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ON A SHEAF OF DIVISION RINGS* 

BY 

GEORGE SZETOf 

Introduction. R. Arens and I. Kaplansky ([1]) call a ring A biregular if every two 
sided principal ideal of A is generated by a central idempotent and a ring A strongly 
regular if for any a in A there exists b in A such that a=a2b. In ([1], Sections 2 and 
3), a lot of interesting properties of a biregular ring and a strongly regular ring are 
given. Some more properties can also be found in [3], [5], [8], [9] and [13]. For 
example, J. Dauns and K. Hofmann ( [3]) show that a biregular ring A is isomorphic 
with the global sections of the sheaf of simple rings A/K where ^Tare maximal ideals 
of A. The converse is also proved by R. Pierce ([9], Th. 11-1). Moreover, J. Lambek 
([5], Th. 1) extends the above representation of a biregular ring to a symmetric 
module. In a special case, when A is strongly regular, it is immediate from ([1], 
Th. 3.2) that the stalks of the associated sheaf of A are division rings ([13], Lem. 1.6). 
Furthermore, an investigation of the category of strongly regular rings is given by 
J. E. Roos ([9], Section 3). The purpose of the present paper is to show two more 
properties of A by a sheaf technique: that any finitely generated submodule of a 
finitely generated and projective module over A is projective; and that the existence 
of a strongly separable splitting ring for A in case A is a finitely generated and 
projective over its center R. We shall employ the sheaf representation of a ring with 
identity 1 due to R. Pierce ([8]) and other results given in [6], [7], [8] and [12]. 

Let R be a commutative ring with identity 1. The Boolean algebra of the idem-
potents of R is denoted by B(R) and the Boolean space of the set of maximal ideals 
ofB(R) with hull-kernel topology is denoted by Spec B(R). This topological space 
has an open base U(e)={xjx in Spec B(R) with (1 — e) in x} for each e in B(R). It is 
known that Spec B(R) is totally disconnected, compact and Hausdorff. Moreover, 
a sheaf (Pierce's sheaf) of rings Rx (=R/xR) is defined over Spec B(R) and R is 
isomorphic with the global sections of such a sheaf ([8]). Furthermore, denote 
Rx ®R M by Mx for an jR-module M and Rx ®R A by Ax for an i^-algebra A 
where all modules are assumed left unitary over a ring or an algebra. 

1. Some basic facts of a sheaf of division rings. In this section, we shall point out 
some basic facts of a ring A when Ax are division rings for all x in Spec B(A) where 
B{A) is the Boolean algebra of the central idempotents of A. Then, it can be shown 
that any finitely generated submodule of a finitely generated and projective module 
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over a i^-algebra A with Ax division rings is projective. This fact will be used to 
show the existence of splitting rings for such an A in section 2. We start with the 
definition of a regular ideal. 

DEFINITION. An ideal / of a ring A is regular if 1={IC\B(A))A ([8], Def. 9.2). 
An important fact about regular ideals is proposition 9.3 in [8]. In our notations, 

we have 

PROPOSITION 1.1. Assume S(r)={x/x in Spec B(A) with rx^0x} for an r in A, 
For any set U in Spec £(,4), define I(U) = {r in R/S(r)^ U}. For any set I^A, 
define 17(7)= u S(r) for all r in /. Then £/->/(£/) and I-+U(I) determine inverse 
isomorphisms between the lattice of all open subsets of Spec B(A) and the set of 
regular ideals of A. 

Also, it is proved that a ring A is biregular if and only if every ideal of A is 
regular ([8]), Section 11. Hence, assume A is biregular, Kis a maximal ideal of A 
if and only if KC\B{A) is a maximal ideal in B(A). Thus by noting that a strongly 
regular ring is biregular the following proposition is immediate. 

PROPOSITION 1.2. Let Abe a ring with identity. Then the following statements are 
equivalent: 

(1) Axis a division ring for each x in Spec B(A). 
(2) A is a strongly regular ring. 
(3) The open set (Spec B(A) — {x}) corresponds to a maximal left ideal of A for each 

x in Spec B(A) under Proposition 1.1. 
(4) The open set (Spec B(A)—{x}) corresponds to a maximal right ideal of A for 

each x. 
(5) For each r^O in A, there exists an element r' in A such that rrf=e in B(A) 

with re=r. 

It is well known that a finitely generated division algebra over its center is a 
central separable algebra ([4], Chapter V, Prop. 1.2). This fact can be generalized, 
that is, (the author later found that the finite projectivity of A can be replaced 
by finite generation as a ring) 

THEOREM 1.3. Let A be an R-algebra. If Ax is a central separable R^ralgebra for 
each x in Spec B(R) and if A is a finitely generated and projective R-module, then A 
is a central separable R-algebra. 

Proof. Let K be a maximal ideal of R lying over x in Spec B(R). Then Al(KA)^ 
Axl(KA)l(xA) is a homomorphic image of the separable ^-algebra Ax, and hence 
it is also separable over RJ(KA)l(xA) r\Rx. On the other hand, it is not hard to see 
that A is a faithfully projective i^-module, so R • 1 is an indirect summand of A ; 
and so {KA)j(xA) C\Rx=Kj(xA). This implies that Ax/(KA)l(xA) is separable over 
RJK/(xA). Thus A\{KA) is separable over R\K for each maximal ideal K of R. 
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Therefore A is separable over R ([4], Th. 7.1.) Moreover, since Rx is the center of 
Ax for all x by hypothesis, R is the center of A ([6], (1.5) and (1.6)). Consequently, 
A is a central separable i?-algebra. 

