutionList, every(@Time))

pause()

resume()

reset()

close()

DYNAMIC KNOWLEDGE BASE

Stateless Stateful

getServiceConfiguration(-ConfigList)

getTheory(-Theory, ?Timestamp)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)

solveN(+Goal, +NSol, -SList, ?TimeStamp) solveN(+N, -SolutionList, ?TimeStamp)

solveAll(+Goal, -SList, ?TimeStamp) solveAll(-SolutionList, ?TimeStamp)

solve(+Goal, -Solution, within(+Time), ?TimeStamp) solve(-Solution, within(+Time), ?TimeStamp)

solveN(+Goal, +NSol, -SList, within(+Time), ?TimeStamp) solveN(+NSol, -SList, within(+Time), ?TimeStamp)

solveAll(+Goal, -SList, within(+Time), ?TimeStamp) solveAll(-SList, within(+Time), ?TimeStamp)

solveAfter(+Goal, +AfterN, -Solution, ?TimeStamp)

solveNAfter(+Goal, +AfterN, +NSol, -SList, ?TimeStamp)

solveAllAfter(+Goal, +AfterN, -SList, ?TimeStamp)

solve(-Solution, every(@Time), ?TimeStamp)

solveN(+N, -SList, every(@Time), ?TimeStamp)

solveAll(-SList, every(@Time), ?TimeStamp)

pause()

resume()

reset()

close()

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


862 R. Calegari et al.

Fig. 4. The LPaaS RESTful Web Service (left) and Server architecture (right).

service moves to the run state, indicating that a resolution process is taking place.

Computation may then be paused several times, causing the service to move back

and forth from the pause state: From there, resolution can also be reset (coming

back to the initial state), or closed (moving to state no goal selected ).

6 LPaaS in tuProlog

To test the effectiveness of the proposed model and architecture, we implement a first

prototype of LPaaS as a RESTful WS (Fielding and Taylor 2002), embracing the

Web of Things (WoT) vision (Heuer et al. 2015). Accordingly, our approach follows

the WoT perspective in re-interpreting the ‘things’ (as well as their functionalities and

data streams) as RESTful resources accessible through WS protocols, addressing the

need to harmonically exploit all the components of the IoT system by virtualising

individual things in some sort of software abstraction. There, each interaction session

starts with a client request conveying the so-called ‘method’ information (i.e., how

the receiver has to process the request) and the ‘scope’ information (i.e., which is

the target data). Then, computations occur on the receiving side, where the target

resource applies the method to the scope. The result is a response conveying an

optional representation of the requested resource (functionality or data).

The computational model of the prototype reflects the state machine described in

Figure 3. We reuse and adapt patterns commonly used for the REST architectural

style, and introduce a novel architecture which supports the embedding of Prolog

engines into WS. Figure 4 (left) shows the general architecture of the server side and

its components (access interfaces, Prolog engine, and data store), as well as some

exemplary client applications interacting via HTTP requests and JSON objects.

Figure 4 (right) shows the server inner architecture, composed of three logical

layers: the interface, the business logic, and the data layer. The interface layer

encapsulates the Configurator and Client interfaces. The business logic layer wraps

the Prolog engine with the aim of managing incoming requests consistently. The data

layer is responsible for managing the data store tracking, i.e., all the configuration

options necessary to restore the service in case of unpredictable shutdown (i.e.,

operating parameters and security metadata such as clients’ role, username, and

password).

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 863

Fig. 5. Client–server interaction – inner calls.

Since those data are expected to be rather limited in size for most scenarios, we

choose to keep them in the server application so as to offer a light-weight, self-

contained service: However, they could be easily moved to a separate persistence

layer on, i.e., an external DB application, if necessary.

The server implementation is realised by exploiting a plurality of technologies that

are commonly found in the SOA field: The business logic is realised on the J2EE

framework (J2EE 2017), exploiting EJB (EJB 2017), while the database interaction

is implemented on top of JPA (Java Persistence API 2017).

The Prolog engine is implemented on top of the tuProlog system (Denti et al.

