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Abstract

Many observational studies often involve multiple levels of treatment assignment. In particular, fuzzy
regression discontinuity (RD) designs have sequential treatment assignment processes: first based on
eligibility criteria, and second, on (non-)compliance rules. In such fuzzy RD designs, researchers typically
use either an intent-to-treat approach or an instrumental variable-type approach, and each is subject to
both overlapping and unique biases. This article proposes a new evidence factors (EFs) framework for
fuzzy RD designs with sequential treatment assignments, which may be influenced by different levels of
decision-makers. Each of the proposed EFs aims to test the same causal null hypothesis while potentially
being subject to different types of biases. Our proposed framework utilizes the local RD randomization
and randomization-based inference. We evaluate the effectiveness of our proposed framework through
simulation studies and two real datasets on pre-kindergarten programs and testing accommodations.
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1. Introduction

In observational studies, researchers often conduct multiple analyses on a single dataset to answer
the same or related causal questions. This strategy can help rule out non-causal explanations and
enhance the robustness of causal conclusions (Cook, 1985). However, if not carefully designed, multiple
analyses may not be more beneficial than a single analysis; they can provide redundant information or
consistently incorrect answers if they share overlapping biases. Planning and conducting a carefully
designed multifaceted approach within a single dataset have motivated a new design known as evidence
factors (EFs), introduced by Rosenbaum (2010). Briefly, EFs are two or more independent tests of the
same causal null hypothesis about the treatment effect using a single dataset, with each potentially
being subject to different biases. Each EF provides unique information about the causal question, and
combining these factors can strengthen causal conclusions. The overarching goal of this article is to
propose a new framework for constructing EFs in regression discontinuity (RD) designs.

An RD design, introduced by Thistlethwaite & Campbell (1960), is one of the most credible quasi-
experimental designs. RD designs are used when a subject’s eligibility for treatment depends solely on
a running variable (Hahn et al., 2001; Thistlethwaite & Campbell, 1960). If the value of the running
variable (e.g., English proficiency) is below or equal to a cutoff, the subject is eligible for the treatment

© The Author(s), 2025. Published by Cambridge University Press on behalf of Psychometric Society.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Downloaded from https://www.cambridge.org/core. 12 Sep 2025 at 09:11:26, subject to the Cambridge Core terms of use.


www.doi.org/10.1017/psy.2025.10033
https://orcid.org/0000-0003-0316-6201
mailto:ysuk@tc.columbia.edu
http://creativecommons.org/licenses/by/4.0
https://crossmark.crossref.org/dialog?doi=10.1017/psy.2025.10033&domain=pdf
https://www.cambridge.org/core

2 Youjin Lee and Youmi Suk

(e.g., a testing accommodation); otherwise, the subject is ineligible. This is known as a sharp RD design.
However, eligibility does not necessarily lead to treatment use, and noncompliance yields a fuzzy RD
design. For example, in a fuzzy RD setting, policy makers might establish the treatment eligibility rule,
while the ultimate decision to use the treatment depends on the students themselves. As such, fuzzy RD
designs inherently involve sequential assignment processes, where each is driven by different decision-
makers. See Section 2 for two motivating examples from fuzzy RD designs.

When data are collected from fuzzy RD designs, researchers can use various analytic approaches to
estimate causal effects. For example, one can apply an intent-to-treat approach (i.e., a sharp RD method)
to estimate a causal effect at or near the cutoff, or one can use eligibility status as an instrumental
variable (IV) to estimate a subgroup causal effect near the cutoff (Lee & Lemieux, 2010). However, both
intent-to-treat and IV-based approaches in fuzzy RD designs focus on a local effect at or near the cutoff
and are potentially vulnerable to the same bias associated with the eligibility rule, such as manipulation
of the running variable, i.e., subjects precisely adjusting its values (Cattaneo et al., 2024; Crespo, 2020;
Lee & Lemieux, 2010). Alternatively, researchers may consider an as-treated analysis that compares
subjects who actually used the treatment with those who did not, to estimate the treatment effect.
While this approach ensures greater generalizability, it is susceptible to confounding bias due to self-
selection. Each analytic approach relies on different sets of causal assumptions and has unique strengths
and weaknesses, so researchers may benefit from applying multiple approaches within a single dataset
(Suk et al., 2022; Wong et al., 2007).

However, simply conducting multiple analyses does not lead to more accurate causal conclusions.
If not properly designed, multiple analyses may only be slight variations subject to the same bias. In
contrast, EF analysis aims to carefully design (nearly) independent analyses and then combine them
to reinforce causal conclusions on the same null hypothesis. Each EF is designed to provide a unique
and independent piece of evidence on the treatment effect. Recent studies have extended the original
idea of Rosenbaum (2010) to different settings (Karmakar & Small, 2023; Rosenbaum, 2023; Zhao et al.,
2022). For example, Karmakar & Small (2023) and Zhao et al. (2022) propose EF analysis with IVs, and
Rosenbaum (2023) introduces EFs using a second control (see Section 3.2 for more details). Although
these prior studies can touch on certain features of fuzzy RD designs through IV-type analyses, none
explicitly tackle unique features and challenges inherent in RD settings. Fuzzy RD designs offer a distinct
setup due to their inherent locality and sequential assignment processes, neither of which has been
addressed in EFs analysis.

In this article, we propose a novel framework for constructing EFs in fuzzy RD designs with sequen-
tial treatment assignments. We achieve this by restricting the sample within the window for one analysis
and properly conditioning on past treatment assignments in the subsequent analysis. Our proposed
framework involves three key steps: (i) constructing EFs, (ii) combining p-values from each EF, and
(iii) conducting sensitivity analysis. With the proposed framework, we contribute to both RD and EFs
literature as follows. First, we introduce the EFs design into fuzzy RD analysis by leveraging the inherent
causal relationships among treatment variables to disentangle biases across multiple analyses. Unlike
traditional fuzzy RD approaches, which rely on intent-to-treat and IV-type analyses that suffer from the
overlapping biases, our EF framework provides nearly independent pieces of evidence from multiple
analyses, both statistically and causally, thereby strengthening causal conclusions. Second, we formalize
the causal assumptions required for constructing multiple EFs in fuzzy RD designs, a new setting for
EF analysis. Specifically, we leverage sequential decision-making processes and the locality inherent in
analyzing samples near the cutoff to construct valid EFs. Importantly, our design accommodates both
nested and non-nested structures among treatment assignment variables and uses a single dataset from
afuzzy RD design without requiring external data. Lastly, we extend sensitivity analysis methods used in
EFs designs to the fuzzy RD setting. In particular, we incorporate an assignment model and test statistic
that reflect locality in RD designs, and use them in sensitivity analyses to assess the robustness of our
conclusions to violations of the key assumption of the RD design.

The remainder of this article is structured as follows. Section 2 illustrates two real-world, fuzzy RD
examples, exhibiting one-sided and two-sided non-compliance, respectively. Section 3 provides a brief
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literature review on RD and EFs. Section 4 introduces our settings and formalizes our assignment
models with their causal assumptions. Section 5 then describes our proposed EF approach and its
properties. Section 6 provides simulation studies, and Section 7 presents two data applications. Lastly,
we provide our discussion and conclusions in Section 8.

