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Consider a finite irreducible Markov chain on state space S with transition matrix M and stationary
distribution π. Let R be the diagonal matrix of return times, Rii = 1/πi. Given distributions σ, τ

and k ∈ S , the exit frequency xk(σ, τ) denotes the expected number of times a random walk exits
state k before an optimal stopping rule from σ to τ halts the walk. For a target distribution τ,
we define Xτ as the n × n matrix given by (Xτ)ij = xj (i, τ), where i also denotes the singleton
distribution on state i.

The dual Markov chain with transition matrix M̂ = RM�R−1 is called the reverse chain. We
prove that Markov chain duality extends to matrices of exit frequencies. Specifically, for each
target distribution τ, we associate a unique dual distribution τ∗. Let X̂τ∗ denote the matrix of exit
frequencies from singletons to τ∗ on the reverse chain. We show that X̂τ∗ = R(X�

τ − b�1)R−1,
where b is a non-negative constant vector (depending on τ). We explore this exit frequency duality
and further illuminate the relationship between stopping rules on the original chain and reverse
chain.

1. Stopping rules for finite Markov chains

1.1. Introduction
Consider a finite, irreducible, discrete time Markov chain on the state space S , where |S | = n

with transition matrix M = (pij) and stationary distribution π. Reversing time, we get the dual
Markov chain, called the reverse chain, with transition matrix M̂ = (p̂ij), where p̂ij = πjpji/πi.
M̂ has the same stationary distribution as the original chain: π̂ = π. In what follows, hatted
symbols always refer to the reverse chain. Note that

M̂ = RM�R−1, (1.1)

where R is the diagonal matrix of return times, Rii = Ret(i) = 1/πi.
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In [12], Lovász and Winkler consider the relationship between time reversal and exact mixing
measures defined via stopping rules (stopping times). Given a starting distribution σ and a target
distribution τ, a stopping rule halts the Markov chain whose initial state is drawn from σ so that
the final state is governed by τ (see [10, 11] for details). An optimal stopping rule from σ to τ

minimizes the expected time before the rule halts. The access time is the expected length of such
an optimal stopping rule, which we denote by H(σ, τ). We may think of the access time as a
generalization of the state-to-state hitting time H(i, j).

Considering a target distribution that captures an aspect of mixing leads to a number of
parameterless mixing measures. Three of the most important measures are the mixing time

Tmix = max
i∈S

H(i, π),

the reset time

Treset =
∑
j∈S

πjH(j, π),

and the forget time

Tforget = min
τ

max
i∈S

H(i, τ),

where we minimize τ over all distributions on S . We interpret Tmix as the pessimal mixing time
and Treset as the average mixing time. The forget time Tforget is the minimum expected time
to achieve some distribution regardless of our initial state (thus ‘forgetting’ our starting point).
Lovász and Winkler [12] prove the following two results.

Theorem 1.1. For every finite Markov chain, Tmix = T̂mix.

Theorem 1.2. For every finite Markov chain, Tforget = T̂reset and Treset = T̂forget. Moreover,
Tforget is achieved uniquely by the target distribution μ given by

μi = πi

(
1 +

∑
j∈S

p̂ijĤ(j, π) − Ĥ(i, π)

)
. (1.2)

By Markov chain duality, T̂forget is achieved uniquely by the target distribution μ̂ given by

μ̂i = πi

(
1 +

∑
j∈S

pijH(j, π) − H(i, π)

)
. (1.3)

We interpret μ̂i as the scaled difference between two rules from i to π on the forward chain.
H(i, π) is the expected length of an optimal rule from i to π, while 1 +

∑
j∈S pijH(j, π) is the

expected length of the rule ‘make one transition according to M and then follow an optimal rule
from this state to π’. Thus the quantity μ̂i/πi measures the distance from optimality of the latter
rule. We can think of μi as contrasting the expected length of an optimal rule with the expected
length of a second (and possibly non-optimal) rule from i to π.

The goal of this paper is to put constructions (1.2) and (1.3) in a general framework. The
original proof of Theorem 1.2 relies on a difficult linear programming duality argument. The
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general framework developed herein provides a new, simple proof of Theorem 1.2 using Markov
chain duality. We also provide a new proof of Theorem 1.1. Our main tool for expressing this
duality is the notion of optimal exit frequency matrices (defined in the next section). Quite
succinctly, we show that the duality of the pair π, μ̂ expressed in Theorem 1.2 is analogous to the
duality of equation (1.1). Furthermore, this duality can be extended to other pairs of distributions.

The organization of this paper is as follows. In Section 1.2, we recall some fundamental results
about exit frequencies and introduce the key concept of exit frequency matrices. Section 1.3
enumerates some known results concerning hitting times and access times.

Section 2 lays out the general framework of our results. In Section 2.1, we introduce the
contrast map, which generalizes the construction of Theorem 1.2. Section 2.2 develops the funda-
mental duality results of our general framework. We introduce contrasting pairs of distributions
and prove that their optimal exit frequency matrices are related by scaled transposition. This
result parallels the relationship between the transition matrices for the forward and reverse chains.
Section 2.3 contains several examples of contrasting pairs, and Section 2.4 further develops their
duality.

Section 3 contains the new proofs of the mixing results of Theorems 1.1 and 1.2. Finally,
Section 4 studies the matrix structure of exit frequency matrices.

1.2. Exit frequency matrices
We begin by briefly summarizing some essential results from [11]. Given a (σ, τ)-stopping rule Γ,
we partition its expected length according to the expected number of exits at each state. For each
i ∈ S we define its ith exit frequency xi(Γ) to be the expected number of times the walk leaves
state i before halting. A key observation, due to Pitman [14], is that exit frequencies satisfy the
conservation equation

∑
i∈S

pijxi(Γ) − xj(Γ) = τj − σj (1.4)

for every j ∈ S . Moreover, [10] describes multiple ways to construct stopping rules from a given
set of desired exit frequencies. That is, if we have a set of non-negative numbers {xi}i∈S such
that

∑
i∈S pijxi − xj = τj − σj for all j ∈ S , then we can construct a (σ, τ)-stopping rule Γ such

that xi(Γ) = xi for all i ∈ S .
The conservation equation is a very useful tool. For example, let Γ and Γ′ be two (σ, τ)-

stopping rules with respective exit frequencies (xi)i∈S and (x′
i)i∈S , expressed as vectors. The

conservation equation guarantees that

(xi)i∈S − (x′
i)i∈S = Kπ where K = E(Γ) − E(Γ′). (1.5)