2001), which provides not only a light-weight engine, particularly well-suited for

the envisioned pervasive computing scenarios, but also a multi-paradigm and multi-

language working environment, paving the way towards further forms of interaction

and expressiveness. Also, tuProlog 3.2 supports JSON serialisation natively, ensuring

the interoperability required by a WS. The tuProlog engine, distributed as a Java

JAR or Microsoft .NET DLL, is easily deployable and exploitable by applications

as a library service—that is, from a software engineering standpoint, a suitably

encapsulated set of related functionalities.

Figure 5 shows a client–server interaction in case of a stateless request. The

StatelessEngine component, realised exploiting a Stateless Bean, wraps the Prolog

engine object to manage the concurrent requests transparently.

The service interfaces exploit the EJB architecture, but can also be accessed as

RESTful WS, realised using JAX-RS Java Standard implemented in the Jersey

library (Jersey 2017). Security is based on JOSE (jose.4.j 2017), an open source

(Apache 2.0) implementation of JWT and the JOSE specification suite. The appli-

cation is deployed using the Payara Application Server (Payara 2017), a Glassfish

open-source fork.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


864 R. Calegari et al.

6.1 tuProlog-as-a-service in action

The tuProlog-as-a-Service prototype is freely available on Bitbucket (LPaaS 2018)

with the corresponding installation guide.

Two different prototype implementations are provided: LPaaS as a RESTful WS

and LPaaS as an agent in an agent society (MAS), both built on top of the tuProlog

system that provides the required interoperability and customisation. The first aims

to emphasise how LPaaS can effectively support REST, probably the most typical

IoT paradigm, while the second means to highlight the LPaaS effectiveness in

supporting and promoting distributed situated intelligence.

The concrete implementations are discussed in detail in Calegari et al. (2017),

Calegari et al. (2018). In Calegari et al. (2017), a Smart Bathroom is supposed

to monitor physiological functions to deduce symptoms and diseases, alerting the

user via an Android app as appropriate: Local sensors could perform situated

reasoning, applying their local knowledge to aggregate the raw data and produce

higher level synthesised information. Calegari et al. (2018), instead, discusses a

Smart Kitchen where devices provide information about food supply and users’

preferences, generating high-level knowledge used to coordinate and collaborate

with other entities in the system.

7 Case study and discussion

The following section is meant to illustrate the LPaaS approach and its benefits by

means of a running example in the Smart House field: Then, we compare the result

with a more traditional LP approach.

The case study concerns the automatic assembly of home furniture by a domestic

robot. The robot is in charge of the assembly operation, and the furniture pieces

are supposed to be augmented with some form of computational capability—from

simple RFID tags for being discoverable, up to embedded chips to store data and

perform simple inference tasks. The key aspect is that the installation instruction,

the location, and the assembly constraints (such as avoid putting heavy things on

fragile walls) are not known in advance by the robot itself, and have to be derived

by suitably exploiting situated knowledge.

As shown in Figure 6, the envisioned system features the following actors:

• The Designer agent, hosted in the Cloud, owner of and responsible for the

house design project.

• The Assembler robotic agent, responsible for assembling the furniture.

• SmartFurniture LPaaS agents, owners of and responsible for storing and

making available their own assembly instructions (i.e., the ‘Billy’ bookshelf

provides installation instructions for itself only).

• SmartWall LPaaS agents, each responsible for knowing the structural proper-

ties of a given wall (i.e., materials of constructions, maximum allowable weight,

and so on).

The Assembler acts like a human with the goal of assembling all the furniture

in the house according to the envisioned design, but conscious of the unexpected

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 865

Fig. 6. IoT home: Case study.

contingencies that may arise (fragile walls, wrong measures, etc.). Moreover, exactly

like a human, it does not know how to assemble a given piece of furniture in

advance—it needs the installation instructions. Accordingly, the Assembler first ac-

quires the procedural knowledge it needs—essentially, the set of plans for assembling

the furniture of interest—by exploiting the intelligence embedded in the surrounding

environmental structures (the walls, the ceiling, and the floor) and furniture. To this

end, the Assembler needs not to be a full-fledged LPaaS agent, but can be a much

simpler LPaaS client, with just the capability of requesting the LPaaS service. Its

(normal) workflow is thus as follows:

• Once in a room, it selects a wall and asks the Designer which pieces of

furniture are to be positioned against that wall.

• Then, it starts discovering the LPaaS agents representing such pieces, and asks

them the pre-conditions they need for a successful assembly—i.e., about the

structural properties the wall should have, or any other relevant property.