2. Two motivating examples
2.1. State pre-kindergarten (pre-K) program

Wong et al. (2007) investigate whether state pre-K programs for 4-year-old children improve academic
performance in their vocabulary, math, and print awareness skills. This study employs an RD design
where the running variable is a child’s birth date; children with birthdays on or after a certain date are
eligible for enrolling in the pre-K program, whereas those with birthdays before it are not. Additionally,
there are non-compliers who do not follow the treatment assignment based on eligibility, and the
presence of these non-compliers requires using a fuzzy RD design for program evaluation (Suk, 2024).
Figure 1 provides an RD plot showing the relationship between the outcome of vocabulary scores and
the running variable of birth date. While the majority of children comply with the eligibility status
determined by the running variable, we observe non-compliers on both sides of the cutoff, i.e., two-
sided non-compliance.

Rosenbaum (2023) introduces how to construct EFs with multiple control groups to test a single
hypothesis, where each factor is vulnerable to different biases. To evaluate the effect of New Jersey’s pre-K
program, we can adapt this approach by conducting an EF analysis to test the same null hypothesis: there
is no effect of using the pre-K program. However, this application raises some important questions.
First, is Rosenbaum (2023)’s proposal directly applicable to a fuzzy RD design with two-sided non-
compliance? Second, how can we form multiple comparisons for EFs analysis in the fuzzy RD design?
Third, how many valid EFs can be constructed in such a design?

2.2. Extended time accommodation (ETA)

Testing accommodations are essential for students with disabilities or English language learners (ELLs)
to accurately demonstrate their abilities during assessments. The ETA is the most frequently provided
testing accommodation in many testing programs. Suk et al. (2022) and Suk & Kim (2024) examine
the effects of ETA for ELLs using a fuzzy RD design. They use ELL English proficiency scores as the
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Figure 1. Visual representation of a fuzzy RD design in New Jersey’s pre-K program: black points represent the treatment group (i.e.,
program user group), while gray points represent the control groups (i.e., non-user group).
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Table 1. Treatmentstatuses and four different groupsin the context
of the ETA

ETA eligibility status ETA receipt status ETA used status

0 0 0
1 0 0
1 1 0
1 1 1

running variable, and ETA eligibility status as an IV. In ETA settings, sequential assignment processes
with one-sided non-compliance occur, and they result in three treatment statuses: eligibility, receipt,
and use; see Table 1 for treatment statuses and four different groups formed through the sequential
assignment process.

Prior studies (Suk & Kim, 2024; Suk et al., 2022) assume that the ETA effect is only present when
students make use of it; otherwise, there is no assumed ETA effect. They employ a fuzzy RD design to
estimate three causal effects: the effect of being eligible for ETA at the cutoff score, the effect of receiving
ETA at the cutoff among compiler students, and the effect of using ETA at the cutoff among compiler
students." While these different causal effects provide informative evidence on ETA’s effectiveness, each
effect estimate could be susceptible to different types of biases occurring at each assignment process, as
well as to the overlapping biases inherent in the RD design (e.g., manipulation of the running variable).
However, if carefully designed, EFs can be constructed in this ETA data to test the same null hypothesis
of “no effect of using ETA,” where each factor has independent pieces of information about the null
hypothesis.

3. Literature review and our contribution
3.1. Local randomization framework for RD designs

Our setting is based on RD designs, and there are two frameworks available: continuity-based and
local randomization. The first framework is based on the continuity assumption (Hahn et al., 2001).
This framework assumes that the conditional expectations of potential outcomes, given the running
variable, are continuous at the cutoff to provide valid counterfactuals in both sharp RD and fuzzy
RD designs (Cattaneo et al., 2023b; Dong, 2018). This assumption often requires (local) parametric
or nonparametric regressions. The second framework is the local randomization framework, which
was motivated by the works of Lee (2008) and Thistlethwaite & Campbell (1960). This framework
interprets RD designs heuristically as locally randomized experiments within a neighborhood of the
cutoff (i.e., within the window, denoted by W). It is based on a local unconfoundedness assumption,
which assumes that the treatment assignment (e.g., eligibility) is unconfounded given the observed
covariates within the window W (Cattaneo et al., 2015). The main distinction between continuity-based
and local randomization frameworks lies in how they formalize the idea of comparability (Cattaneo
et al., 2024). While comparability under the continuity-based framework arises from extrapolating
the limiting distribution of local regression-based estimators at the cutoff, the local randomization
framework assumes comparability within a small neighborhood around the cutoft, like in randomized
experiments, and utilizes randomization-based inference without having to specify regression models.

In this work, we adopt the second framework of the local randomization based on randomization-
based inference, which utilizes the randomization mechanisms of treatments while treating the observed
outcomes as fixed. Randomization-based inference not only accommodates the local randomization
framework but also easily accounts for other commonly used designs for causal comparisons, such

'In the ETA example, compliers mean students who would use (or receive) the ETA program if eligible and would not use
(or receive) it if ineligible.
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as matching and stratification (Rosenbaum, 2002). Randomization-based inference, which does not
rely on large sample approximations, is particularly useful in fuzzy RD designs where at least one
assignment depends on observations within a small window around the cutoff. When leveraging
randomization-based inference, we assume that matched data on observed covariates come from a
randomized trial; in other words, within the matched strata, the treatment status is randomly assigned
to each subject. Therefore, an outcome comparison within the matched strata can provide a valid causal
comparison, without additional covariate adjustment. Under the local randomization framework, such
unconfoundedness must hold within one stratum that includes only subjects within a window around
the cutoff. However, further covariate adjustment (e.g., matching) can be applied within this stratum to
improve efficiency and power in estimating causal effects (Cattaneo et al., 2023a).

3.2. EF design with multiple analyses

An EF design can be used when multiple analyses are possible to test the same causal null hypothesis
in observational studies. Instead of treating one among several analyses as primary and the others
as secondary, each analysis contributes an independent piece of evidence in the EF design. Multiple
analyses can arise from multiple doses (variations) of the treatment. For example, one analysis compares
outcomes between the treated and control groups (e.g., smokers and non-smokers), while another
analysis compares outcomes between those with intense treatment and those with weak treatment
(e.g., heavy smokers and light smokers) within the treated group (Rosenbaum, 2010). To ensure these
multiple analyses produce independent inferential results, Rosenbaum (2010) proposes an EFs design
with multiple doses of the treatment.

Additionally, multiple control groups, who did not take the treatment for different reasons, can
generate multiple analyses, where each control group is compared to the corresponding treatment group
(Rosenbaum, 2023). Most recently, Rosenbaum (2023) introduces an EF design with multiple control
groups. Specifically, Rosenbaum (2023) introduces two assignment variables, one of which defines
secondary control, likely derived from external data sources, and deliberately nests these variables by
design, even though their causal relationships are unclear. In contrast, as will be elaborated in the next
section, our proposed EF design explicitly assumes causal relationships among treatment assignment
variables within a single dataset. This assumption is valid because fuzzy RD designs inherently involve
sequential assignment processes, influenced by different decision-makers. Our approach leverages these
sequential assignment variables for EF analysis and accommodates both one-sided (nested) and two-
sided (non-nested) non-compliance, each of which is illustrated in Section 2. This differs from the nested
structure addressed in Rosenbaum (2023).

