COMPLEMENTED SUBSPACES AND THE HAHN-BANACH EXTENSION PROPERTY IN l_p (0 < p < 1)

by M. A. ARIÑO and M. A. CANELA

(Received 11 September, 1984)

In this article, we study some questions related to the complementation and the Hahn-Banach property for subspaces of l_p , for $0 . Some results which are stated here have appeared in the work of W. J. Stiles [4, 5] and N. Popa [3], but our proofs are simpler. We solve a problem raised by Popa [3], concerning complemented copies of <math>l_p$ contained in l_p .

We fix first some terminology. A *p*-Banach space (0 is a real vector space X, endowed with a*p*-norm <math>||.||, in the sense of G. Köthe [1], and complete with respect to the metric defined by the *p*-norm. In particular, we are concerned with l_p , which is a *p*-Banach space with *p*-norm:

$$\|(\alpha_n)_n\|_p = \sum_{n=1}^{\infty} |\alpha_n|^p$$

If $(X, \|.\|_X)$ is a *p*-Banach space, $(Y, \|.\|_Y)$ a *q*-Banach space, $0 < p, q \le 1$, and $T: X \to Y$ a continuous linear operator, the "norm" of T is defined by:

$$||T|| = \sup_{||x||_X \leq 1} ||Tx||_Y^{1/q},$$

and is equal to the smallest C > 0 for which:

$$||Tx||_Y^{1/q} \leq C ||x||_X^{1/p}$$
 for all x in X.

As we have said before, our techniques are simple. Two tools are used, essentially. First, a result concerning basic sequences in p-Banach spaces, whose proof is identical to the one known for the Banach case [2, 1.a.9]:

1. LEMMA. Let $(x_n)_{n=1}^{\infty}$ be a monotone normalized basic sequence in a p-Banach space X, and suppose that there is a projection P of X onto the closed linear span of $(x_n)_{n=1}^{\infty}$. If $(y_n)_{n=1}^{\infty}$ is a sequence in X satisfying:

$$\sum_{n=1}^{\infty} ||x_n - y_n|| < \frac{1}{8 ||P||^p},$$

then $(y_n)_{n=1}^{\infty}$ is a basic sequence, equivalent to $(x_n)_{n=1}^{\infty}$, whose closed linear span is complemented in X.

The second tool which will be used is the Mackey topology of a *p*-Banach space. If $(X, \|.\|)$ is a *p*-Banach space whose topological dual separates the points of X, the convex hulls of the balls of $(X, \|.\|)$ form a basis of zero neighbourhoods of a locally convex topology, which is the finest locally convex topology on X whose dual is X^* , i.e. the

Mackey topology of the dual pair $\langle X, X^* \rangle$. This topology is usually called the Mackey topology of $(X, \|.\|)$, and can be defined by the norm induced by the bidual $(X^{**}, \|.\|^{**})$. In the case $X = l_p$, $X^* = l_{\infty}$, and it is easy to see that the Mackey topology is induced by the l_1 -norm.

If Y is a closed subspace of $(X, \|.\|)$, $(Y, \|.\|)$ is a p-Banach space, for which the bidual norm $\|.\|_Y^{**}$ defines the Mackey topology. In general, the Mackey topology of Y is finer than the topology induced by the Mackey topology of X. It is not difficult to see, using duality arguments, that both topologies coincide if and only if Y has the Hahn-Banach extension property (HBEP): every $y^* \in Y^*$ is the restriction to Y of some $x^* \in X^*$. Every complemented subspace of X has the HBEP in X. More precisely, if $P: X \to X$ is a continuous linear projection onto Y:

$$||x||_X^{**} \le ||x||_Y^{**} \le ||P|| ||x||_X^{**}$$
 for every x in Y.