Subsequently, we conclude that every optimal (σ, τ)-stopping rule has the same exit frequencies.
We denote these optimal exit frequencies by xi(σ, τ). Moreover,

Γ is an optimal stopping rule ⇐⇒ ∃ k ∈ S, xk(Γ) = 0. (1.6)

When xk(Γ) = 0, we call the state k a (σ, τ)-halting state, or simply a halting state when the
initial and target distributions are clear. The presence of a halting state is the single most useful
criterion for determining whether a given rule is optimal. The following formula (Theorem 4.4
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in [11]) expresses exit frequencies in terms of access times:

xk(σ, τ) = πk(H(σ, τ) + H(τ, k) − H(σ, k)). (1.7)

Sometimes it is more convenient to consider the scaled exit frequencies

yk(σ, τ) =
1

πk
xk(σ, τ). (1.8)

In the remainder of this section, we introduce exit frequency matrices and develop some basic
properties. Fixing the target distribution τ, our key idea is to consider a family of rules from
singletons to τ as an ensemble. This novel organization of a family of rules is the key to unlocking
the duality between exit frequencies of stopping rules.

For convenience, we use the symbol i to denote the state i ∈ S as well as the singleton
distribution concentrated at state i. This minor abuse of notation leads to clearer formulations
of our results.

Definition. A ( forward) τ-family is a set of stopping rules Γ(S, τ) = {Γ(i, τ)}i∈S , one from each
singleton to τ. The ( forward) exit frequency matrix XΓ(S,τ) is the n × n matrix with(

XΓ(S,τ)

)
ij

= xj(Γ(i, τ)) for all i, j ∈ S.

An optimal τ-family is a τ-family in which every Γ(i, τ) is an optimal stopping rule. Its corres-
ponding optimal exit frequency matrix is denoted by Xτ, so that

(Xτ)ij = xj(i, τ) for all i, j ∈ S.

We make three observations. First, the exit frequency matrix organizes the rules by rows: the
ith row of XΓ(S,τ) contains the exit frequencies for Γ(i, τ). Second, each row of the optimal exit
frequency matrix Xτ must contain at least one zero entry, corresponding to a halting state for this
optimal rule. Third, the analogous definitions hold for a reverse (optimal) τ-family, and a reverse
(optimal) exit frequency matrix, associated with the the reverse chain. Since our designation
‘forward’ and ‘reverse’ is arbitrary, most of the discussion hereafter will assume that we are
considering stopping rules for τ on the forward chain. The analogous statements concerning the
reverse chain also hold, but we typically omit their formulation.

For any τ-family, we may rewrite the conservation equation (1.4) in matrix form:

XΓ(S,τ)(I − M) = I − 1 τ�. (1.9)

We can immediately use this matrix formulation to prove a useful lemma.

Lemma 1.3. For any distribution σ on the forward chain M and any distribution τ̂ on the
reverse chain M̂,

(I − 1σ�)RX̂�
τ̂ = XσR(I − τ̂1�).

Proof. Transpose the matrix conservation equation (1.9) for the reverse walk to τ̂ and substitute
M̂� = R−1MR to yield R−1(I − M)RX̂�

τ̂ = I − τ̂1�. Multiplying on the left by XσR and using
equation (1.9) for σ gives the result.
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The ijth entry gives a special case of the ‘duality formula’ in Lemma 4.1 of [12]:

ŷi(j, τ̂) −
∑
k∈S

σkŷk(j, τ̂) = yj(i, σ) −
∑
k∈S

τ̂kyk(i, σ). (1.10)

1.3. Hitting times and access times
We collect some additional results about hitting times and access times that will be referenced
herein, and prove one new result about naive access times. For an introduction to finite Markov
chains, see [1, 7, 9]. For a thorough introduction to stopping rules, see [11].

The sum κ(i, j) = H(i, j) + H(j, i) is the commute time. As an example of the duality of the
forward and reverse chains, we have

κ(i, j) = κ̂(i, j) (1.11)

for all i, j ∈ S . We also have the cycle reversing identity [5]:

H(i, j) + H(j, k) + H(k, i) = Ĥ(i, k) + Ĥ(k, j) + Ĥ(j, i) (1.12)

for all states i, j, k ∈ S . The analogous identity holds for more than three states (with a proof
that is virtually identical to proof of equation (1.12) found in [5]). Another useful formula is the
random target identity [1, Chapter 2, Corollary 14], which states that the quantity

Thit =
∑
j∈S

πjH(i, j) (1.13)

is independent of the starting state i. Moreover,

Thit = T̂hit. (1.14)

We now use our version of the duality formula (1.10) to prove a generalization of equations
(1.11) and (1.14). Given distributions σ and τ, the naive rule from σ to τ is ‘choose a target state
j according to τ and then walk until you reach j’. The expected length of such a rule is the naive
access time

N(σ, τ) :=
∑
i∈S

∑
j∈S

σiτjH(i, j). (1.15)

Proposition 1.4. For any distribution τ, we have N(τ, τ) = N̂(τ, τ).

Proof. Consider the duality formula (1.10) with i = j and σ = τ̂ = τ. Weight this equation by
τi and sum over i ∈ S to get∑

i∈S
τiŷi(i, τ) −

∑
i∈S

∑
k∈S

τiτkŷk(i, τ) =
∑
i∈S

τiyi(i, τ) −
∑
i∈S

∑
k∈S

τiτkyk(i, τ),

∑
i∈S

∑
k∈S

τiτkĤ(i, k) =
∑
i∈S

∑
k∈S

τiτkH(i, k),

where we use equation (1.7) to expand the scaled exit frequencies.

Taking τi = τj = 1/2 (and 0 elsewhere), we recover equation (1.10). Taking τ = π, we recover
equation (1.14).
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The following results can be found in [11]. These results are essential for finding optimal
stopping rules and calculating their access times. These facts will be used frequently hereafter.
We have the following formula for access times:

H(σ, τ) = max
j∈S

(H(σ, j) − H(τ, j)). (1.16)

When σ = i and τ = π, we have a nice characterization of the halting states:

j is an (i, π)-halting state ⇐⇒ H(j, i) = max
k∈S

H(k, i). (1.17)

We use i′ to denote an i-pessimal node achieving

H(i′, i) = max
k∈S

H(k, i). (1.18)

We have a very useful formula for the access time from a singleton to π:

H(i, π) = H(i′, i) − H(π, i). (1.19)

2. Exit frequency matrices and contrasting pairs

2.1. The contrast map
In this section, we introduce the contrast map, which associates a unique distribution τ∗ to τ.

We extend the ‘hatted’ notation of Theorem 1.1 and Theorem 1.2 to distinguish between
distributions on the forward chain and distributions on the reverse chain. That is, the symbol τ
will represent a distribution on the state space of the forward chain, while τ̂ denotes a distribution
on the state space of the reverse chain. This usage is consistent with the definitions of μ and μ̂

above.
The following two maps are inspired by equations (1.2) and (1.3).

