
Chapter 24

Uncertainty quantification and
error analysis

As discussed in Ch. 10, network data are necessarily imperfect. Missing and even
spurious nodes and edges can create uncertainty in what the observed data tell us about
the original network. In this chapter, we dive deeper into tools that allow us to quantify
such effects and probe more deeply into the nature of an unseen network from our
observations of it.

24.1 Computational and mathematical approaches
We can understand the effects of errors and missing data by computational methods
or mathematical models. The computational approach is quite similar in spirit to the
null models discussed in Sec. 11.6. There we applied some form of randomization
algorithm to𝐺 to generate𝐺null whose properties we could compare to𝐺. Now, instead
of randomizing a network, we can apply a sampling or error algorithm to the network,
then compare statistics of the sampled network to those same statistics on the original
network. For example, Martin and Niemeyer [294] perform experiments looking at the
random removal or addition of nodes or edges to see how robust different centrality
measures are to such errors, finding for instance that degree centrality is quite robust
to such errors while eigenvector centrality is more affected by errors such as missing
nodes, especially when the nodes that are missing had high centrality. Borgatti et al.
[67] and Frantz et al. [169] perform computational studies along similar lines.

Mathematical approaches, on the other hand, model the sampling or error mecha-
nism probabilistically, which can give further insight into the problems we face. Math-
ematical uncertainty quantification enables us to understand the uncertainty in model
parameters and summary statistics computed from data. These models can even provide
guidance on important questions, such as whether further data collection is necessary.
We discuss a variety of mathematical approaches in this chapter.

The advantage of the computational approach is that it can give us intuition about
how different statistics are affected by errors and sampling, especially complicated error
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modes that are difficult to study mathematically. The disadvantage is that they require
starting from a known “true” network. Still, these approaches can give us intuition about
the statistical estimators themselves which we can use when calculating those statistics
on our data.

The advantage of the mathematical approach is that it gives tractable insights that
are not as easily seen computationally. Further, those insights can allow us to build
statistical models that can extrapolate in various ways from the observed data to the
unseen network. The disadvantage is that the probabilistic models are usually limited to
simpler forms of errors, for example that edges are independently observed or missing
from the data. While these assumptions and approximations are limiting in many ways,
the insights and extrapolations they provide are still quite useful.

In general, we encourage practitioners to consider both computational and mathe-
matical approaches to network uncertainty quantification.

24.2 Missing data and its effects
Suppose that nodes present in the true network are absent in the data we have available.
What effect does this have on our understanding of the network? What does the degree
distribution look like and how does it compare to the original? What about the overall
network structure?

One tool we can use for these questions is percolation. Percolation usually models
simple random sampling, where nodes or links are randomly retained in the network, or
equivalently, randomly removed, although it can be extended in various ways to capture
bias (for instance, that high-degree nodes are more likely, or less likely, to be observed
in the data than other nodes). In fact, percolation has been used in the context of network
resilience, where nodes or edges are not missing but damaged or non-functioning, and
can even allow us to understand what happens to a network under attack. But for our
data analysis purposes, missingness and damage are effectively equivalent.

One interesting conclusion that percolation shows us is that networks undergo phase
transitions (see also Ch. 22) based on the level of sampling. We discuss one now.

Is the observed network globally connected?
A network is globally connected when it has a giant component, a connected component
containing the majority of nodes. We can determine the level of sampling necessary
for a giant component to exist by following a simple heuristic: the network is globally
connected when a random node 𝑖, whose neighbor 𝑗 belongs to the giant component, is
also connected to at least one other node. If this is not the case, the network is globally
fragmented. To find the minimum point where this occurs, we write this condition as

⟨𝑘𝑖 | 𝑖 ↔ 𝑗⟩ =
∑︁
𝑘𝑖

𝑘𝑖𝑃(𝑘𝑖 | 𝑖 ↔ 𝑗) = 2, (24.1)

where 𝑃(𝑘𝑖 | 𝑖 ↔ 𝑗) is the probability that 𝑖 has degree 𝑘𝑖 given it is connected to
𝑗 . Let’s simplify this by using the degree distribution 𝑃(𝑘) instead of this conditional
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probability. From Bayes’ theorem and the joint probability 𝑃(𝑘𝑖 , 𝑖 ↔ 𝑗) we have

𝑃(𝑘𝑖 | 𝑖 ↔ 𝑗) = 𝑃(𝑘𝑖 , 𝑖 ↔ 𝑗)
𝑃(𝑖 ↔ 𝑗) =

𝑃(𝑖 ↔ 𝑗 | 𝑘𝑖)𝑃(𝑘𝑖)
𝑃(𝑖 ↔ 𝑗) . (24.2)

If we assume the network is uncorrelated and sparse (meaning, we neglect loops), then
𝑃(𝑖 ↔ 𝑗 | 𝑘𝑖) = 𝑘𝑖/(𝑁 − 1) and 𝑃(𝑖 ↔ 𝑗) = ⟨𝑘⟩ /(𝑁 − 1). Substituting into Eq. (24.2),

𝑃(𝑘𝑖 | 𝑖 ↔ 𝑗) = 𝑘𝑖𝑃(𝑘𝑖)
⟨𝑘⟩ . (24.3)