• Then, the Assembler interacts with the targeted SmartWall LPaaS agent to

check if such pre-conditions are satisfied—notice that this check is delegated

to the wall itself, which is the only one bearing the situated knowledge needed

to effectively evaluate the feasibility of the design project.

In case of unforeseen situations, the SmartWall agent proposes an alternative

disposition of the furniture that would be possibly implemented by the Assembler if

the Planner agrees. Yet again, the Assembler simply exploits the situated intelligence

of the LPaaS services in its surroundings. We would like to emphasise that this is

the only way in which the same simple robot may be able to assemble (in principle)

an unbounded number of heterogeneous pieces of furniture in all sorts of different

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


866 R. Calegari et al.

Fig. 7. Example of agents interaction.

walls, ceilings, floors, without hard-coding the instructions in its knowledge base,

design update/patch mechanisms, or resort to code-on-demand features.

This is the kind of situated scenarios that LPaaS is most suited for, especially

if compared with traditional LP approaches. There, in fact, the robot would be in

need of storing its own knowledge base—the logic theory—describing how to build

the furniture, how to match the single pieces of furniture against walls, ceilings, etc.,

and overall the whole home project. Besides leading to undesired centralisation and

to a monolithic design, the most negative effect of such an approach is that the

robot would be unable to work with new, unknown kinds of furniture—ultimately

hindering flexibility, extensibility, and maintainability over time.

An example run is shown in Figure 7:

• Fixing the library to the wall requires two deep holes, but one of them cannot

be done due to a chimney (detected by the SmartWall agent).

• The SmartWall then, undertaking an inference step on its own knowledge

base, proposes an alternative solution (i.e., to move the position of the hole

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 867

of 30 cm), which is then implemented by the Assembler after the Designer’s

approval.

It is worth noting that all the SmartFurniture and SmartWall agents implement,

respectively, the same service—that is, all SmartFurniture agents answer the same

queries, and all SmartWall agents do the same for their own set of queries—;

however, the answer, unlike traditional LP, could be different because of the sur-

rounding situation. For instance, given the query wallMaterialSpecification(M,

position(X,Y)), agent SmartWall001, responsible for wall #1, based on its wall

material could reply M/‘drywall with available wood stud’, while agent

SmartWall002, responsible for a different wall with different characteristics, could

reply M/‘masonry’.

Despite its simplicity, the case study above highlights the effectiveness of the

LPaaS approach in spreading intelligence in pervasive systems enabling ubiquitous

intelligence. The approach turns out to be particularly interesting when dealing

with different contexts, because taking into account local knowledge, situated in

time and space, enables the system to take autonomous real time decisions based

on the specific situation. Moreover, relying mostly on locally available information

reduces both the bandwidth consumption and the need for reliable communications

between the distributed components, which are highly desirable features in IoT

scenarios.

Also, modularity and encapsulation of LPaaS improve scalability of the LPaaS

deployment: In traditional LP, there would be a single LP engine to scale up/down

depending on the demand coming from clients, which translates to scaling a

singleton monolithic entity as a whole, even if the actual need for scaling only

concerns a portion of its functionality—i.e., only queries regarding a given portion

of its knowledge base. In LPaaS instead—provided that the overall LP system

functionality has been appropriately designed by distributing sub-functionalities to

a set of distributed situated LPaaS services—whenever any given portion of the LP

inference service suffers from excessive demand, only that portion of the system

needs to be scaled up—namely, only that LPaaS service instance.

Another benefit related to modularity and encapsulation is that LPaaS lends itself

to application in real-time scenarios. First of all, splitting out the LP service in

multiple, smaller instances, responsible for a well-defined portion of the knowledge

needed by the application at hand, helps achieving greater performance while doing

inference, compared to traditional LP. Second, time-awareness of LPaaS helps

dealing with time-related aspects, such as discarding obsolete knowledge, ignore

old requests, setting temporal bounds on the resolution process, etc. Third, the IoT-

oriented perspective according to which LPaaS clients do not need assert/retract

mechanisms for manipulating the LP service knowledge base, because that func-

tionality is envisioned for situated sensors and actuators directly interacting with

the service through a dedicated API, helps ensuring that each LP service instance is

always up-to-date with the state of the local world as per sensors’ perceptions.