Definition. Let τ be a distribution on the forward chain. The forward contrast map is the
function c∗ : τ 
→ τ∗, where

τ∗
i = πi

(
1 +

∑
j∈S

pijH(j, τ) − H(i, τ)

)
. (2.1)

We call τ∗ the forward contrast distribution of τ or the forward τ-contrast.
Let τ̂ be a distribution of the reverse chain. The reverse contrast map is the function ĉ∗ : τ̂ 
→

τ̂∗, where

τ̂∗
i = πi

(
1 +

∑
j∈S

p̂ijĤ(j, τ̂) − Ĥ(i, τ̂)

)
. (2.2)

We call τ̂∗ the reverse contrast distribution of τ̂ or the reverse τ̂-contrast.

Note that the forget distribution equations (1.2) and (1.3) are a special case of the contrast
map. Indeed, we have μ = ĉ∗(π̂) = π̂∗ and μ̂ = c∗(π) = π∗.

We are guaranteed that τ∗ and τ̂∗ are distributions. Indeed, the value of τ∗
i is the scaled

difference between the expected length of the (possibly non-optimal) rule ‘make one transition
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according to M and then follow an optimal rule from this new state to τ’ and the expected length
of an optimal (i, τ)-rule, which makes it non-negative. Since

∑
i∈S pijπi = πj for every j and

π�M = π�, we have

∑
i∈S

τ∗
i =

∑
i∈S

πi

(
1 +

∑
j∈S

pijH(j, τ) − H(i, τ)

)

=
∑
i∈S

πi +
∑
i∈S

∑
j∈S

pijπiH(j, τ) −
∑
i∈S

πiH(i, τ) = 1.

The argument for τ̂∗ is similar.
We follow up our definitions of the contrast maps with a straightforward generalization of

Theorem 7.1 in [12]. This result suggests that τ∗ belongs on the reverse chain.

Proposition 2.1. The exit frequencies for the reverse walk from π to τ∗ and vice versa are given
by

x̂i(π, τ
∗) = πi

(
H(i, τ) − min

k∈S
H(k, τ)

)

and

x̂i(τ
∗, π) = πi

(
max
k∈S

H(k, τ) − H(i, τ)
)
.

Proof. Rewriting equation (2.1) gives∑
j∈S

p̂jiπjH(j, τ) − πiH(i, τ) = τ∗
i − πi.

The set {x̂i}i∈S := {πiH(i, τ)}i∈S satisfies the (π, τ∗) reverse conservation equation (defined ana-
logously to equation (1.4)). As shown in [10], we can construct a reverse (π, τ∗)-stopping rule
with the exit frequencies {x̂i}i∈S . Using equation (1.5), we conclude that πi

(
H(i, τ) −

mink∈S H(k, τ)
)

is the ith reverse exit frequency for an optimal stopping rule.
Taking the negative of both sides and following a similar argument gives the second statement

of the theorem.

We close this subsection with one final collection of definitions.

Definition. A distribution ρ̂ on the reverse chain is forward contrasted if there exists some
distribution τ (on the forward chain) such that ρ̂ = τ∗. A distribution ρ on the forward chain is
reverse contrasted if there exists some distribution τ̂ (on the reverse chain) such that ρ = τ̂∗. A
distribution τ is self-contrasting if τ = τ∗ = τ̂∗.

Singletons are the simplest examples of contrasted distributions: in fact, they are self-con-
trasting. Using ı̂ to denote the singleton distribution on the reverse chain, we have i∗ = ı̂ and
ı̂∗ = i. Indeed, the rule ‘take one step from j and then continue walking until you reach i’ is an
optimal rule if and only if j �= i.
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It is far more common to have τ �= τ∗. Moreover, for a non-reversible chain, we usually have
τ∗ �= τ̂∗. We are particularly interested in the case τ = π. We have μ̂ = π∗ and μ = π̂∗. We will
continually remind the reader that μ̂ = π∗ for compatibility with Theorem 1.2.

2.2. Duality of exit frequency matrices
We prove our main result. The following theorem reveals that the duality present in Theorem 1.2
is part of a more general framework. We denote column and row vectors by v and v�, respectively.
Also, we use the notation (ak)k∈S to denote a column vector whose kth entry is ak. For example,
(H(k, π))k∈S denotes the column vector of access times from singletons to π.

Theorem 2.2. Consider a distribution τ on the forward chain. Let Xτ be the exit frequency
matrix for an optimal forward τ-family.

(a) The matrix RX�
τ R

−1 is the reverse exit frequency matrix for a (not necessarily optimal)
reverse τ∗-family.

(b) The reverse optimal exit frequency matrix for τ∗ is

X̂τ∗ = R
(
X�

τ − b 1�)
R−1 where b =

(
min
i∈S

xk(i, τ)
)
k∈S

.

Theorem 2.2 (in analogy with (1.1)) states that RX�
τ R

−1 is nearly equal to the reverse optimal
exit frequency matrix for τ∗. The rules in (a) may not be optimal. Indeed, every row of Xτ contains
at least one zero, but there may be columns of Xτ which do not contain any zeros. Equivalently,
there may be rows of RX�

τ R
−1 without halting states. As per statement (b), we find X̂τ∗ by

subtracting the smallest entry in each row of X�
τ from all the entries in that row before scaling,

guaranteeing that there is a zero in every row (and every column) of X̂τ∗ .

Proof. The ijth entry of (I − M)Xτ is

xj(i, τ) −
∑
k∈S

pikxj(k, τ) = πj

(
H(i, τ) −

∑
k∈S

pikH(k, τ) − H(i, j) +
∑
k∈S

pikH(k, j)

)

= ij − πjτ
∗
i

πi
,

where ij denotes the jth component of the singleton distribution i. Indeed, we have 1/πi =

Ret(i) = 1 +
∑

k∈S pikH(k, i), and therefore (I − M)Xτ = I − Rτ∗1�R−1. This proves state-
ment (a).

