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Take first the case of a surface S rolling on a plane, the
instantaneous axis of rotation being a line in the tangent plane
at the point of contact. Take that line as avaxis, and the normal
as s-axis, and let the equation to the surface be

z = av? + 2hxy + by* + terms of higher degree in a;, y • - (1)

Then if p is small, the equation of the section of the surface S by
the plane z —p is

ax* + 2hxy + by2 = p - - - - (2)

Now for rolling of this sort it is clear that the successive axes
of rotation during a short time will be generators parallel to OX
of a cylindrical surface which will touch S in the neighbourhood
of O. The surface will for a short time roll as if it were rigidly
connected with the cylinder, and that particular generator of the
cylinder which touches the curve (2) will presently be the instan-
taneous axis. Thus the point of contact of the tangent to (2) which
is parallel to OX will then be the point in contact with the plane
on which S rolls. Hence the diameter of (2) which is conjugate to
OX will give the direction of the tangent to the trace of the rolling
surface on the plane.

Next consider the rolling of the surface S on another surface S'
whose equation is

z = a'x* + 2h'xy + b'y1 + terms of higher degree in x, y - (3)

the axis of rolling being as before supposed to lie in the tangent
plane at the point of contact, and the coordinate axes taken as
before.
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Let us consider the sections of the surfaces S and S' made by
the plane y = k, where k is small. It is clear that these sections
will presently come into contact with one another, and that the
point of contact will be that point of S whose z-coordinate differs
least from that of the corresponding point of S', where by " corres-
ponding points in S and S'" are meant those that have the same
values of x and y.

Now let us set out from O in a direction making an angle 6
with OX, along the two surfaces until we reach points P, P' in the
plane y = k and Q, Q' in the plane z=p; so that P and P' are
" corresponding points," and Q and Q' lie in (2) and (3) respectively.

The value of z for P is clearly p.OF/OQ3, and for P' it is
p x OF'/OQ'2, where OP = OF = /fccosectf.

Thus the difference between the z's is
pA2cosec-0(l/OQ2 - 1/OQ'2) - - - (4)

But by (2) and (3)
OQ2 (a cos!0 + 1h cos0 sin^ + b sin20) =p
OQ'2(a'cos20 + 2h'cos9 sin0 + U sin=0) = p.

Hence (4) becomes

&2cosec20{(a - a')cos20 + 2(h - A')cos0 sin0 + (b - 6>in20}
or k-{(a-a)coti6 + 2(h-h')cote + (b-b')} - - (5)

Now if we consider the conic
(a - a')a:2 + 2(A - h')xy + (b - b')y* = constant - - (6)

which may be written
2/2{(a-a')cot20 + 2(A-A')cot0 + (b -6 ')}= constant - (7)

it is clear that (5) is least when y is greatest in (7), i.e., for the
direction conjugate to OX.

Thus the direction of the trace of rolling on S or S' is that of
the diameter conjugate to OX in the conic (6).

This we might interpret by the statement that the direction of
the trace is the same as if a surface, whose s-coordinates in the
neighbourhood of the point of contact were equal to the differences
of the corresponding ordinates of the surfaces S and S', were to roll
on the tangent plane at O. This result is perhaps intuitively
evident.

If we wished to state the results in terms of the Indicatrix, we
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might say that for a surface rolling without spin on a plane, the
trace on the surface or on the plane has for its tangent the diameter
of the indicatrix which is conjugate to the instantaneous axis of
rolling; and for one surface rolling without spin on another the
direction of the trace is that which is conjugate to the axis of rolling,
in the conic whose asymptotes are the common diameters of the two
indicatrices at the point of contact. (Of course, for surfaces not
intersecting one another in the neighbourhood of the point of
contact, these asymptotes would be imaginary.)

In the preceding we have taken as the standard case, that in
which both surfaces lie on the same side of the tangent plane at
their point of contact. The necessary modifications when they are
on opposite sides are obvious.

We can now extend our results to the more general case of
rolling combined with spinning. In that case the instantaneous
axis is through the point of contact, but not in the tangent plane ;
and this rotation can be resolved into a spin about the common
normal, and rolling about an axis which is the projection of the
instantaneous axis upon the tangent plane. But it is clear that the
presence of the spinning will, during a short time, cause only an
infinitesimal rotation of the indicatrix of S, so that the preceding
results will hold when we substitute for the instantaneous axis its
projection on the tangent plane.

If we take the still more general case where sliding is present
as well as rolling and spinning, it is not difficult to see that the
direction of the trace left by S on S' supposed at rest, would be got
by compounding the velocity of the description of the trace on S' on
the supposition of no sliding, with the velocity of sliding of S on 8'
at the instant.

Lastly, if both surfaces, while keeping in contact, were in
motion, the direction of the trace on either could be got by con-
sidering the motion of the other relative to it.

In Thomson and Tait's Natural Philosophy, Vol. I., Part I.,
§§ 110, 111, the subject of rolling is treated very fully, and equations
are established from which the above results could easily be deduced,
but I have ventured to bring this note before the Society because
the somewhat different treatment that I have adopted seems simpler
so far as it goes.
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