Furthermore, the presence of multiple IVs generates multiple analyses. These IV analyses are often
correlated with each other as well as with a direct comparison between the treated and control groups.
Recent research has explored EFs using such IVs (Karmakar & Small, 2023; Karmakar et al., 2020; Zhao
etal., 2022). In particular, Karmakar et al. (2020) propose the reinforced design, where multiple IVs, in
addition to a direct comparison (e.g., between actual users and non-users), provide EFs. Due to potential
correlation among IVs, the reinforced design requires specifying the order of multiple analyses to avoid
overlapping biases. Zhao et al. (2022) relax this ordering requirement by blocking or nesting procedures,
each of which would only be valid under particular structures among IVs. In our context, multiple
treatment assignments up to the final one can be considered IVs; however, these assignments must be
causally ordered. This new requirement has not been formally addressed in the existing EF literature.

4. Settings
4.1. Notation

Subjects are grouped into strata using observed covariates to form J strata. We assume that the observed
covariates of subject i in stratum j (subject ij afterward), denoted by Wj;, are controlled by this
stratification. In other words, Wj; = Wy; for all i # i’ across all strata j = [1: ], where [m,¢] denotes a set
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of an integer from m to £. Let Yj; denote the outcome of interest for unit ij. Consider that the first level of
treatment assignment exhibits an RD design, determining eligibility for treatment. Let A;; € {0,1} denote
the eligibility for the treatment, where A;; = 1 indicates that subject ij is eligible and not eligible if A;; = 0.
The eligibility is determined based on a running variable, denoted by Xj;. Given a cutoff x., A;; = 1 if
Xjj < xcand Aj; = 0if X > x..” Let Tj € {0,1} indicate the actual treatment use of subject ij. However, not
all eligible subjects actually use the treatment, and ineligible subjects occasionally use the treatment in
practice. There could be sequential treatment assignment processes driven by different levels of decision-
makers. For example, in the ETA application, (1) first, students’ eligibility is determined by their ELL
English-proficiency scores according to government or state policy; (2) second, students receive ETA
from their school administrators; and (3) lastly, students can choose to use the ETA offered.

Suppose that K denotes the number of treatment assignment processes (K > 1), resulting in a
K-dimensional treatment status for each subject. When K = 1, we have the sharp RD with A; = Tj;.

When K > 2, Z;k) indicates that subject ij takes the treatment at level k (k € [1: K]) where Zi(jl) = Aj

and Zl;K) = Tj;. We allow Zl.(jk) =1 even if Zl.(jk,) =0 for any Ke[l1:k-1],ie, allowing two-sided non-
compliance; for example, subject ij potentially uses the treatment even if they were ineligible and/or did
not receive the treatment from school administrators. However, we focus on the assignment model with
Z;k) conditioning on Zi(jl:k_l) =1 foreach ke [1:K], where Zl.(je“ez) = {Zée) 0 €[l1,£2]}. For notational
convenience, define Z;O) =@ and Zi(jlzo) = Zig.o) = &. We elaborate this conditioning in Section 4.3. We

denote W, X, Z(""), and Y as the collection of Wj;, X, Zi(jl:k), and Yj; across units, respectively.

4.2. Potential outcomes, assumptions, and hypotheses

LetS; = {Z;k) tk=1,2,...,K} = (4, Zl.(jz:k_l), Tjj), which can take 2K different values. Let Sk be the set of
the 2%, length-K vectors with 0 or 1 coordinates. Under a series of one-sided non-compliance, a vector
of Sjj can take up to (K + 1) different values, where Z;k) =1 implies ijl:k_l) =1forall ke [2:K]. For

example, when K = 3, s € S € S; such that S = {(0,0,0),(1,0,0),(1,1,0),(1,1,1) }. Using the potential
outcomes framework, let Y}; denote the potential outcome of Y;; when S;; = s € Sk with s = (s1,52,...,5x)

under the consistency assumption (Rubin, 1974). For example, Yi(.l’l’o) is the potential outcome of

subject ij if she were eligible for the treatment and received the treatment from school administrators but
)

did not use it. The following assumption is essential for using Zl.(jlzK_1 as a (conditional) IV to examine

the causal effect of the actual treatment use.
Assumption 1. Y;- = ijK for all s € Sk

In other words, a whole vector of S;; has an effect on the outcome only through the actual treatment
use, Tj;. This means the exclusion restriction (Angrist et al., 1996). Then, our null hypothesis of interest
is as follows:

Hoxk: ijkzl = Y;K:O for all subjects ij. (1)

If our null of no treatment effect Ho k is true, then Y}; = Y,-j-, for alls,s" € Sk under Assumption 1. The null
in (1) also implies that there is only one version of the potential control outcome among 25~ values in
Sk. Additionally, we require the following assumption about the (causal) relationship among K different
treatment statuses, which represents the most distinct causal structure compared to the existing EF
literature (Karmakar et al., 2020; Rosenbaum, 2023; Zhao et al., 2022).

Assumption 2. (a) Treatment statuses, Zi(jl:K), are causally ordered and (b) there are no unknown or
unmeasured common causes among them.

2In some cases like our pre-K program, treatment assignment A; can be determined in the opposite direction such that
A;i=1if X;>x.and A; = 0if X; < x,.
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Figure 2. A directed acyclic graph (DAG) illustrating the causal relationships among treatment statuses z® (k€ [1:K]), outcome Y,
and unmeasured common causes C g between Z(9) and 2 (L#k).
Note: Observed covariates are omitted for simplicity.

The condition (a) of Assumption 2 implies that the treatment status at level k is established after
the treatment statuses at or earlier than level k — 1 are determined. For example, students’ decision
to use the treatment should not affect their eligibility and receipt statuses. Moreover, there should
be no unmeasured confounding among the treatment statuses at different levels as implied in the
second condition. This assumption is more likely to hold when distinct decision-makers determine the
treatment assignment process at each level, each affected by different criteria or rules. For instance, in
ETA settings, assignment decisions are made separately by entities, such as government or state policy,
schools, and students. Each decision-maker is likely to rely on different information (e.g., state-level
cutoffs, school-level logistics, and student preferences) while also considering some shared, observable
information (e.g., students’ ELL English proficiency scores).

To illustrate, Figure 2 provides a causal structure among variables under Assumption 1 and condition
(a) of Assumption 2. In Figure 2, the treatment statuses of Z() are causally ordered and any status
among Z**=1 does not have a direct effect on the outcome Y. Condition (b) of Assumption 2 further
assumes that there are no unmeasured common causes among Z"), such as C;, and Ci, that can
confound the causal relationships among the treatment statuses.

We note that we can relax condition (b) of Assumption 2 to allow for unmeasured common causes
among some of the K treatment statuses. In Section S2 of the Supplementary Material, we provide a
method for selecting a valid set of treatment statuses by excluding one of the two statuses that are
presumed to share unmeasured common causes.