We now prove statement (b). Rewriting the reverse conservation equation for τ∗ gives τ∗1� =

I − (I − M̂�)X̂�
τ∗ . Substituting this value into the previous equation and using M̂� = R−1MR

yields

(I − M)Xτ = (I − M)RX̂τ∗R−1.

Hence RX̂�
τ∗R−1 = Xτ − L where (I − M)L = 0. The rank of I − M is n − 1 and 1 is a right

eigenvector for 0, so L = b1� for some constant vector b. Since every row of X̂τ∗ must contain a
zero element, we must have bk = mini∈S xk(i, τ) for 1 � k � n.
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This theorem reveals that the forward contrast distribution τ∗ has a natural interpretation on
the reverse chain. Henceforth, the symbol τ∗ will refer to a (forward contrasted) distribution
on the reverse chain. Similarly τ̂∗ (the reverse contrast distribution of τ̂) will refer to a distribution
on the forward chain. In other words, a ‘starred’ distribution is associated with the reverse
chain of the original distribution.

A natural question arises: What happens if we apply these contrast maps in succession? Indeed,
if we apply the reverse contrast map to τ∗, we get a distribution associated with the forward chain.
In general, τ �= ĉ∗(τ∗). However, the next corollary will show that these distributions are closely
related. The distribution ĉ∗(τ∗) merits a definition.

Definition. Let τ be a distribution on the forward chain. The forward τ-core distribution is
given by τ∗∗ = ĉ∗(c∗ (τ)) = ĉ∗(τ∗). Let τ̂ be a distribution on the reverse chain. The reverse τ̂-
core distribution is given by τ̂∗∗ = c∗(ĉ∗ (τ̂)) = c∗(τ̂∗).

The following corollary shows that the distribution τ∗∗ is fully dual to τ∗.

Corollary 2.3. For any distribution τ, we have

Xτ∗∗ = RX̂�
τ∗R−1.

Furthermore, c∗(τ∗∗) = τ∗ and ĉ∗ ◦ c∗ (τ∗∗) = τ∗∗.

Proof. Applying Theorem 2.2 to the reverse chain,

Xτ∗∗ = R
(
X̂�

τ∗ − a1�)
R−1 where a =

(
min
i∈S

x̂k(i, τ
∗)

)
k∈S

.

Each column of X̂τ∗ contains at least one zero entry, and therefore
(
mini∈S x̂k(i, τ

∗)
)
k∈S = 0. In

addition, each row of X̂τ∗ contains at least one zero. (Indeed, X̂τ∗ � Xτ and Xτ is an optimal exit
frequency matrix.) These two facts give c∗ (τ∗∗) = τ∗.

The relationship described in Corollary 2.3 can be summarized via a formula using scaled exit
frequencies:

ŷi(j, τ
∗) = yj(i, τ

∗∗) for all i, j ∈ S. (2.3)

It is also important to note that both τ∗ and τ∗∗ are ‘balanced’ in the sense that every state is a
halting state for at least one other state. Furthermore, equation (2.3) implies that i is a reverse
(j, τ∗)-halting state if and only if j is a forward (i, τ∗∗)-halting state. We recognize the perfect
duality of τ∗ and τ∗∗ with the following terminology.

Definition. Let τ be a distribution on the forward chain. The ordered pair of distributions
(τ∗, τ∗∗) is called a ( forward) τ-contrasting pair. More generally, the ordered pair of distributions
(ρ̂, σ) is a (forward) contrasting pair if there exists a distribution τ such that ρ̂ = τ∗ and σ = τ∗∗.
The analogous definitions for reverse contrasting pairs (τ̂∗, τ̂∗∗) and (ρ, σ̂) are self-evident.

The contrasting pair (π∗, π∗∗) will play a central role in our new proofs of Theorems 1.1 and
1.2 in Section 3.
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Corollary 2.4. The pair of distributions (ρ̂, σ) is a contrasting pair if and only if Xσ =

RX̂�
ρ̂ R

−1.

Our last result in this section concerns distributions that are ‘on the way’ to τ. Let Wτ =

{σ : ∀i ∈ S,H(i, σ) + H(σ, τ) = H(i, τ)}. This set is non-empty: τ ∈ Wτ since H(τ, τ) = 0. We
interpret Wτ as the set of distributions ‘on the way’ to τ in the sense that the rule ‘walk from i to
σ and then from σ to τ’ is optimal for each singleton i. In other words, you may choose to obtain
a sample from σ on your way to obtaining a sample from τ optimally.

Corollary 2.5. The τ-core τ∗∗ is the unique reverse contrasted distribution in Wτ. Moreover,
H(τ∗∗, τ) = maxσ∈Wτ

H(σ, τ).

Proof. First, we show that τ∗∗ ∈ Wτ. The rule ‘follow an optimal rule from i to τ∗∗ and then
follow an optimal rule from τ∗∗ to τ’ has a halting state. Indeed, we have xj(i, τ

∗∗) � xj(i, τ) for
all i, j ∈ S . If k is an (i, τ)-halting state then it must also be an (i, τ∗∗)-halting state, so xk(i, τ

∗∗) +

xk(i, τ) = 0. This composite rule has a halting state, so it is optimal. Therefore we have H(i, τ) =

H(i, τ∗∗) + H(τ∗∗, τ).
Next, consider any σ ∈ Wτ. Since H(i, τ) = H(i, σ) + H(σ, τ) for all i, we have xk(i, σ) +

xk(σ, τ) = xk(i, τ). The exit frequency xk(σ, τ) is independent of i and all exit frequencies must be
non-negative. Therefore, xk(i, σ) � xk(i, τ) − minj∈S xk(j, τ) = xk(i, τ

∗∗) for all i, k. So H(i, σ) �
H(i, τ∗∗) for all i, which in turn guarantees that H(σ, τ) � H(τ∗∗, τ).

Finally, τ∗∗ is the unique reverse contrasted distribution among all σ such that H(i, τ) =

H(i, σ) + H(σ, τ) for all i. Indeed, we have Xσ = Xτ − 1c� for the vector c given by ck =

xk(σ, τ). In order for σ to be reverse contrasted, we must have a zero in every column of Xσ .
We obtain a zero in the kth column if and only if ck = minj∈S xk(j, τ).