Nevertheless, we would like to point out that a real-time deployment of the

currently available LPaaS prototypes—the RESTful and MAS-oriented tuProlog

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


868 R. Calegari et al.

implementations—has not yet been experimented, thus the above discussion is

mostly based on speculation.

8 Related work

The SOA paradigm is widely used in IoT scenarios (Cannata et al. 2010; Guinard

et al. 2010b; Guinard et al. 2010a; Pontelli et al. 2008; Karnouskos et al. 2012;

Messina et al. 2017). Moreover, communication via REST enables the direct

integration of SOA-ready devices (i.e., devices hosting native WS).

MobIoT (Hachem et al. 2014) provides efficient service discovery, composition,

and access in heterogeneous, dynamic, mobile IoT contexts, revisiting the standard

SOA approach by providing probabilistic registration, look-up and thing-based

composition based on comprehensive ontologies. However, it does not support

runtime interaction with users to let them specify their goals, and still needs proper

validation from the scalability viewpoint when the number of registered services is

very large.

Pontelli et al. (2008) present a comprehensive LP framework designed to support

intelligent composition of WS. The work proposes a theoretical framework for

reasoning with heterogeneous knowledge bases, which can be combined with logic

programming-based planners for WS composition. The framework makes a step

towards the interoperation between knowledge bases encoded using different rule

markup languages and the integration of different components that reason about

knowledge bases. Unlike our framework, the system is not focused on situated

reasoning: Rather, it is mainly concerned about dealing with heterogeneous WS in

the context of the WS composition problems.

A novel approach for engineering IoT systems is proposed by Alkhabbas et al.

(2017), where a set of things with their functionalities and services is connected and

led to cooperate temporarily so as to achieve a given goal. Moreover, many research

work deal with event-driven SOA (EDA-SOA) (Schulte and Natis 2003; Michelson

2006)—where communication between users, applications and services is carried

out by events, rather than using remote procedure calls. In particular, Prado et al.

(2017) propose an event-driven SOA that provides context awareness in the scope

of IoT, whereby the generation of an event can trigger the concurrent execution of

one or more services. When a given event occurs, different services can be triggered

automatically, endowing the system with the capability of real-time sensing and

rapid response to events in a loosely coupled, distributed computing environment.

In general, pure SOA and EDA have their own limitations, but could complement

each other; that is, some degree of service coordination can be achieved among

mutually independent services through the event mechanism. As mentioned by Cheng

et al. (2017), such a complementarity suits well the features of IoT, requiring high

autonomy inside a domain and efficient coordination across domains; furthermore,

it both improves the real-time response to constantly changing business requirements

and minimises the impact on the existing application system to allow a large-scale,

distributed IoT service application to be easily developed and maintained.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 869

Many aspects developed in the aforementioned works have worked as sources of

inspiration for LPaaS, in particular in how the model and architecture are conceived

and designed. Following the SOA principles, LPaaS aims at modelling ubiquitous

intelligence in a dynamic context by promoting portability and interoperable

interaction over a network (via proper standards) and emphasising the separation of

the service interface from its implementation. While following the EDA principles,

LPaaS goes beyond the state-of-the-art mainly as far as context-awareness is

concerned, in particular by supporting the injection of intelligence within existing

services/agents via the awareness of the context, thus promoting their adaptivity.

9 Conclusion and future work

In this paper, we propose the LPaaS approach for distributed situated intelligence

as the natural evolution of LP in the context of nowadays pervasive computing

systems. We discuss its properties and its computational and architectural models

by relating and comparing them to the notions and development of LP over the

years, tracked in Section 8.

The main advantages of exploiting an LP-based approach in pervasive systems

amount at (i) writing declaratively complex rules involving the context, (ii) assessing

provable statements about the expressive power and decidability of the context

model, and (iii) actually supporting light-weight reasoning and cooperation among

distributed components. We also present a first prototype implementation built on

top of the tuProlog system, to demonstrate and test the effectiveness of the LPaaS

approach.

Our service-based approach, in particular, (i) encourages representing and rea-

soning with situations using a declarative language, providing a high level of

abstraction; (ii) supports the incremental construction of context-aware systems

by providing modularity and separation of concerns; (iii) promotes the cooperation

and interoperation among the different entities of a pervasive system; and (iv)

enables reasoning over data streams, like those collected by sensors.