4.3. Treatment assignment models

In this section, we illustrate the treatment assignment models at each level of a sequential assignment
process, which can seamlessly incorporate Rosenbaum’s sensitivity analysis (Karmakar et al., 2020;
Rosenbaum, 1987; Zhao etal., 2022). Let F denote the collection of the potential outcomes and observed
and unobserved covariates. Then, we posit the following assignment model at level k = 1:

exp{x1(Wy) +y1uji1 }
1+exp{x1(wy) +y1ui}’

Pr(A;j=1|F W)= )
where «; is an arbitrary function of the observed covariates, and u;; 1 denotes the unmeasured covariate.
When y; = 0, this model entails the key assumption of the local randomization framework in an RD
design, where eligibility is randomly assigned among subjects given the observed covariates within the
window W. In this case, Pr(A; = 1| F,W) only depends on the observed covariates’ values, and thus,
subjects within stratum j have the same probability of A; = 1. Therefore, Pr(A;; = 1| F,W) = Pr(Ayj =
1| FW) foralli+i.

At subsequent levels of k € [2 : K], we consider the following assignment model among those who
were assigned to treatment at previous levels £ € [1: k—1]:

. i)+ ii
Pr(z® —1| F, 25D 1) - exp{x(Wyj) + yitkij i } .
’ ’ 1+exp{ri(wy) + yithii e}

3)

Similarly, x; is an arbitrary function of the observed covariates, and u;; x is the unmeasured covariate for
each k € [2 : K]. Note that as stated in Assumption 2, unmeasured covariates at each assignment level
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are unique to that level and do not influence other levels. The model (3) implies that given that subject ij
was assigned to treatment at previous levels £ € [1: k— 1], whether subject ij is assigned to treatment or
not at level k depends on (wi;, ;i ¢ ); if yx = 0, then the assignment does not depend on any unobserved
covariates.

We do not posit any model for treatment status Zi(jk) among subjects with Z;Z) =0foranyle[l:k-1]
and k € [2: K]. In practice, it is expected that the assignment mechanisms among those subjects (e.g.,
assignment of receipt status among ineligible students) would be very different from those who were
assigned to treatment at previous assignment processes. We consider the former case as “exceptions” or
“nuisances,” while the latter assignment models are assumed to be known given F. In Section S3 of the
Supplementary Material, we discuss alternative treatment assignment models for k € [2 : K] that further
condition on the window W or the running variable Xj;.

5. EFsin fuzzy RD designs
5.1. Constructing multiple comparisons

We propose constructing up to K number of test statistics (EFs) using ZZ.(J.I:K). We consider model-free
(one-sided) test statistics, such as the stratified Wilcoxon’s signed rank statistic (Wilcoxon, 1992). We
denote the test statistic at level k as tp, (Z(k),Y), where Dy represents the subset of units used in the

test, which possibly depends on Z(*D W, and X. The statistic tD, (Z(k) ,Y) uses Zi(k) as the treatment
assignment variable and Y as fixed outcomes. Under Assumption 1 and the null hypothesis in (1), we
have Y = Y® for all s € Sk. Therefore, each statistic tp, (Z©),Y) for k € [1: K] tests whether the potential
outcomes under a particular treatment vector in Sk differ and can also provide a valid test for the null

in (1) albeit with different power rates. For each test at level k, we refer to the group with Ztg.k) =1 as the
treatment comparison group, and the other group with Zi(jk) = 0 as the control comparison group.

Specifically, we first propose testing the null (1) with the test statistic tp, (Z(l),Y), using Zi(jl) (or
equivalently, A;) as a treatment assignment variable. We perform the RD analysis under the local
randomization framework, resulting in the comparison only within the window W, ie., D; = {ij :
Xj € W}, This analysis would be valid to test for the null Ho x under Assumption 1 and would not be
affected by any of {u;; x : k € [2: K]} under Assumption 2. The subsequent EFs at level k (k € [2: K]) are
constructed using only the subset of subjects with Dy = {ij : Zl.(jl:k_l) =1}. By conditioning on Zi(jl:k_ Doy,
any bias occurring at previous levels would not affect the validity of the test at level k.

Consider the simplest case with K = 2 under two-sided non-compliance, as in our pre-K program
example. Table 2 illustrates the treatment and control groups used for EF analysis within stratum j,
stratified by the indicator for the window inclusion (i.e., whether Xj; € W) and their treatment statuses
Sij = (Aij, T;j). Two levels of treatment assignments result in two control groups: the first control group
(Control 1) consists of subjects assigned control at k = 1, while the second control group (Control 2)
consists of subjects assigned treatment at k = 1 but control at k = 2. The treated group contains the actual
users of the treatment. In this case, our proposed framework allows us to construct two EFs. The first EF
analysis (EF 1 in Table 2) uses only subjects within the window and compares ineligible subjects with
Aji = 0 to eligible subjects with A;; = 1. Based on a value of Aj;, this analysis pretends that the subjects
in the second control group are part of the treatment comparison group. It compares the first control
group to the other two groups within a window W (i.e., those with Xj; € W). This analysis corresponds
to the intent-to-treat analysis in an RD design, which only uses the eligibility assignment, but ignores
the actual treatment use. On the other hand, the second EF analysis (EF 2 in Table 2) only compares the
second control group and the treated group while excluding the first control group (e.g., any ineligible
subjects) from the analysis but includes those outside of the window.

For further illustration, consider the case with K = 3 under one-sided non-compliance as in the ETA
study. In the ETA setting, we have three different control groups: the first control group consists of

subjects with Zi(jm) = 0; the second control group consists of subjects with Z;l) =1 but with Zi(jzzs) =0;
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Table 2. Treatment statuses and the treatment and control comparison groups used for each EF
analysis, resulting from a two-level treatment assignment process (K = 2) with two-sided non-

compliance
XjeW  Aj(Treatment eligible) Tjj (Treatment used) Group EF1 EF2

1 0 0 Control 1 C

1 0 1 Control 1 C

1 1 0 Control 2 T C
1 1 1 Treatment T T
0 0 0 Control 1

0 0 1 Control 1

0 1 0 Control 2 . C
0 1 1 Treatment . T

Note: At each level, subjects with status 0 represent the control comparison group, while those with status 1
represent the treatment comparison group. T: Treatment comparison group; C: Control comparison group; -:
Data excluded.

Table 3. Treatment statuses and the treatment and control comparison groups used for each EF analysis, resulting from a
three-level treatment assignment process (K = 3) with one-sided non-compliance

Xj e W  Aj (Treatment eligible) Z;Z) (Treatment received)  Tj (Treatment used) Group EF1 EF2 EF3
1 0 0 0 Control 1 C
1 1 0 0 Control 2 T C
1 1 1 0 Control 3 T T C
1 1 1 1 Treatment T T T
0 0 0 0 Control 1
0 1 0 0 Control 2 . C
0 1 1 0 Control 3 . T C
0 1 1 1 Treatment . T T

Note: At each level, subjects with status 0 represent the control comparison group, while those with status 1 represent the treatment comparison
group. T: Treatment comparison group; C: Control comparison group; -: Data excluded.

and the third control group includes those with Zi(jl:z) =1 but with Zi(.s) = 0 (see Table 3). With our
proposed framework, we can construct three EFs. The first EF includes all of these three control groups

using Zl.(jl) as the treatment assignment variable within a window W; the second EF excludes the first
control group and uses Z;z) as the assignment variable; and lastly, the third EF only compares the last
control group to the treated group. In both Tables 2 and 3, we do not use variation in the treatment
status Z;k) among those with Z;e) =0foranyfe[1:k-1].