In closing, we reflect on the characteristics of contrasting pairs, and underscore our naming
convention for these distributions. The τ-contrast τ∗ has a natural association with the reverse
chain. Yet it also captures the differences between forward rules from neighbouring states to τ:
τ∗
i is non-zero when i and all of its neighbours do not share a single common halting state. On

the other hand, the τ-core τ∗∗ has a natural association with the forward chain. In addition, the
distribution τ∗∗ captures the commonality among all forward rules from singletons to τ: τ∗∗ is
the ‘furthest’ distribution from τ from which you can sample optimally on your way to sampling
from τ starting from any singleton.

2.3. Examples of contrasting pairs
We illustrate contrast and core distributions using random walks on graphs. An undirected graph
corresponds to a time-reversible Markov chain, in which case τ∗ = τ̂∗ and τ∗∗ = τ̂∗∗. Since every
singleton distribution is self-contrasting, we focus on non-singleton distributions, with special
attention to the forget distribution μ = π∗ and the π-core π∗∗.

We consider two undirected graph structures: complete graphs and trees. These graphs are
sufficiently simple that we can completely characterize their contrasting pairs. We also consider
one directed graph: the winning streak (introduced in [12]).
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Complete graph. Let τ be any distribution on Kn with nodes ordered so that τ1 � τ2 � · · · �
τn. Equation (1.16) and H(i, j) = n − 1 for i �= j guarantee that node 2 is a (1, τ)-halting state
and node 1 is an (i, τ)-halting state for i > 1. By Theorem 2.2, RX�

τ∗R−1 = Xτ − 1b� where
bk = mini∈S xk(i, τ). By simply transposing Xτ it is clear that every node i > 1 is a (1, τ∗)-halting
state, so τ∗

2 = τ∗
3 = · · · = τ∗

n. Moreover,

x1(1, τ
∗) = x1(1, τ) =

n − 1

n
(1 − τ1 + τ2).

By equation (2.1),

τ∗
1 =

1

n
+

n − 1

n
(τ1 − τ2) and τ∗

k =
1

n
(1 − τ1 + τ2) for 2 � k � n.

Let τ be a non-singleton distribution on the complete graph Kn ordered so that τ1 � τ2 � · · · �
τn. It follows from the above that τ is a contrasted distribution if and only if τ2 = · · · = τn. Note
that every contrasted distribution on Kn is self-contrasting: τ∗ = τ∗∗, and therefore H(i, τ∗) +

H(τ∗, τ) = H(i, τ) for all i by Corollary 2.3.
Turning our attention to the contrasting pair for π, the symmetry of the graph gives H(i, π) =

H(j, π) all i, j ∈ S , and hence μ = π∗ = π∗∗ = π.

Trees. Stopping rules on trees were studied extensively in [3], which introduced the notion of
a focus of a distribution. Given a target distribution τ, a τ-focus is a node i such that H(i, τ) <

1 +
∑

j∈V (T ) pijH(j, τ). In other words, the foci of τ correspond to the support of τ∗: Sτ∗ = {i |
τ∗
i > 0}. Theorem 5 in [3] states that every distribution has either one focus or two adjacent

foci. This guarantees that every contrasted distribution on a tree must be either a singleton or
concentrated on two adjacent nodes. Like the complete graph, each of these is self-contrasting:
τ∗ = τ∗∗.

In particular, we consider τ = π for a path on n vertices and calculate μ = π∗ = π∗∗. In this
case, the best choice to ‘forget’ where we started is to walk to the centre of the path. For a
path on 2k + 1 nodes, μ will be concentrated on node k + 1, the unique centre of the path.
For a path on 2k nodes, μ will be evenly divided between the two central nodes k, k + 1 of
the path. The following general formula for μ on a tree is given in Proposition 7 of [3]. If π

has a single focus, then μ is a singleton. If π has two adjacent foci a, b ∈ V (T ) then μa =

(H(b′, b) − H(a′, b))/2|E| and μb = (H(a′, a) − H(b′, a))/2|E|, where a′ and b′ are pessimal
nodes as defined in equation (1.18).

Winning streak. The winning streak chain nicely illustrates how distinct our mixing walks can
be for the forward and reverse chain. The winning streak is a finite digraph whose random
walk behaves much like a gambler who ‘lets it ride’ on each subsequent bet. We have chosen
loops on the extreme nodes on this graph because it leads to a nice stationary distribution whose
components are all powers of 1/2.

The winning streak on n nodes {0, 1, . . . , n − 1} has transition probabilities given by

pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/2 j = i + 1,

1/2 j = 0 and 0 � i � n − 1,

1/2 i = j = n − 1,

0 otherwise.
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The stationary distribution is π = (1/2, 1/4, . . . , 2−n+1, 2−n+1). Both state 0 and n − 1 achieve
Tmix. Indeed, for either one, the trivial rule ‘take n − 1 steps’ is an optimal rule achieving π.

The transition probabilities for the reverse winning streak are

p̂ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 j = i − 1 and 1 � i � n − 2,

2−j−1 i = 0 and 0 � j � n − 2,

2−n+1 i = 0 and j = n − 1,

1/2 i = n − 1 and j = n − 1 or j = n − 2,

0 otherwise.

For the reverse winning streak, state n − 1 achieves T̂mix: the rule ‘take n − 1 steps’ is an optimal
mixing rule from this state. However, node 0 is an advantageous starting point: the (optimal) rule
‘take one step’ takes us immediately from node 0 to π.

We describe the forget distribution and π-core of both the forward and reverse winning streak
chains, omitting the calculation details. The reverse forget distribution was calculated in [12]:

μ = π̂∗ =

⎧⎪⎪⎨
⎪⎪⎩

1 − 2−n+1 i = 0,

2−n+1 i = n − 1,

0 otherwise.

Moreover, H(i, μ) = 2 − 2−n+2 for all i (walk until either state 0 is hit or n − 1 steps have been
made) and therefore π̂∗∗ = c∗(μ) = μ∗ = π̂. In other words, π̂ is forward contrasted.

The contrasting pair μ̂ = π∗ and π∗∗ is not as well-behaved. A more complicated analysis of
the mixing walks on the forward chain shows that if i is among the first log2 n nodes, then node
n − 1 is an (i, π)-halting state. Each remaining node i has node i − 1 as an (i, π)-halting state.
More precisely, let i0 be the unique node satisfying 2i0 + i0 � n < 2i0+1 + i0 + 1. Some routine
(but lengthy) calculations of access times give

μ̂ = π∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 � i < i0,

(πi0/2)(2i0+2 − n + i0) i = i0,

(πi0/2)(2 + n − i) i0 < i � n − 2,

πn−1 i = n − 1.