Of course, a number of enhancements are still possible, both to the model and

to the infrastructure. From the model viewpoint, specific space-awareness methods

could be defined and added: For instance, a solveNeighbours primitive to deal with

the space around either the client or the server, making it possible to opportunistically

federate LP engines upon need as a form of dynamic service composition. From the

infrastructure viewpoint, we plan to focus on the design and implementation of a

specialised LP-oriented middleware, dealing with heterogeneity of platforms as well

as with distribution, life-cycle, interoperability, and coordination of multiple situated

Prolog engines—possibly based on the existing tuProlog technology and TuCSoN

middleware (Omicini and Zambonelli 1999)—so as to explore the full potential of

logic-based technologies in IoT scenarios and applications. Also, providing some sort

of distributed service directories enabling dynamic discovery of LPaaS services—in

turn promoting opportunistic interactions with clients or other services (for service

composition)—is surely a promising path to follow to further widen the applicability

of the LPaaS approach in pervasive scenarios.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


870 R. Calegari et al.

References

Alkhabbas, F., Spalazzese, R. and Davidsson, P. 2017. Architecting emergent configurations

in the internet of things. In Proc. of IEEE International Conference on Software Architecture

(ICSA). IEEE, Los Alamitos, CA, USA, 221–224.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.

and Riboni, D. 2010. A survey of context modelling and reasoning techniques. Pervasive

and Mobile Computing 6, 2, 161–180.

Brogi, A. and Ciancarini, P. 1991. The concurrent language, Shared Prolog. ACM

Transactions on Programming Languages and Systems 13, 1, 99–123.

Brogi, A. and Gorrieri, R. 1989. A distributed, net oriented semantics for Delta Prolog. In

International Joint Conference on Theory and Practice of Software Development (TAPSOFT

’89), J. Dı́az and F. Orejas, Eds. Lecture Notes in Computer Science, vol. 351. Springer,

Berlin Heidelberg, 162–177.

Brownlee, J. 2011. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Press,

Morrisville, NC, USA.

Bugliesi, M., Lamma, E. and Mello, P. 1994. Modularity in logic programming. Journal of

Logic Programming 19–20, 443–502. Special Issue: Ten Years of Logic Programming.

Calegari, R., Denti, E., Dovier, A. and Omicini, A. 2018. Extending logic programming

with labelled variables: Model and semantics. Fundamenta Informaticae 161, 53–74.

Calegari, R., Denti, E., Mariani, S. and Omicini, A. 2017. Logic programming as a

service (LPaaS): Intelligence for the IoT. In Proc. of IEEE 14th International Conference

on Networking, Sensing and Control (ICNSC 2017), G. Fortino, M. Zhou, Z. Lukszo, A. V.

Vasilakos, F. Basile, C. Palau, A. Liotta, M. P. Fanti, A. Guerrieri and A. Vinci, Eds. IEEE,

Los Alamitos, CA, USA, 72–77.

Calegari, R., Denti, E., Mariani, S. and Omicini, A. 2018. Logic programming

as a service in multi-agent systems for the Internet of Things. International

Journal of Grid and Utility Computing (in press). URL: http://www.inderscience.com/

info/ingeneral/forthcoming.php?jcode=ijgu

Cannata, A., Karnouskos, S. and Taisch, M. 2010. Evaluating the potential of a service

oriented infrastructure for the factory of the future. In Proc. of 8th IEEE International

Conference on Industrial Informatics (INDIN 2010). IEEE, Los Alamitos, CA, USA, 592–

597.

Chen, H., Finin, T. and Joshi, A. 2003. An ontology for context-aware pervasive computing

environments. The Knowledge Engineering Review 18, 3, 197–207.

Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D. and Chen, J. 2017. Situation-aware dynamic

service coordination in an IoT environment. IEEE/ACM Transactions on Networking 25, 4,

2082–2095.

Clark, K. L. 1978. Negation as failure. Logic and Data Bases. Springer, Boston, MA, USA,

293–322.

Clark, K. L. 1987. PARLOG: The language and its applications. In Proc. of PARLE

Parallel Architectures and Languages Europe. Volume II: Parallel Languages. Eindhoven,

The Netherlands, 15–19 June 1987, J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, Eds.