5.2. Randomization-based inference and multiple p-values

We apply randomization-based inference for testing the treatment effect with multiple comparisons at
eachlevel k € [1: K]. With the test statistic ¢p, (Z(k),Y) for k € [1: K], we assume that all outcomes Y are
fixed and randomization of treatment assignment ka) is the only source of randomness (Rosenbaum,
2002). The assignment models provided in (2) and (3) enable us to leverage randomization mechanisms
(within strata) in a finite population, avoiding any specific modeling or reliance on asymptotic condi-
tions. Without an unmeasured covariate in each treatment assignment model (i.e., y, = 0 for k € [1: K]),
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K
. W Y
Ty, U.

2

Figure 3. ADAG illustrating the hypothetical causal relationships among variables with unmeasured covariates, Uy’s, denoted in blue.
Note: An edge between Uy and 2 is presentifand only if yk #0 (k € [1:K]). Observed covariates W and running variable X are omitted
for simplicity.

the treatment status Zl.(jk) is randomly assigned to each subject within each stratum, which is constructed

from the observed covariates within the window W if k = 1, or conditional on Zl.(jl:kfl) =1ifke[2:K].

As a result of performing randomization-based inference at each level, we obtain one p-value for
each comparison. Let Py denote a p-value from the EF analysis at level k (k € [1: K]). Suppose that
there is no unmeasured covariate in each level ks assignment model (i.e., when y; = 0). Then, under
Assumption 1, we have Pr(Py < pi) < px for all pi € [0,1] when the null Hy x is true (i.e., each Py is a
valid p-value for testing Ho k). Theorem 1 further demonstrates the properties of the joint distribution
among {Px : k € [1: K]} under the null Hy x, where we use a nested conditioning structure in our test
statistics tp, (Z(k) ,Y), for both one-sided and two-sided non-compliance among treatment assignment
variables. See a detailed proof in Section S1 of the Supplementary Material.

Theorem 1. Under Assumption 1, suppose that the assignment models (2) and (3) hold with yi = 0 for all
ke [1:K]. Then p-values from the above design are stochastically larger than the uniform under the null.
In other words,

K
Pr(Pi<p1,...,Px SPK)SHPk. (4)
k=1

However, it is possible that some comparisons/analyses out of K assignments are invalid, i.e., biased.
Let a subset Z c [1: K] denote the analyses that are biased, while V = [1: K] \ Z represents the set of
indices that produce valid comparisons. For example, suppose that 2 € Z with K = 3, where the second
comparison is invalid due to an unmeasured covariate (i.e., y> # 0 in model (3)). Then, the following
results imply that this unmeasured covariate would not affect the properties of p-value in (4) among
valid comparisons, e.g., P; and Ps.

Theorem 2. Under Assumptions I and 2,

Pr(Py < px, VkeV) < Hpk (5)
kev

Theorem 2 demonstrates that the bias in the treatment assignments from other analyses would not
affect the (near) independence properties among valid EFs, in addition to their individual validity; see
a proof in Section S1 of the Supplementary Material. This independence is attributed to the fact that a
value of {y, : ¢ € Z} would not affect the validity of {Py : k € V} (see Figure 3).

In Figure 3, a variable Ui denotes an unmeasured covariate that can confound the relationship
between Z*) and Y (k € [1: K]) when yj # 0 (k € [1: K]). Then we have V = {ke [1: K] : y5 = 0}
andZ = {ke[1:K]:yx #0}. Suppose that 1 € Z. Then bias due to U could represent bias in the local
randomization in RD designs. This bias would not necessarily invalidate analyses at any level k€ [2: K],
as their analyses all condition on Z M -1 (e g., conditioning on eligible subjects). Similar arguments can
be made for the impact of Uy on analyses at level k € [k +1: K] for each k’ € [1: K —1]. Furthermore, the
presence of Uy (k > 2) results in invalid analysis with Z (k) testing the null, but bias does not necessarily
imply biasin Z ) with £ € [1:k—1] under the condition (b) of Assumption 2 that there is no unmeasured
common cause between Z¥) and Z(?) for k # £. For example, when K € Z and 2 € V, bias due to Ux would
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not affect the validity of P,. This is because the condition (b) of Assumption 2 excludes the presence of
unmeasured confounding between Z @) and Y through Uk.

Based on Theorem 2, we can ensure that at least v := || number of nearly independent p-values
are obtained. Having nearly independent p-values enables us to easily isolate evidence from any set of
p-values. In such a case, we can utilize v largest p-values among K to form a single valid p-value without
specifying which v analyses provide valid EFs. Define P(,y as the ™ order statistic (i.e., ™ smallest
value) of P = {Py: k€ [1:K]} and let f(P;v) be the combining function of P, with v = |V|. Then with
{P(k-k+1) t k € [1:v]} given v, the results from EFs can be combined into one valid p-value, using
relatively simple methods of combining independent p-values, such as Fisher’s method or truncated
product method (Zaykin et al., 2002), as follows:

(Fisher'’s method)  f(P;v) = =2 In(P(x—is1))
k=1
(Truncated product method)  f(P;v) = [ [In(P(x—i+1) )/ Ploien <) 0<s<l,
k=1

where I(-) is an indicator function. The combined p-value is obtained using the known null distribution
of each statistic f(P;v) when at least vp-values in P are (nearly) independent. This combined p-
value from multiple EFs, compared to using individual p-values, can provide stronger evidence of the
treatment effect when each factor suggests concurrent agreement about the null hypothesis.

We remark a potential concern regarding a lack of power, despite the validity of the test statistics
tp,(Z®,Y) for k e [1: K] in testing the target null of Hy k. This is because the treatment comparison
group at each level k can include a large portion of subjects who do not actually use the treatment,
potentially diluting the effect of the treatment at k level on the outcome. To avoid such dilution,
researchers can use robust test statistics (see Section 4 of Rosenbaum (2023) for more details).

5.3. Sensitivity analysis

Researchers can use their conjecture on |V|, say g, as a sensitivity parameter and examine the changes
in their causal conclusions as a value of g varies (q € [1 : K]). Researchers may reflect their prior
knowledge about treatment assignment variables in their choice of ¢, for example, the maximum
number of treatment assignments that would satisfy Assumption 2. Selecting g can easily lead to
conservative results, however, as it discards (K —¢) smallest p-values, which may contain p-values from
valid EFs. Instead of discarding several small p-values, one can conduct sensitivity analysis to a specific
unmeasured covariate in each assignment model by varying a value of parameter y;’s in (2) and (3).
A non-zero value of i in (2) or (3) (or equivalently, strictly larger than one of T := exp(yx)) implies a
biased assignment at level k within strata formed by observed covariates (k € [1: K]).