Finally, we may calculate π∗∗ = μ̂∗ using Theorem 2.2:

π∗∗ =

⎧⎪⎪⎨
⎪⎪⎩

∑i0
k=0 πk i = 0,

0 1 � i � i0,

πi i0 < i � n − 1.

In summary, on the winning streak, π∗, π∗∗, π̂∗, and π̂∗∗ are quite different from one another.

2.4. Duality of contrasting pairs
In this section, we further explore the duality of contrasting pairs. We begin by generalizing
the notion of state-to-state commute time κ(i, j) = H(i, j) + H(j, i) to distributions by κ(σ, τ) =

H(σ, τ) + H(τ, σ). We have the following extension of equation (1.11).
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Proposition 2.6. For a contrasting pair (τ∗, τ∗∗) and any state i, κ̂(i, τ∗) = κ(i, τ∗∗).

Proof. The equality yi(i, τ
∗∗) = ŷi(i, τ

∗) of equation (2.3) is equivalent to

H(i, τ∗∗) + H(τ∗∗, i) = Ĥ(i, τ∗) + Ĥ(τ∗, i).

Furthermore, the average access times to these distributions are equal.

Proposition 2.7. The contrasting pair (τ∗, τ∗∗) satisfies∑
k∈S

πkĤ(k, τ∗) =
∑
k∈S

πkH(k, τ∗∗) �
∑
k∈S

πkH(k, τ).

Proof. Taking the trace of both X̂τ∗ and RX�
τ∗∗R−1,∑

k∈S
πk(Ĥ(k, τ∗) + Ĥ(τ∗, k)) =

∑
k∈S

πk(H(k, τ∗∗) + H(τ∗∗, k)),

and therefore
∑

k∈S πkĤ(k, τ∗) =
∑

k∈S πkH(k, τ∗∗) by the random target identity (1.13). Since
H(k, τ∗∗) � H(k, τ) for all k, we have

∑
k∈S πkH(k, τ∗∗) �

∑
k∈S πkH(k, τ).

A third duality result between a contrasting pair concerns the regeneration time, which was
studied in [4]. The regeneration time of a distribution ρ is the expected time between independent
samples:

Tregen =
∑
i∈S

ρiH(i, ρ).

Theorem 2.8. For a distribution τ,

T̂regen(τ
∗) = Tregen(τ

∗∗) � Tregen(τ).

Proof. Given τ, we prove that T̂regen(τ
∗) � Tregen(τ). First, we observe that Theorem 2.2(b)

ensures that yk(i, τ) � ŷi(k, τ
∗) for every i, k ∈ S . Pick any i ∈ S and then choose an (i, τ)-halting

state j. This means that yj(i, τ) = 0, and therefore ŷi(i, t
∗) = 0 as well. For this choice of i, j, we

apply equation (1.10) with σ = τ and τ̂ = τ∗. This gives

−ŷi(j, τ
∗) +

∑
k∈S

τkŷk(j, τ
∗) = −yj(i, τ) +

∑
k∈S

τ∗
kyk(i, τ),

∑
k∈S

τkyj(k, τ) �
∑
k∈S

τ∗
kŷi(k, τ

∗),

∑
k∈S

τk(H(k, τ) + H(τ, j) − H(k, j)) �
∑
k∈S

τ∗
k(Ĥ(k, τ∗) + Ĥ(τ∗, i) − Ĥ(k, i)),

∑
k∈S

τkH(k, τ) �
∑
k∈S

τ∗
kĤ(k, τ∗).

The third line follows from equation (1.7). The final line states that Tregen(τ) � T̂regen(τ
∗).

https://doi.org/10.1017/S0963548310000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548310000118


554 A. Beveridge and L. Lovász

The equality Tregen(τ
∗∗) = T̂regen(τ

∗) follows from duality. Replacing τ with τ∗∗ in the above
argument gives Tregen(τ

∗∗) � T̂regen(τ
∗). We then make the parallel argument, swapping the roles

of the forward and reverse chains to find that Tregen(τ
∗∗) � T̂regen(τ

∗), so indeed we have
equality.

The next two characterizations of halting states follow immediately from Proposition 2.1 and
Theorem 2.2.

Proposition 2.9. A state z is a reverse (π, τ∗)-halting state if and only if the state z achieves
mink∈S H(k, τ); equivalently, if it achieves mink∈S H(k, τ∗∗). Moreover,

min
k∈S

H(k, τ) =
∑
i∈S

πiH(i, τ) − Ĥ(π, τ∗),

and

min
k∈S

H(k, τ∗∗) =
∑
i∈S

πiĤ(i, τ∗) − Ĥ(π, τ∗).

Proposition 2.10. A state z is a reverse (τ∗, π)-halting state if and only if the state z achieves
maxk∈S H(k, τ); equivalently, if it achieves maxk∈S H(k, τ∗∗). Moreover,

max
k∈S

H(k, τ) =
∑
i∈S

πiH(i, τ) + Ĥ(τ∗, π),

and

max
k∈S

H(k, τ∗∗) =
∑
i∈S

πiĤ(i, τ∗) + Ĥ(τ∗, π).

Finally, we extend the cycle reversing identity (1.12) for contrasting pairs.

Proposition 2.11. The pair of distributions (ρ̂, σ) is a contrasting pair if and only if

Ĥ(i, ρ̂) + Ĥ(ρ̂, j) + Ĥ(j, i) = H(j, σ) + H(σ, i) + H(i, j)

for all i, j ∈ S.

Proof. Suppose that the above equalities hold for the pair (ρ̂, σ). By equation (1.11), we may
subtract κ̂(i, j) from the left-hand side and κ(i, j) from the right-hand side to obtain ŷj(i, ρ̂) =

yi(j, σ) for all i, j ∈ S . By Corollary 2.4, this holds if and only if (ρ̂, σ) are a contrasting
pair.

It follows from this proposition that τ is self-contrasting if and only if

Ĥ(i, τ) + Ĥ(τ, j) + Ĥ(j, i) = H(j, τ) + H(τ, i) + H(i, j) for all i, j ∈ S. (2.4)
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3. Mixing measures

We apply the framework of exit frequency matrices and contrasting pairs to give new proofs
of Theorems 1.1 and 1.2. For the equality T̂forget = Treset of Theorem 1.2, the new proof offers
insight into the relationship between π and the reverse forget distribution μ̂ = π∗.