In general, there are closed subspaces with HBEP which are not complemented. For l_p , we have a classical example:

2. PROPOSITION. There is a closed subspace of l_p (0) which is not comple $mented but has HBEP in <math>l_p$.

Proof. One can do the same construction that appears in [1], of a non-complemented closed subspace of l_p $(1 \le p < \infty)$ with minor modifications. For each positive integer v, a square matrix U_v is considered, of order $n = 2^v$, which defines a linear involution on \mathbb{R}^n , with invariant subspace H_v . We consider on H_v the p-norm $\|.\|_p$, and define $X = l_p((H_v, \|.\|_p)_{v=1}^{\infty})$, which is a closed subspace of $l_p((l_p^2)_{v=1}^{\infty})$. The proof of the fact that X is not complemented in $l_p((l_p^2)_{v=1}^{\infty})$ (isometric to l_p) is analogous to the one of the case $1 \le p < \infty$, with minor modifications. To prove that X has HBEP, it suffices to check that its Mackey topology coincides with the topology induced by the norm of $l_1((l_1^2)_{v=1}^{\infty})$. But this fact follows directly from the calculation of the dual:

$$X^* = l_{\infty}((H_{\nu}, \|.\|_{\infty})_{\nu=1}^{\infty}).$$

We will see below that under certain assumptions, every closed subspace with HBEP is complemented in l_p . Stiles has proved in [5] that an infinite-dimensional complemented subspace of l_p is isomorphic to l_p , so we are going to restrict ourselves to isomorphic copies of l_p . Popa [3] has proved that, if X is a subspace of l_p (0), and there is an $isometry <math>T: l_p \rightarrow X$, then X is complemented in l_p if and only if $\inf_n ||Te_n||_1 > 0$, where

 $(e_n)_{n=1}^{\infty}$ is the unit basis of l_p . In the same paper, he asks if this condition is also necessary and sufficient when T is assumed to be an isomorphism. We will see here that the answer is negative, but the condition is necessary. First, we give a criterion for an isomorphic copy of l_p to have HBEP in l_p , in terms of the l_1 -norm.

3. PROPOSITION. Let X be a subspace of l_p ($0), and suppose that there is an isomorphism <math>T: l_p \rightarrow X$. Then the following are equivalent. (i) X has HBEP.

https://doi.org/10.1017/S0017089500006431 Published online by Cambridge University Press

(ii) There exists C > 0 such that, if $\alpha_1, \ldots, \alpha_n$ are scalars:

$$\left\|\sum_{i=1}^n \alpha_i T e_i\right\|_1 \ge C \sum_{i=1}^n |\alpha_i|.$$

Proof. X has HBEP if and only if the l_1 -norm defines the Mackey topology of $(X, \|.\|_p)$. But, T being an isomorphism, this topology can also be defined by the norm

$$\sum_{n=1}^{\infty} \alpha_i T e_i \to \sum_{n=1}^{\infty} |\alpha_n|.$$

The condition (ii) obviously implies $\inf_{n} ||Te_{n}||_{1} > 0$, showing that the condition proposed by Popa is necessary when T is an isomorphism. Let us see now that it is not sufficient through a counterexample inspired in [5].

4. PROPOSITION. Let $(x_n)_{n=1}^{\infty}$ be the sequence defined in l_p (0 < p < 1) by:

$$x_n = e_n - \frac{1}{2}e_{2n} - \frac{1}{2}e_{2n+1}.$$

Then:

(i) $||x_n||_p = 1 + 2^{1-p}$, $||x_n||_1 = 2$ for every *n*, (ii) $(x_n)_{n=1}^{\infty}$ is a basic sequence, equivalent to the l_p -basis, (iii) $\left\|\sum_{k=1}^n k^{-1}x_k\right\|_1 = 2$ for every *n*.

Proof. (i) is obvious.