Lecture Notes in Computer Science, vol. 259. Springer, Berlin, Heidelberg, 30–53.

Clark, K. L. and Gregory, S. 1981. A relational language for parallel programming. In

1981 Conference on Functional Programming Languages and Computer Architecture (FPCA

’81). ACM, New York, NY, USA, 171–178.

Cunha, J. C., Ferreira, M. C. and Pereira, L. M. 1989. Programming in Delta Prolog.

In Proc. of the 6th International Conference on Logic Programming (ICLP 1989), Lisbon,

Portugal, 19–23 June 1989, G. Levi and M. Martelli, Eds. MIT Press, Cambridge, MA,

USA, 487–504.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 871

Cusumano, M. 2010. Cloud computing and SaaS as new computing platforms.

Communications of the ACM 53, 4, 27–29.

Denti, E., Omicini, A. and Ricci, A. 2001. tuProlog: A light-weight Prolog for Internet

applications and infrastructures. In Proc. of 3rd International Symposium Practical Aspects

of Declarative Languages (PADL 2001), Las Vegas, NV, USA, 11–12 Mar. 2001, I. V.

Ramakrishnan, Ed. Lecture Notes in Computer Science, vol. 1990. Springer, Berlin,

Heidelberg, 184–198.

Deransart, P., Ed-Dbali, A. and Cervoni, L. 1996. Prolog: The Standard. Reference Manual.

Springer, Berlin, Heidelberg.

Dey, A. K. 2001. Understanding and using context. Personal and Ubiquitous Computing 5, 1,

4–7.

EJB. Home Page. URL: http://www.oracle.com/technetwork/java/javaee/ejb/. Accessed 10

May 2018.

Erl, T. 2005. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall/Pearson Education International, Upper Saddle River, NJ, USA.

Etter, R., Costa, P. D., and Broens, T. 2006. A rule-based approach towards context-aware

user notification services. In Proc. of 2006 ACS/IEEE International Conference on Pervasive

Services (ICPS 2006). IEEE, Lyon, France, 281–284.

Familiar, B. 2015. Microservices, IoT, and Azure: Leveraging DevOps and Microservice

Architecture to Deliver SaaS Solutions , 1st ed. Apress, Berkely, CA, USA.

Fielding, R. T. and Taylor, R. N. 2002. Principled design of the modern Web architecture.

ACM Transactions on Internet Technology 2, 2, 115–150.

Finin, T., Joshi, A., Kagal, L., Ratsimore, O., Korolev, V. and Chen, H. 2001. Information

agents for mobile and embedded devices. In Proc. of 5th InternationalWorkshop Cooperative

Information Agents V (CIA 2001), Modena, Italy, 6–8 May 2001, M. Klusch and

F. Zambonelli, Eds. Springer, Berlin, Heidelberg, 264–286.

Gallaire, H. and Minker, J., Eds. 1978. Logic and Data Bases. Springer, Boston, MA, USA.

Gelernter, D. 1985. Generative communication in Linda. ACM Transactions on Programming

Languages and Systems 7, 1, 80–112.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P. and Savio, D. 2010a. Interacting with the

SOA-based Internet of Things: Discovery, query, selection, and on-demand provisioning of

Web Services. IEEE Transactions on Services Computing 3, 3, 223–235.

Guinard, D., Trifa, V. and Wilde, E. 2010b. A resource oriented architecture for the web of

things. In Proc. Internet of Things (IOT). IEEE, Los Alamitos, CA, USA, 1–8.

Hachem, S., Pathak, A. and Issarny, V. 2014. Service-oriented middleware for large-scale

mobile participatory sensing. Pervasive and Mobile Computing 10, 66–82. Selected Papers

from the Eleventh Annual IEEE International Conference on Pervasive Computing and

Communications (PerCom 2013).

Heuer, J., Hund, J. and Pfaff, O. 2015. Toward the web of things: Applying web technologies

to the physical world. Computer 48, 5, 34–42.

Hu, B., Wang, Z. and Dong, Q. 2012. A modeling and reasoning approach using description

logic for context-aware pervasive computing. In Proc. of Emerging Research in Artificial

Intelligence and Computational Intelligence: International Conference, AICI 2012, Chengdu,

China, October 26–28, 2012, J. Lei, F. L. Wang, H. Deng and D. Miao, Eds. Communications

in Computer and Information Science, vol. 315. Springer, Berlin, Heidelberg, 155–165.