Proof of Theorem 1.2. If σ achieves minτ maxi∈S Ĥ(i, τ)), then σ must be contrasted: we
have x̂k(i, σ̂

∗∗) � x̂k(i, σ) by Theorem 2.2, so Ĥ(i, σ̂∗∗) � Ĥ(i, σ), and so σ = σ̂∗∗. Thus we may
assume that our minimum is achieved by τ∗, where (τ∗, τ∗∗) are a contrasting pair. Applying
Corollary 2.10 to the reverse chain (and switching the roles of τ∗ and τ∗∗),

max
i∈S

Ĥ(i, τ∗) =
∑
j∈S

πj(H(j, τ∗∗) + H(τ∗∗, π)) �
∑
j∈S

πjH(j, π) = Treset.

Using Corollary 2.3 with τ = π, we find that H(j, π∗∗) + H(π∗∗, π) = H(j, π) for all j, and there-
fore π∗ = μ̂ achieves this lower bound. The uniqueness of μ̂ also follows from
Corollary 2.3.

We now use Theorem 1.2 to prove Theorem 1.1, showing that Tmix = T̂mix.

Proof of Theorem 1.1. By Corollary 2.10 with τ = π and τ∗ = μ̂,

Tmix = max
k∈S

H(k, π) = Treset + Ĥ(μ̂, π) = T̂forget + Ĥ(μ̂, π)

= max
k∈S

(Ĥ(k, μ̂) + Ĥ(μ̂, π)) � max
k∈S

H(k, π) = T̂mix.

Starting with the mixing time for the reverse chain, we similarly find that T̂mix � Tmix, so
equality must hold everywhere.

Corollary 3.1. If H(z, π) = maxi H(i, π), then Ĥ(z, μ̂) + Ĥ(μ̂, π) = Ĥ(z, π).

Corollary 3.2. Ĥ(z, μ̂) = maxi Ĥ(i, μ̂) if and only if there is a state i ∈ S such that z is an
(i, π)-halting state on the forward chain.

Proof. Summing across the ith row of X̂μ̂ gives

Ĥ(i, μ̂) =
∑
j∈S

πj ŷj(i, μ̂) =
∑
j∈S

πjyi(j, π) − min
k∈S

yi(k, π) =
∑
j∈S

πjH(j, π) − min
k∈S

yi(k, π),

which is maximized whenever mink∈S yi(k, π) = 0.

This is an improvement on Corollary 7.1 of [12], which proved that if H(z, π) = maxi H(i, π)

then Ĥ(z, μ̂) = maxi Ĥ(i, μ̂). Finally, our next corollary is dual to Theorem 6.1 of [12], which
states that Tforget =

∑
j∈S πj(H(j ′, j) − H(π, j)), where Ĥ(j ′, j) = maxk∈S Ĥ(k, j).

Corollary 3.3. T̂forget =
∑

j∈S μ̂j(Ĥ(j ′, j) − Ĥ(μ̂, j)), where Ĥ(j ′, j) = maxk∈S Ĥ(k, j).
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Proof. Consider any j ∈ S . Since j ′ is a (j, π)-halting state, Theorem 2.2(b) shows that j is
a reverse (j ′, μ̂)-halting state. Proposition 3.2 guarantees that Ĥ(j ′, j) − Ĥ(μ̂, j) = Ĥ(j ′, μ̂) =

T̂forget for all j.

4. Structure of exit frequency matrices

4.1. Inverting optimal exit frequency matrices
Not surprisingly, the exit frequency matrix Xτ is closely related to I − M. The rank of I − M

is n − 1 (π is a left eigenvector for eigenvalue 0). Depending on our target distribution, a slight
alteration of I − M gives the inverse of Xτ.

Theorem 4.1. Consider a singleton target distribution τ = k with optimal exit frequency matrix
Xk. Let X ′

k be the (n − 1) × (n − 1) matrix obtained by deleting the kth row and the kth column
of Xk. Let M ′ be obtained similarly from the transition matrix M. Then X ′

k is the inverse of
(I − M ′).

Note that when our target is the singleton τ = k then the kth row and the kth column are both
zero, and hence n − 1 is the largest-possible rank for Xk.

Proof. Fix a target singleton distribution k and let Xk = (xj(i, k))i,j∈S be the exit frequency
matrix of an optimal family of rules from the singletons to k. The kth row and kth column are
both 0, and therefore the rank of Xk is at most n − 1. Let X ′

k and M ′ be the matrices defined
by deleting the kth row and column from Xk and M, respectively. Consider the ijth entry of
X ′

k(I − M ′), which is

xj(i, k) −
∑

r∈S\{k}

prjxr(i, k) = ij

by the conservation equation (1.4). Hence X ′
k(I − M ′) = I . Similarly, we see that the ijth entry

of (I − M ′)X ′
k satisfies

xj(i, k) −
∑

r∈S\{k}

pirxj(r, k) = ij ,

by considering the optimal rule ‘take one step from i and follow an optimal rule to k’. Thus, X ′
k

is the inverse of I − M ′ (which must have rank n − 1).

We note that this theorem is equivalent to a special case of the so-called fundamental matrix,
described by Doyle and Snell on page 27 of [6]. Treating our target state as an absorbing state,
the resulting transition matrix P is of the form

P =

(
1 0

0 Q

)
,

where Q is an (n − 1) × (n − 1) square matrix. The fundamental matrix for this absorbing chain
is N = (I − Q)−1 =

∑∞
t=0 Q

t. Doyle and Snell observe that Nij is the expected number of times
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that the chain will be in state i before absorption when it is started in state j. This is equivalent
to our exit formulation, since every time we visit i �= k, we must also exit.

When τ is not a singleton, the optimal exit frequency matrix Xτ has full rank. We obtain X−1
τ

by adding the appropriate rank 1 matrix to I − M.

Theorem 4.2. If τ is a target distribution that is not concentrated on a single state, then

X−1
τ = I − M +

1

Tregen(τ)
R τ∗ τ�. (4.1)

Proof. The ijth entry of the matrix product(
I − M +

1

Tregen(τ)
R τ∗ τ�

)
Xτ

is

xj(i, τ) −
∑
k∈S

pikxj(k, τ) +
1

Tregen(τ)

τ∗
i

πi

∑
k∈S

τkxj(k, τ).