(ii) $(x_n)_{n=1}^{\infty}$ is bounded in l_p , and so $\sum_{n=1}^{\infty} \alpha_k x_k$ converges for every sequence of scalars $(\alpha_n)_{n=1}^{\infty}$ belonging to l_p . Conversely, for every finite sequence of scalars whose number of terms is odd, $\alpha_1, \ldots, \alpha_{2n+1}$:

$$\begin{aligned} \left\|\sum_{k=1}^{2n+1} \alpha_k x_k\right\|_p &= |\alpha_1|^p + \sum_{k=1}^n \left|\alpha_{2k} - \frac{\alpha_k}{2}\right|^p + \sum_{k=1}^n \left|\alpha_{2k+1} - \frac{\alpha_k}{2}\right|^p + 2\sum_{k=n+1}^{2n+1} \left|\frac{\alpha_k}{2}\right|^p \\ &\geq \sum_{k=1}^n \left[\left|\frac{\alpha_k}{2}\right|^p - |\alpha_{2k}|^p\right] + \sum_{k=1}^n \left[\left|\frac{\alpha_k}{2}\right|^p - |\alpha_{2k+1}|^p\right] + 2\sum_{k=n+1}^{2n+1} \left|\frac{\alpha_k}{2}\right|^p \\ &= (2^{1-p} - 1)\sum_{k=1}^{2n+1} |\alpha_k|^p. \end{aligned}$$

(iii) Let $u_n = \sum_{k=1}^n k^{-1} x_k$. We know $||u_1||_1 = 2$, and hence it is enough to see $||u_n||_1 = ||u_{n+1}||_1$ for every *n*. For instance, for n = 2k:

$$u_{2k+1} = u_{2k} + \frac{1}{2k+1}e_{2k+1} - \frac{1}{2(2k+1)}e_{4k+2} - \frac{1}{2(2k+1)}e_{4k+3},$$

and hence:

$$||u_{2k+1}||_1 = ||u_{2k}||_1 - \frac{1}{2k} + \left|\frac{1}{2k+1} - \frac{1}{2k}\right| + \frac{1}{2k+1} = ||u_{2k}||_1$$

The case n = 2k + 1 can be checked in the same way.

The preceding proposition shows that the closed linear hull of $(x_n)_{n=1}^{\infty}$ is isomorphic to l_p and does not have HBEP, but inf $||x_n|| > 0$, providing the announced counterexample.

The failure of HBEP, which follows here from Proposition 2, can be obtained using some results of J. Lindenstrauss on l_1 , as in [5], but our proof is straightforward.

In certain situations, the condition $\inf ||Te_n||_1 > 0$ is sufficient:

5. PROPOSITION. Let X be a subspace of l_p (0 T: l_p \rightarrow X an isomorphism such that:

(a) $C = \inf_{n} ||Te_{n}||_{1} > 0,$

(b)
$$\operatorname{supp}(Te_i) \cap \operatorname{supp}(Te_j) = \emptyset$$
 for $i \neq j$.

Then there exists a projection $P: l_p \to X$ with $||P|| \leq \frac{1}{C}$.

Proof. Put $x_i = Te_i$, $\Delta_i = \operatorname{supp}(x_i)$. For every *i*, consider $x_i^* \in l_{\infty} = l_p^*$ such that:

$$supp(x_i^*) \subset \Delta_i, \quad x_i^*(x_i) = 1 \text{ and } \|x_i^*\|_{\infty} = \frac{1}{\|x_i\|_1}$$

(remark that every x_i can be considered as a point in $l_p(\Delta_i)$). Then

$$\left|x_i^*\left(\sum_{n\in\Delta_i}\alpha_n e_n\right)\right|^p \leq \left(\|x_i^*\|_1\right)^{-p} \cdot \sum_{n\in\Delta_i}|\alpha_n|^p,$$

and for $u = \sum_{n=1}^{\infty} \alpha_n e_n$ in l_p , one can define:

$$Pu = \sum_{i=1}^{\infty} x_i^* \left(\sum_{n \in \Delta_i} \alpha_n e_n \right) x_i,$$

and P is a projection onto X, satisfying:

$$||Pu||_p \leq \sum_{i=1}^{\infty} (||x_i||_1)^{-p} \cdot \sum_{n \in \Delta_i} |\alpha_n|^p \leq \frac{1}{C^p} ||u||_p.$$

We obtain thus easily the mentioned result of Popa:

6. COROLLARY. Let X be a subspace of l_p ($0), and <math>T: l_p \to X$ an isometry. The following are equivalent:

- (i) X has HBEP,
- (ii) X is complemented in l_p , (iii) inf $||Te_n||_1 > 0$.