Given u;; x and Ty, assuming that the observed difference between the two comparison groups could
be caused by this u;; x by an amount of T, one could calculate a corresponding p-value for testing the
sharp null (1). This resulting p-value is often more conservative compared to the case with I';, = 1 where
all the observed differences are attributable to the existing causal effect. Since u;; x’s are unknown, we can
use the maximum p-value over u; x values in [0,1] when the sensitivity parameter is at most I (>1).
We denote this adjusted p-value as Py r, (k € [1:K]). Then each of Py, is a valid p-value and they
also maintain the nearly independence properties under the null. This is because non-zero values of
yir (K # k,k" € [1: K]) would not necessarily affect the validity of Py r,; in other words, we have
Pr(Py.r, < pk) < px for any py € [0,1] under the null regardless of the values of yy.

Similar to the argument regarding g, as a value of I'; increases, we are more likely to obtain
conservative inferences. This is because we consider the observed difference between two comparison
groups to be partially attributable to existing imbalances between these groups on an unmeasured
covariate. In such a sensitivity analysis, researchers may decide the presumed maximum level of T for
each assignment k (e.g., eligibility assignment would be at most biased by I'; = 1.5, while the assignment
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of treatment use would be at most biased by I'; = 2.0 for those who are eligible), and then examine
whether the results from multiple EFs are still against (or supporting) the null hypothesis.

6. Simulation study

We numerically evaluate the validity and the performance of our proposed approach through simulation
studies that mimic the real data settings on pre-K programs and ETAs. We focus on examining (i) the
non-overlapping bias between the proposed EFs and (ii) the validity of the combined p-value in the
presence of invalid analyses. To examine (i), we intentionally introduce multiple sources of bias, each
of which can invalidate at least one EE and investigate whether one source can bias multiple factors.
To examine (ii), we set g (q € [1: K]) as the conjectured minimum number of valid analyses among K.
Our goal is to demonstrate that the combined p-value given g using Fisher’s method, denoted as P;, can
control the type-I error under the null hypothesis when g is correctly specified (i.e., when g < v) and
that it increases power as the true treatment effect increases.

We further demonstrate the utility of conditioning on treatment statuses at earlier levels to separate
biases among EFs. Our proposed EF analysis is compared to analyses that do not condition on the
treatment statuses at earlier levels (i.e., not conditioning on Zi(jl:k_l) = 1) while other procedures (e.g.,

forming strata by matching on observed covariates) remain the same. Each of (P},P5,P;) denotes the
p-value for an unconditioned comparison for each level. For example, P; is the p-value for an as-treated
analysis after controlling for observed covariates through stratification. In the absence of the previous
treatment statuses (i.e., at level k = 1), P, is equivalent to P;.

In our simulation studies, we consider two designs: one with K = 3 under one-sided non-compliance
(Design 1) and the other with K = 2 under two-sided non-compliance (Design 2). In each design,
we correctly specify g, i.e., the number of valid analyses. We also conduct additional simulations
with a misspecified g to assess its impact on the performance of our approach. See Section S4 of the
Supplementary Material for details of the simulation implementation. We present the results for Design
1 (with correctly specified g) below, and include additional results with a misspecified g in Section S5 of
the Supplementary Material. We also include the results for Design 2 in Section S6 of the Supplementary
Material. R code for our simulation study is available at: https://github.com/youjin1207/EFinFuzzyRD.

6.1. Simulation setup

We generate simulation data for #n = 1000 subjects. For each subject, we first generate the baseline
covariate and the running variable as follows: W; it d. Unif(-1,1) and X; = 0.5W; +X:, where X; it
Unif (—0.5,1). Then, we generate each subject’s eligibility as A; = I(X; < 0); that is, each subject i is
eligible for treatment if and only if X; < 0. In addition to the observed covariate, we generate an
unmeasured covariate Uj ind Bern(0.5I(X; < 0) +0.3), which may violate the exclusion restriction

of the eligibility status (A;) on the outcome (Y;). Two unmeasured covariates Uj x . Unif (-1,1)

are also generated, each of which can introduce confounding in the treatment assignment at level k
(k =2,3). Next, we generate the subsequent treatment statuses, (Zi(z), T;), and the potential outcomes

with & ; b N(0,0.01), & b N(0,0.01),and ¢ ; bk N(0,1) as follows:

Z® =1(Z; >0.5), where Z; = (5+64;—0.5X;+ Wi +3U;,)/20+¢, ;
Ti=I(T; >0.5), where T; = (6 +4Z”) —0.5X;+ Wi+ W} + Ui 3)/20+ &,
Y] =8+ X;+0.5X; +0.5W; +0.5W; +y1Ui1 +y2Uia +y3Uis + 65
Y =Y +7.

Figure 4 illustrates the causal structure of the observed and unmeasured variables used in our simulation
design with K = 3. Our null hypothesis of interest is Ho x : 7 = 0. We conduct one-sided tests, testing
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Figure 4. A causal structure of the simulated data.
Note: The dashed lines indicate the presence of a causal relationship between Uy and Y when the corresponding yj value is non-zero
(ke[1:3]).

the null of no causal effect against the alternative of a greater effect of the treatment. We introduce
unmeasured bias through U i’s (k = 1,2,3). For example, the covariate U; ; mediates the effect of A; on
Y;, potentially violating the exclusion restriction by generating a causal pathway between A; and Y; not
through T; when y; # 0. This bias would not necessarily be avoided by the window selection around the

cutoff (i.e., around zero). On the other hand, the covariates U; » and U 3 are associated with Zi(2> and Tj,
respectively, potentially confounding their relationships with Y; when y, # 0 and ys # 0, respectively.’
In this simulation design, we consider seven different cases depending on the value of y = (y1,¥2,y3).
In case (1), y = (0,0,0), implying that there is no effect of the three unmeasured covariates on the
outcome. In cases (2)-(4), one of the three treatment assignment processes is biased, whereas two of
the three are biased in cases (5)-(7). For each case, we report the rejection rates of the three p-values
from each EF, denoted as (P1,P,,P3), and their combined p-value using Fisher’s method, P;, given a
pre-specified g. Similarly, we present the results of our comparison analysis, denoted as (P}, P;, P3 ), and
their combined p-value, Pf;. In case (1), we set g = 3; in cases (2)-(4), g = 2; and in cases (5)-(7), g = 1.

6.2. Simulation results

Figure 5 summarizes the results for four out of seven cases: (1) y = (0.0,0.0,0.0), (2) y = (1.0,0.0,0.0),
(3) y=(0.0,0.5,0.0), and (5) y = (1.0,0.5,0.0). When all the three treatment assignment processes are
unbiased, i.e., in case (1), both the proposed EF analyses and the unconditioned comparisons produce
valid p-values. We observe that the testing power of the proposed EFs at k = 2 and 3 is higher than
that of the unconditioned comparisons under our data-generating process. Specifically, in case (1),
the unconditioned comparisons of P, and P; show lower rejection rates than P; and Ps. This might
sound counterintuitive, as unconditioned comparisons typically include a larger number of subjects by
not conditioning on previous treatment statuses. Our further investigation shows that unconditioned
comparisons can produce either conservative or anti-conservative p-values depending on simulation
scenarios (see Section S5 of the Supplementary Material for additional simulations).