J2EE. 2017. Home Page. URL: http://www.oracle.com/technetwork/java/javaee/. Accessed

10 May 2018.

Java Persistence API. 2017. Home Page. URL: http://docs.oracle.com/javaee/6/

tutorial/doc/bnbpz.html. Accessed 10 May 2018.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


872 R. Calegari et al.

Jersey. 2017. Home Page. URL: http://jersey.java.net. Accessed 10 May 2018.

jose.4.j. 2017. Home Page. URL: http://bitbucket.org/b c/jose4j/. Accessed 10 May 2018.

JSON. 2017. Home Page. URL: http://www.json.org. Accessed 10 May 2018.

Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly, M.,

Stluka, P., Jammes, F., Delsing, J. and Eliasson, J. 2012. A SOA-based architecture for

empowering future collaborative cloud-based industrial automation. In Proc. of 38th Annual

Conference on IEEE Industrial Electronics Society (IECON 2012). IEEE, Los Alamitos, CA,

USA, 5766–5772.

Loke, S. W. 2004. Representing and reasoning with situations for context-aware pervasive

computing: a logic programming perspective. The Knowledge Engineering Review 19, 3,

213–233.

LPaaS. 2018. Home page. URL: http://lpaas.apice.unibo.it. Accessed 10 May 2018.

Mariani, S. and Omicini, A. 2015. Coordinating activities and change: An event-driven

architecture for situated MAS. Engineering Applications of Artificial Intelligence 41, 298–

309.

Martelli, M. 1995. Constraint logic programming: Theory and applications. In 1985–1995:

Ten years of Logic Programming in Italy, M. Sessa, Ed. Palladio Editrice, Salerno, Italy,

137–166.

Messina, F., Mikkilineni, R. and Morana, G. 2017. Middleware, framework and novel

computing models for grid and cloud service orchestration. International Journal of Grid

and Utility Computing 8, 71.

Michelson, B. M. 2006. Event-driven architecture overview: Event-driven SOA is just part

of the EDA story. Report, Patricia Seybold Group. Feb.

Monteiro, L. 1984. A proposal for distributed programming in logic. In Implementations of

Prolog, J. A. Campbell, Ed. Artificial Intelligence. Ellis Horwood Limited, Chicester, UK,

329–340.

MQTT. 2017. Home Page. URL: http://mqtt.org. Accessed 10 May 2018.

Naish, L. 1988. Parallelizing NU-Prolog. In Proc. of the 5th International Conference and

Symposium on Logic Programming, Seattle, Washington, 15–19 Aug. 1988, R. A. Kowalski

and K. A. Bowen, Eds. MIT Press, Cambridge, MA, USA, 1546–1564.

Nalepa, G. J. and Bobek, S. 2014. Rule-based solution for context-aware reasoning on mobile

devices. Computer Science and Information Systems 11, 1, 171–193.

Niezen, G. 2013. Ontologies for interaction: Enabling serendipitous interoperability in smart

environments. Journal of Ambient Intelligence and Smart Environments 5, 1, 135–137.

Nii, H. P. 1986. The blackboard model of problem solving and the evolution of blackboard

architectures. The AI Magazine 7, 2, 38–106.

Oliya, M. and Pung, H. K. 2011. Towards incremental reasoning for context aware systems.

In Proc. of Advances in Computing and Communications: 1st International Conference, ACC

2011, Kochi, India, July 22-24, 2011, Part I, A. Abraham, J. Lloret Mauri, J. F. Buford,

J. Suzuki and S. M. Thampi, Eds. Communications in Computer and Information Science,

vol. 190. Springer, Berlin, Heidelberg, 232–241.

Omicini, A. and Zambonelli, F. 1999. Coordination for Internet application development.

Autonomous Agents and Multi-Agent Systems 2, 3, 251–269. Special Issue: Coordination

Mechanisms for Web Agents.

Palù, A. D. and Torroni, P. 2010. 25 years of applications of logic programming in Italy.

In A 25-Year Perspective on Logic Programming, A. Dovier and E. Pontelli, Eds. Springer,

Berlin, Heidelberg, 300–328.