118

Proof. It suffices to remark that T satisfies the condition (b) of the preceding proposition. This fact can be shown as in the case p = 1.

7. COROLLARY. Let $(x_n)_{n=1}^{\infty}$ be a normalized block of the l_p -basis $(0 . Then the closed linear hull of <math>(x_n)_{n=1}^{\infty}$ is isometric to l_p , and it is complemented in l_p if and only if inf $||x_n||_1 > 0$.

Proof. The first assertion can be proved as in the case p = 1, and the other follows from the first one and the preceding corollary.

8. PROPOSITION. Let X be an infinite dimensional closed subspace of l_p (0). The following are equivalent.

- (i) There is a subspace Y of X, isometric to l_p , and complemented in l_p .
- (ii) The unit ball of X is not relatively compact in l_1 .
- (iii) There is a bounded sequence $(x_n)_{n=1}^{\infty}$ in X, such that:
- (a) $\inf ||x_n||_1 > 0$,
- (b) $(x_n)_{n=1}^{\infty}$ converges to zero coordinatewise.

Proof. $i \Rightarrow ii$. If the unit ball of $(X, \|.\|_p)$ is relatively compact in l_1 , the same is true for any subspace Y of X. If Y has HBEP, the l_1 -norm defines the Mackey topology of $(Y, \|.\|_p)$, and Y must be finite dimensional.

ii \Rightarrow iii. If the unit ball of X is not relatively compact in l_1 , there is a bounded sequence $(z_n)_{n=1}^{\infty}$ in X which does not have any subsequence converging in l_1 . Replacing $(z_n)_{n=1}^{\infty}$ by a subsequence if it is needed, we can suppose that $(z_n)_{n=1}^{\infty}$ converges coordinatewise to some $z \in l_p$, and assume inf $||z_n - z_{n+1}||_1 > 0$. Then $x_n = z_n - z_{n+1}$ gives the sequence we are looking for.

iii \Rightarrow i. We can suppose $(x_n)_{n=1}^{\infty}$ normalized in l_p . It is easy to see that a subsequence $(x_{n_k})_{k=1}^{\infty}$ and a block sequence $(u_k)_{k=1}^{\infty}$ of the l_p -basis can be constructed inductively, such that:

$$||x_{n_k}-u_k||_p < \frac{C}{2^{4+k}} \quad \text{for every } k.$$

By virtue of (a), we can apply Corollary 7 to the sequence $(z_k)_{k=1}^{\infty}$ defined by

$$z_k = \|u_k\|_p^{-1/p} \cdot u_k,$$

and the closed linear hull of $(u_k)_{k=1}^{\infty}$ is complemented in l_p . By the choice of the u_k 's, the sequence $(x_{n_k})_{k=1}^{\infty}$ generates a closed subspace of X, isomorphic to l_p , and complemented in l_p (direct application of Lemma 1). The details are easy.

It is easy to see that we can assume in (i) only that Y has HBEP, and the proposition is still true. Thus:

9. COROLLARY. Every closed, infinite dimensional subspace of l_p ($0) which has HBEP contains an isomorphic copy of <math>l_p$, complemented in l_p .

10. COROLLARY. Let X be a subspace of l_p ($0), and <math>T: l_p \to X$ an isomorphism, with $\lim_n ||Te_n||_1 = 0$. Then X does not contain any infinite dimensional subspace complemented in l_p .

Proof. It is easy to see that, in this situation, the unit ball of X is relatively compact in l_1 .

REFERENCES

1. G. Köthe, Topological Vector Spaces I (Springer, 1969).

2. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Springer, 1977).

3. N. Popa, On complemented subspaces of l_p , 0 , Rev. Roumaine Math. Pures Appl. 26 (1981), 287-299.

4. W. J. Stiles, On properties of subspaces of l_p , 0 , Trans. Amer. Math. Soc. 149 (1970), 405-415.

5. W. J. Stiles. Some properties of l_p , 0 . Studia Math. 42 (1972), 109-119.

Department of Mathematical Analysis University of Barcelona Gran Via 585 Barcelona 08007 Spain

120