Assume A is a i?-algebra with Ax division ^-algebras. Let M be an ^[-module. 
Since Mx is a module over a division algebra AX9 it is free. We then call the 
number of summands of Mx the rank of M at x denoted by rankM(x). Using 
the proof of Theorem 3.1 in [11], we have a similar fact to Theorem 15.3 in [8]. 
That is, let M be a finitely generated ^-module. Then M is projective if and only 
if rankM is a continuous function from Spec B(R) to the set of non-negative 
integers with discrete topology. Next we show a property of a projective ^-module 
which is very useful in section two. 

THEOREM 1.4. Assume A is a R-algebra with Ax division Rx-algebras. Let M be 
a finitely generated and projective A-module. Then any finitely generated submodule 
P of M is projective. 

Proof. Since Mis finitely generated and projective, rankM is continuous by the 
above remark. Let alx, a2x9... , arX9... , amx be a basis of Mx with alxi.. . , arx 

inPx. Lifttfla,, ...9aratoal9..., ^ m P a n d a ^ , . . . , amxtoar+1, ...9aminM. 
Then the continuity of rankM implies that there exists a basic open set U(e) of x 
such that eal9. . . , ear, ea^,. . . , eamis Sibsisis of eM overe A. Hence eal9... , ear 

are linearly independent. On the other hand, since P is finitely generated, there 
exists a basic open set U(ë) of x such that éal9.. . , ëar generate e'P. Thus we 
have a basic open set U{e") contained in (U(e)nU(ë)) of x such that e"al9 . . . , 
e"ar is a basis for e"P. Therefore e"P is a projective e^-module. Consequently, by 
application of the partition property of Spec B(R) ([10], Introduction, (2)) the 
proof is complete. 

2. Splitting rings. Let D be a finitely generated central division algebra over a 
field F. It is well known that any maximal sub-field K of D is a splitting field for D. 
In general, let A be a central separable i^-algebra. A commutative ring extension of 
R, S, is called a splitting ring for A if ^ ^ H o m ^ ( P , P) for a finitely generated pro­
jective and faithful ^-module P ([2], P. 382). It is proved that if a maximal com­
mutative subalgebra K of A is separable then it is a splitting ring for A ([2], Th. 
5.6). On the other hand, there exist central separable algebras without strongly 
separable splitting rings ([4], Ex. 3, P. 148). In general, it is not known which type 
of central separable algebras has a strongly separable splitting ring. However, we 
are going to generalize the fact for a division ring to a central separable algebra 
under our consideration. 

Here we recall that ^ i s a maximal commutative i^-algebra of A if the commutant 
AK of K in A is equal to K. That is, AK={a/a in A with as=sa for all s in K}= 
K ([4], P. 64). Also, a commutative iÊ-algebra S is called a quasi-separable cover of 
R if Sx is a locally strongly separable ^-algebra for each x in Spec B(R). S is called 
a separable cover of R if it is a separable quasi-separable cover of R ([7], Def. 2.1). 
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THEOREM 2.1. Let A be a central separable R-algebra such that Ax is a division 
Rx-algebra for each x in Spec B(R). IfK is a maximal commutative subalgebra of A 
andafinitely generatedR-moduIe, then Kis a projective splitting ring for A. Moreover, 
if such a Kis a quasi-separable cover of R then K is a strongly separable splitting 
ring for A. 

Proof. Since A is a central separable i^-algebra, it is finitely generated and 
projective over R. But Ax is a central division ^-algebra for each x in Spec B(R), 
then the finitely generated submodule K of A is projective by Theorem 1.4. Now we 
claim that Kx is also a maximal commutative subalgebra of Ax for each x. In fact, 
let bx be an element in the commutant of Kx in Ax with b in A. Since Ax is a free 
^-module with Kx as a finitely generated submodule, there is a basis of Ax9 

{alx, . . . , arx,. . . , amx for some integer m}, such that alx,. . . , arx are in Kx. The 
proof of Theorem 1.4 implies that there is a basic open set U(e) of x such that 
{eal9 . . . , ear} is a basis for eKover eR. On the other hand, bx is in the commutant 
of Kx in Ax, so bxaix=aixbx for / = 1 , . . . , r. But then there is a basic open set 
U(ë) of x such that ëba—ëaf) for / = 1, . . . , r ([12], (2.9)). Hence we have a basic 
open set U(e") of x contained in U(e)nU(ë) so that é'ba—é'a-b for z = l, . . . , r 
and {e,faji=l, . . . , r} is a basis for ë'Kover e"jR. Thus e"b is in the commutant of 
é'K'm ë'A. Noting that K^e"K©(l —e")K, we conclude that e"b is in the commu­
tant of Km A, By hypothesis, K=AK ( = the commutant of .AT in A), so e"b is in 
K; and so {e"b)x=bx is in A;. Therefore KX=(AX)K\ That is, is; is a maximal 
commutative subalgebra of Ax. But then ^ is a splitting ring for Ax for each x. 
This implies that AT is a splitting ring for A [(6], Cor. 1.11). 

Moreover, since K is finitely generated over R and a quasi-separable cover of R 
by hypothesis, Kis a separable cover of R ([7], Prop. 2.3). But AT is also projective 
over R from the first part of this theorem, then it is a strongly separable splitting 
ring for A. The proof is thus complete. 

REMARK. We note that if Rx is a perfect field for each x then AT given in the theorem 
is a quasi-separable cover of R. More properties of such an A can be derived from 
tH]. 
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