When at least one level of the treatment assignment is biased, the bias from that level does not
affect EF analyses at other levels. However, in the unconditioned analyses, bias occurring at level
k (ke [1:K—1]) may spill over to subsequent levels ¢ (¢ € [k+1: K]). This expectation is supported by
the resultsin cases (2), (3), and (5). Inflated type-I errors are observed both in the analysis at level k where
yk # 0 and in subsequent unconditioned comparisons at level ¢, where £ € [k+1 : K]. Consequently, the
combined p-value becomes invalid under unconditioned analyses (indicated by dashed black lines) as
fewer than g unconditioned analyses can be valid. On the other hand, our proposed EFs with a correctly
specified number of g, i.e., 2 in cases (2) and (3) and 1 in case (5), show that the biased treatment
assignment at level k does not affect the EF analysis at level k' (k # k). For example, in case (2), while
Py is invalid, P, and Ps are valid p-values. Also, in case (3), while P; is invalid, P, and P; are valid. As a

3Either the violation of the exclusion restriction or the presence of unmeasured confounders can invalidate an analysis using
an IV, Zl.(k) (k€ [1:K—1]). In practice, we cannot distinguish if an IV analysis is biased due to the violation of the exclusion
restriction or to unmeasured confounders.
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Figure 5. Comparison of rejection rates at the a = 0.05 level between the proposed EFs and the unconditioned comparisons, based on
1000 replicates with a sample size of 1000 across four selected cases: (1) y = (0.0,0.0,0.0), (2) y = (1.0,0.0,0.0), (3) y = (0.0,0.5,0.0),
and (5) y = (1.0,0.5,0.0).

Note: A value of 7 denotes the effect of T; on Y;; Py is a p-value from each proposed EF for k € [1: 3]; sz is a combined p-value of

P1,P,,P3); P, is a p-value from each comparison at level k without conditioning on ZD) =1 (ke [1:3]); P is a combined p-value
k q
of (Py,P,,P;); g = 3in case (1), g = 2 in cases (2) and (3), and g = 1 in case (5).

result of such non-overlapping bias across EFs, the combined p-values of the EF analyses are still valid
in these cases, even without knowing exactly which assignment is biased.

One caveat we note is that the way we generate the assignment variables may lead to misspecification
of the assignment models described in Section 4.3, even though they do not necessarily affect the
causal assumptions outlined in Section 4.2. Our results demonstrate robustness to such misspecification,
although this robustness may not be guaranteed in other settings.

7. Empirical examples

In this section, we demonstrate real-world applications of our proposed EF analysis for fuzzy RD
designs. The first data analysis evaluates a pre-K program using two different treatment statuses in the
context of two-sided non-compliance. The second data analysis evaluates an ETA program using three
treatment statuses under a series of one-sided non-compliance.

7.1. The effect of New Jersey’s Pre-K program

We use New Jersey’s data from Wong et al. (2007) to evaluate the effect of New Jersey’s Abbott
Preschool Program—one of three state-funded pre-K initiatives in New Jersey—on 4-year-old children’s
vocabulary skills. In our data analysis, we consider two different treatment statuses: eligibility and use.

Eligibility status A;; (i.e., Z él)) represents whether a child is eligible for the pre-K program or not, which
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Figure 6. Distributions of three different treatment groups in two EFs analysis in New Jersey’s Pre-K program: for each analysis, red
symbols represent the treatment comparison group, while the skyblue symbols represent the control comparison group.

is determined by the running variable of a child’s birth date, X;; (unit: day); children with birthdays on
or after a specific date are eligible for the pre-K program, whereas those with birthdays before it are not.
This eligibility status differs from a child’s actual use of or participation in the program, and this non-
compliance occurs in a two-side format. Use status Tj (i.e., Zi(jz)) represents whether he/she completed
the pre-K program in spring 2004. Our outcome of interest is children’s vocabulary scores measured
in early fall of the 2004-2005 school year. Measured covariates Wj; include gender, race/ethnicity, free
lunch status, and test language type (English or Spanish). Potential unmeasured covariates (Uj;) include
prior abilities and distance to facilities.

In this application, we construct two EFs to test the same null hypothesis (Ho, ) that there is no effect
from participating in the pre-K program. The first EF compares eligible students (A;; = 1) and ineligible
students (A; = 0) in a small neighborhood of the cutoff. This factor is susceptible to bias associated
with the eligibility rule under the RD design; for example, ineligible children in New Jersey with high
prior abilities might relocate to be eligible for and participate in pre-K programs in other states, thereby
“manipulating” the running variable based on unmeasured prior abilities. Moreover, the second EF
compares students who participate in the pre-K program (Tj; = 1) and those who do not (Tj; = 0) among
the eligible (A;; = 1). This factor is vulnerable to bias associated with children’s actual participation. For
example, if the program is located too far away or lacks transportation options, some parents might be
unable to assist their children in getting there.

For our data analysis, we first stratify individual children based on the four measured covariates and
then conduct a stratified Wilcox rank sum test for each EF. For the first EE, we further constraint our
sample near the cutoff by using window selection under the local randomization RD framework. The
largest possible window around the cutoff, set at zero, in our data is (—35, 35), which ensures that the
p-value of the covariate balance test exceeds 0.15. For the first EF, we also use the residual outcome,
obtained by regressing the outcome Y on X, to remove the impact of X on Y within the window;
see Figure 6 for the distributions of three different treatment groups in two EF analyses. Lastly, we
combine one-sided p-values from multiple EFs using Fisher’s method and conduct sensitivity analyses
by varying I’ for each factor.

Table 4 presents the results of EF analysis for New Jersey’s pre-K program. In the absence of
unmeasured confounding (I'x = 1.0), the first EF does not reject the null, whereas the second EF rejects
the null. The combined p-value, calculated using Fisher’s method, is 0.045. Therefore, our EF analysis
leads us to reject the null. This suggests a positive effect from participating in the pre-K program.
However, sensitivity analyses reveal that adjusting the p-values at I'' = 1.1 or at I'; = 1.1 results in
combined p-values above 0.05. These findings indicate that our causal conclusion are sensitive to even
small degrees of unmeasured confounding at I'y = 1.1 (k = 1,2).

Downloaded from https://www.cambridge.org/core. 12 Sep 2025 at 09:11:26, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

16 Youjin Lee and Youmi Suk

Table 4. Results of EFs analysis for New Jersey’s pre-K program

Evidence factor 1 Evidence factor 2 Fisher’s

Ji (Jcontrol| vs. |treated|) 8 (51vs.57) 9 (21 vs. 555)

p-value (Ty = 1.0 fork =1,2) 0.240 0.032 0.045
p-value (I'1 =1.1&T, =1.0) 0.314 0.032 0.056
p-value ([ =1.0&T; =1.1) 0.240 0.048 0.063
p-value (I =1.1&T; =1.1) 0.314 0.048 0.078

Note: Jy represents the number of strata in EF k. I, represents the sensitivity parameter in EF k. Fisher’s
method is used to combine p-values from two EFs. |control| and |treated| represent the sample size
for the control comparison group and treatment comparison group, respectively.