= πj

(
H(i, τ) −

∑
k∈S

pikH(k, τ) − H(i, j) +
∑
k∈S

pikH(k, j) +
τ∗
i

πi

)

by equation (1.7). Considering the case i �= j, we have H(i, j) −
∑

k∈S pikH(k, j) = 1, and the
ijth entry of equation is

πj

(
H(i, τ) −

∑
k∈S

pikH(k, τ) − 1 +
τ∗
i

πi

)
= πj

(
−τ∗

i

πi
+

τ∗
i

πi

)
= 0

by equation (2.1). The ith diagonal entry is

πi

(
H(i, τ) −

∑
k∈S

pikH(k, τ) +
∑
k∈S

pikH(k, i) +
τ∗
i

πi

)
= πi

(
1 − τ∗

i

πi
+

τ∗
i

πi

)
= 1

since 1 +
∑

k∈S pikH(k, i) = Ret(i) = 1/πi is the return time to i.

As defined in equation (1.15), the naive access time N(σ, τ) is the expected length of a naive
rule from σ to τ (on the forward chain).

Corollary 4.3. For any distribution τ and any state i ∈ S ,

Tregen(τ) − N(τ, τ∗) = H(i, τ) − N(i, τ∗).

Simply put, this corollary states that the quantity H(i, τ) − N(i, τ∗) is independent of the initial
state i. This corollary is surprising: it concerns non-optimal τ∗-families on the forward chain
(rather than the reverse chain).

Proof. If τ is a singleton, then the result is trivial: a singleton is self-contrasting and the naive
rule to a singleton is optimal. Considering a non-singleton τ, the proof is a straight forward
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expansion of XτX
−1
τ = I . Indeed, the matrix conservation equation (1.9) gives

Xτ

(
I − M +

1

Tregen(τ)
R τ∗τ�

)
= I,

I − 1τ� +
1

Tregen(τ)
XτR τ∗τ� = I,

XτR τ∗τ� = Tregen(τ) 1τ�.

Choose j ∈ S so that τj �= 0. For each i ∈ S , the ijth entry gives the equality
∑

k∈S τ
∗
kyk(i, τ) =∑

k∈S τ
∗
k

(
H(i, τ) + H(τ, k) − H(i, k)

)
= Tregen(τ), where we use equation (1.7) to expand the exit

frequencies.

In the important case where τ = π, we rewrite this equation using our mixing measure nota-
tion:

X−1
π = I − M +

1

Treset
R μ̂ π�

and

Treset − N(π, μ̂) = H(i, π) − N(i, μ̂).

The latter equation gives a particularly interesting result for a random walk on a tree.

Corollary 4.4. For any non-trivial tree, Tmix < 2Treset.

This gives a tighter bound for trees than the known bound Tmix � 4Treset for a time-reversible
Markov chain (see [2]).

Proof. A random walk on a tree is time-reversible, so Treset − N(π, μ) = H(i, π) − N(i, μ).
Choose i ∈ S so that H(i, π) = Tmix. By Corollary 3.2 and Theorem 1.2, H(i, μ) = Tforget =

Treset. As stated in Section 2.3, the forget distribution μ = π∗ is concentrated on one node or two
adjacent nodes, called foci. It is easy to see that the naive rule from i to μ is optimal (the furthest
focus is a halting state). Therefore Tmix = 2Treset − N(π, μ) < 2Treset.

4.2. The spectrum of Xπ

In general, the spectrum of Xτ is difficult to describe. However, we can find the spectrum of Xπ

exactly.

Theorem 4.5. Denote the eigenvalues of M by λ1 = 1 � λ2 � · · · � λn � −1. The largest ei-
genvalue for Xπ is Treset, with corresponding left eigenvector π. The remaining eigenvalues are
1/(1 − λk) for 2 � k � n.

It follows immediately that

1

1 − λ2
� Treset, (4.2)
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which was originally proved indirectly in [13]. We can confirm another spectral result by taking
the trace of Xπ . The trace is equal to the sum of the eigenvalues, and hence

Treset +

n∑
k=2

1

1 − λk
=

∑
k∈S

xk(k, π) = Treset + Thit,

recovering the well-known identity Thit =
∑n

k=2 1/(1 − λk).

Proof of Theorem 4.5. Using equation (1.7) with the ith component of π�Xπ yields∑
k∈S

πkxi(k, π) = πi
∑
k∈S

πk(H(k, π) + H(π, i) − H(k, i)) = πi
∑
k∈S

πkH(k, π) = πiTreset,

by the random target identity (1.13). Since the eigenvector π > 0, the Frobenius–Perron theorem
(see [8]) proves that Treset is the largest eigenvalue of Xπ .

Let v2, v3, . . . , vn be the respective right eigenvectors of λ2, . . . λn. The vector π� is a left
eigenvector of M, hence π�vk = 0 for 2 � k � n. Therefore,

X−1
π vk = (I − M)vk = (1 − λk)vk for 2 � k � n,

and the theorem follows.

4.3. Characterization of exit frequency matrices
We conclude by giving necessary and sufficient conditions for a matrix to be the exit frequency
matrix for some distribution τ on a given Markov chain.

Proposition 4.6. Let X be an n × n matrix. There exists a distribution τ such that X contains
the exit frequencies for a (possibly non-optimal) τ-family on the Markov chain with transition
matrix M if and only if the following two conditions hold:

(a) (I − M)X(I − M) = (I − M),
(b) I − X(I − M) � 0.

The matrix X is the optimal exit frequency matrix for τ if and only if, in addition to the above
two conditions, we have

(c) minj∈S Xij = 0 for 1 � i � n.

The matrix X is the optimal exit frequency matrix for a reverse contrasted distribution if and
only if, in addition to the above three conditions, we have

(d) mini∈S Xij = 0 for 1 � j � n.

Proof. If X is an exit frequency matrix for some family of (possibly non-optimal) rules, then
(a) and (b) follow from the conservation equation (1.4). Considering the reverse direction, as-
sume that X satisfies both conditions. By (a), (I − M)(X(I − M) − I) = 0 and therefore X(I −
M) − I = −τ1� for some vector τ, which verifies the conservation equation (1.9). Furthermore,∑

k∈S τk = τ1�1 = (I − X(I − M))1 = 1 and condition (b) ensures that τ � 0, so τ is a distri-
bution.
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X is an optimal exit frequency matrix if and only if each row contains a halting state, proving
(c). Condition (d) follows similarly: the target distribution is reverse contrasted if and only if
each column contains a zero entry.
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