Parker, L. E. 2008. Distributed intelligence: Overview of the field and its application in

multi-robot systems. Journal of Physical Agents 2, 1, 5–14.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364


Logic programming as a service 873

Payara. 2017. Home Page. URL: http://www.payara.fish. Accessed 10 May 2018.

Pontelli, E., Cao Son, T. and Baral, C. 2008. A logic programming based framework for

intelligent Web Service composition. In Managing Web Service Quality: Measuring Outcomes

and Effectiveness. IGI Global, Hershey, PA, USA, 193–221.

Prado, A. G. D., Ortiz, G. and Boubeta-Puig, J. 2017. CARED-SOA: A context-aware

event-driven service-oriented architecture. IEEE Access 5, 4646–4663.

Ranganathan, A., Al-Muhtadi, J. and Campbell, R. H. 2004. Reasoning about uncertain

contexts in pervasive computing environments. IEEE Pervasive Computing 3, 2, 62–70.

Ranganathan, A. and Campbell, R. H. 2003. An infrastructure for context-awareness based

on first order logic. Personal and Ubiquitous Computing 7, 6, 353–364.

Reiter, R. 1978. On closed world data bases. Logic and Data Bases. Springer, Boston, MA,

USA, 55–76.

Ricci, A., Viroli, M., Omicini, A., Mariani, S., Croatti, A. and Pianini, D. 2017. Spatial

Tuples: Augmenting physical reality with tuple spaces. In Intelligent Distributed Computing

X. Proc. of the 10th International Symposium on Intelligent Distributed Computing – IDC

2016, Paris, France, October 10–12 2016, C. Badica, A. El Fallah Seghrouchni, A. Beynier,

D. Camacho, C. Herpson, K. Hindriks and P. Novais, Eds. Studies in Computational

Intelligence, vol. 678. Springer, Berlin, Heidelberg, 121–130.

Richards, M. 2016. Microservices AntiPatterns and Pitfalls. O’Reilly, Sebastopol, CA, USA.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of

the ACM 12, 1, 23–41.

Salber, D., Dey, A. K. and Abowd, G. D. 1999. The context toolkit: Aiding the development

of context-enabled applications. In Proc. of SIGCHI Conference on Human Factors in

Computing Systems (CHI ’99). ACM, New York, NY, USA, 434–441.

Schulte, R. W. and Natis, Y. V. 2003. Event-driven architecture complements SOA. Research

note, Gartner. 8 July.

Shapiro, E. Y. 1987. Concurrent Prolog – Vol. 1: Collected Papers. Logic Programming. The

MIT Press, Cambridge, MA, USA.

Smart, P. 2017. Situating machine intelligence within the cognitive ecology of the Internet.

Minds and Machines 27, 2, 357–380.

Ueda, K. 1986. Guarded Horn clauses. In Proc. of the 4th Conference on Logic Programming

’85, Tokyo, Japan, 1–3 July 1985, E. Wada, Ed. Lecture Notes in Computer Science, vol.

221. Springer, Berlin, Heidelberg, 168–179.

Wang, H., Mehta, R., Supakkul, S. and Chung, L. 2011. Rule-based context-aware

adaptation using a goal-oriented ontology. In Proc. of 2011 International Workshop on

Situation Activity & Goal Awareness (SAGAware ’11). ACM, New York, NY, USA, 67–76.

Wolfram, D. A., Maher, M. J. and Lassez, J.-L. 1984. A unified treatment of resolution

strategies for logic programs. In Proc. of 2nd International Conference on Logic Programming

(ICLP 1984), S.-Å. Tärnlund, Ed. Association for Logic Programming, Uppsala, Sweden,

263–276.

Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., DeAngelis, F. L.,

Di Marzo Serugendo, G., Dobson, S., Fernandez-Marquez, J. L., Ferscha, A., Mamei,

M., Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi, M., Rosi,

A., Stevenson, G., Viroli, M. and Ye, J. 2015. Developing pervasive multi-agent systems

with nature-inspired coordination. Pervasive and Mobile Computing 17, 236–252. Special

Issue “10 years of Pervasive Computing” In Honor of Chatschik Bisdikian.

https://doi.org/10.1017/S1471068418000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000364