7.2. The effect of ETA

We analyze the Grade 8 Mathematics Process Data from the 2017 National Assessment of Educational
Progress (NAEP) to study the effect of using ETA on students’ math scores. In this ETA example, we
consider three different treatment statuses: eligibility, receipt, and use. Eligibility status A; (i.e., Zl.(jl)) is
binary and determined by an ordinal running variable. The running variable is ELL English proficiency
with six ordinal levels: No Proficiency, ELL Beginning, ELL Intermediate, ELL Advanced, Formerly ELL,
and Never ELL. The eligibility status differs from the receipt status Zl.(jz) and further differs from the use

status Ty (i.e., Zi(j3)). We use students’ performance on a 15-item math test block as the outcome Yj;.
Measured covariates Wj; include gender, race/ethnicity, primary language, free lunch status, duration
of U.S. school education (less than 1 year or more), and perseverance. Potential unmeasured covariates
include students’ years of residence in the US, test anxiety, and academic motivation. In our analysis
sample, we exclude students with Never ELL, and non-compliance occurs sequentially in a one-sided
format.

In this example, we construct three EFs to test the null hypothesis (Ho, k) that there is no effect of
using ETA. The first EF compares eligible students (A; = 1) and ineligible students (A;; = 0) in a small
neighborhood of the cutoft. This factor is susceptible to bias associated with the eligibility rule under the
RD design, as in the pre-K example. The second EF compares students who receive ETA from school
administrators (Zlgz) =1) and those who do not (Zlgz) = 0) among the eligible (A;; = 1), and this factor is
susceptible to bias associated with school administrator’s decision on ETA receipt. For example, school
staff may consider students’ test anxiety levels to determine which students receive ETA in practice.
The third EF compares students who actually use ETA (Tj = 1) versus non-users (Tj = 0) among
recipients (Z; = 1). This factor is susceptible to bias associated with students’ individual characteristics.
For example, students who have higher motivation may actually make use of ETA.

Similar to the pre-K example, we stratify individual students based on the six measured covariates
and conduct a stratified Wilcoxon rank sum test for each EF. For the first EE, however, we estimate
propensity scores to create a surrogate continuous running variable from the oridinal one, following a
recent approach proposed by Li et al. (2021). We select a window of (—0.01, 0.01) around the median
of the propensity scores among students with the cutoff category (i.e., ELL Advanced). We also use the
residual outcome for the first EE. Then, we calculate one-sided p-values for each EF and combine them
using Fisher’s method. In this application, we use four different treatment groups, similar to those
in Figure S2 in Supplementary Appendix S4 from our simulation study, except that we employ the
surrogate continuous running variable.

Table 5 provides the results of EFs analysis for ETA. In the absence of unmeasured confounding,
all the three EFs do not reject the null, and the combined p-value using Fisher’s method is 0.135. As a
result, our EF analysis does not reject the null. This concurrence reinforces our conclusion that there is
no effect of using ETA on math scores in the NAEP assessment. Since none of the EFs is significant, we
do not conduct sensitivity analyses by adjusting I'; for each factor.
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Table 5. Results of EF analysis for the ETA

EF1 EF2 EF3 Fisher’s

Ji (Jcontrol| vs. |treated|) 6 (40vs.80) 10 (510vs.120) 10 (90 vs. 30)

p-value 0.231 0.556 0.059 0.135

Note: Jy represents the number of strata in EF k. Fisher’s method is used to combine p-values
from two EFs. |control| and [treated| represent the sample size for the control comparison group
and treatment comparison group, respectively. Numbers for |control| and |treated| are rounded to
nearest tens. Details may not sum to a total due to rounding.Source: U.S. Department of Education,
National Center on Educational Statistics (NCES), 2017 NAEP Grade 8 Mathematics Process Data,
Student Features Data File Partial Form, and Response Data File.

8. Discussion and conclusions

In this article, we propose a new EF approach in fuzzy RD designs, which involve sequential treatment
assignments and the locality inherent in analyzing samples near the cutoff. This approach is particularly
useful when multiple decision-makers are involved in determining treatment statuses sequentially, each
producing different types of biases. We establish the causal assumptions required for constructing valid
EFs in fuzzy RD designs and demonstrate the effectiveness of our proposed EFs approach through
simulation studies by comparing it with unconditional analyses (e.g., as-treated analysis). We also
illustrate its effectiveness using two real-world data examples that involve fuzzy RD designs with one-
sided and two-sided non-compliance, respectively.

Even though we introduce the setting where the first level of treatment assignment involves RD
designs, our proposed approach has broader applicability. More specifically, our approach is applicable
to any setting with sequential assignment processes, where one of the comparisons involves an RD
analysis. In our ETA example, suppose that ELL English proficiency levels (i.e., running variable) are
not available for some students, making it difficult to determine their eligibility status. In this case, the
availability for the English proficiency test can be considered as the first treatment status, while the
second treatment status is eligibility based on the running variable, which exhibits an RD design. We
can still apply our proposed framework in this scenario to construct multiple EFs, as long as the analysis
with the RD design properly adjusts the analysis sample to satisfy the local randomization assumption.

There are several limitations in our proposed approach. First, we found that empirical results can be
impacted by the way the observations are stratified, which is crucial for randomization-based inference.
Therefore, the window selection in the local randomization framework, as well as the choice of matching
methods, can impact the empirical results. However, strict criteria for constructing strata, such as using a
narrow caliper or imposing a hard threshold for balance tests, may considerably reduce statistical power.
Second, we focus on multiple levels of treatment assignment that are potentially affected by individual-
level characteristics, e.g., due to individual-level eligibility, constraints, or preferences. However, often
such assignment can also be affected by macro-level factors beyond individuals. Future research will
formally discuss different sources of biases from multilevel or clustered data in EF analysis, even when
treatment is assigned to individual subjects. Third, choosing a presumably valid subset of treatment
statuses that satisfy both conditions of Assumption 2 could be challenging in practice. Future research
would examine ways to relax this assumption or develop robust methods that are less sensitive to its
violation. Lastly, in our simulation and data application studies, we use residuals obtained by regressing
the outcome on the running variable (rather than the true errors), which induces correlation between
the residuals. As a result, this residual randomization approach remains asymptotically valid under
certain conditions (Freedman & Lane, 1983; Sales & Hansen, 2019), even though, in our simulation
studies, the rejection rates under the null achieve their nominal levels in finite samples. Despite these
limitations, our proposed approach complements the existing RD literature by introducing a novel
EF design with sequential treatment assignments embedded in fuzzy RD designs. We hope that our
approach serves as a useful tool for reinforcing our causal conclusions in observational studies with
fuzzy RD designs.
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Supplementary material. R code for our simulation study and real data applications, along with example datasets, is available
at: https://github.com/youjin1207/EFinFuzzyRD.
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