Finally, applying this to Eq. (24.1) we arrive at a succinct expression for global connec-
tivity:

1
⟨𝑘⟩

∑︁
𝑘𝑖

𝑘2
𝑖 𝑃(𝑘𝑖) =

〈
𝑘2〉
⟨𝑘⟩ := 𝜅 = 2. (24.4)

Now, what happens when nodes are missing? Assume a fraction 𝑝 of nodes are
removed independently from the network (i.e., each node is independently sampled
with probability 1 − 𝑝). A node with degree 𝑘0 in the original network will have a new
degree 𝑘 due to sampling, on average,

(
𝑘0
𝑘

)
(1 − 𝑝)𝑘 𝑝𝑘0−𝑘 . (24.5)

Applied to all nodes, this modifies the original degree distribution into the new distri-
bution

𝑃′ (𝑘) =
∞∑︁
𝑘0=𝑘

𝑃(𝑘0)
(
𝑘0
𝑘

)
(1 − 𝑝)𝑘 𝑝𝑘0−𝑘 . (24.6)

(Primes denote quantities after sampling.) Now, let’s compute the first and second
moments, ⟨𝑘⟩′ and

〈
𝑘2〉′, for this new distribution in terms of the original moments.

For the first moment,

⟨𝑘⟩′ =
∑︁
𝑘

𝑘𝑃′ (𝑘)

=
∑︁
𝑘

𝑘
∞∑︁
𝑘0=𝑘

𝑃(𝑘0)
(
𝑘0
𝑘

)
(1 − 𝑝)𝑘 𝑝𝑘0−𝑘

=
∞∑︁
𝑘0=0

𝑃(𝑘0)
∑︁
𝑘

𝑘

(
𝑘0
𝑘

)
(1 − 𝑝)𝑘 𝑝𝑘0−𝑘

︸                          ︷︷                          ︸
mean of a binomial distribution

=
∞∑︁
𝑘0=0

𝑃(𝑘0)𝑘0 (1 − 𝑝)

= ⟨𝑘0⟩ (1 − 𝑝). (24.7)
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A similar calculation for
〈
𝑘2〉′ using the second moment of a binomial distribution gives〈

𝑘2〉′ = 〈
𝑘2

0
〉 (1− 𝑝)2+⟨𝑘0⟩ (1− 𝑝)𝑝. The sampled network is globally connected when

𝑝 ≤ 𝑝𝑐 such that 〈
𝑘2〉′
⟨𝑘⟩′ =

〈
𝑘2

0
〉

⟨𝑘0⟩ (1 − 𝑝𝑐) + 𝑝𝑐 = 2 (24.8)

holds, or

1 − 𝑝𝑐 = 1〈
𝑘2

0
〉 /⟨𝑘0⟩ − 1

=
1

𝜅0 − 1
, (24.9)

where 𝜅0 is computed using the original network’s degree distribution.
The “critical” sampling value 1 − 𝑝𝑐 from Eq. (24.9) allows us to understand

how much random sampling disconnects a network, before sampling occurs. This 𝑝𝑐
is known as the percolation threshold, where (in the limit of large sizes) networks
undergo a phase transition from globally fragmented to globally connected. And, while
this result is somewhat limited by strong assumptions, it allows us to understand how
sampling changes the average degree ⟨𝑘⟩ (Eq. (24.7)) and even the degree distribution
𝑃(𝑘) (Eq. (24.6)).

We now consider a percolation argument in a more complex setting.

24.3 Community structure
In Ch. 12 we discussed communities, how some networks are organized into densely
connected groups of nodes called communities, clusters, or modules. One facet of this
structure that has attracted interest is overlapping communities (Sec. 12.7), where nodes
may belong to multiple groups. (The community structure is now a cover of the nodes,
not a partition.)

How does network uncertainty affect our discovery of overlapping communities?
Here we explore this question using a mathematical model for overlapping communi-
ties along with a (relatively simplistic) modeling assumption of how an overlapping
community detection method may perform when nodes are missing.

24.3.1 Modeling overlapping communities
Overlapping communities can be well modeled with a bipartite graph, also known as an
affiliation network [485]. This graph contains two types of nodes representing the nodes
and the communities in the network. Undirected links represent which node belongs
to which community. The graph is characterized by two degree distributions, 𝑟𝑚 and
𝑠𝑛, governing the fraction of nodes that belong to 𝑚 communities and the fraction of
communities that contain 𝑛 nodes, respectively [341, 339]. For simplicity, links are
distributed randomly between “node nodes” and “community nodes” following these
degree distributions. The average number of communities per node is

∑
𝑚 𝑚𝑟𝑚 := 𝜇

and the average number of nodes per community is
∑
𝑛 𝑛𝑠𝑛 := 𝜈. We then derive two

networks from the bipartite graph by projecting onto either the nodes or the communities.
One is the original network between nodes, while the other is a network where each
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node represents a community and two communities are linked if they overlap, i.e., they
share at least one node.

We model missing nodes by (prior to projection) retaining nodes independently with
probability 𝑝; otherwise, they are removed with probability 1 − 𝑝. Meanwhile, we also
model the effects of this sampling on a (hypothetical) community detection algorithm.
We assume the algorithm fails to find a community if fewer than a critical fraction 𝑓c
of its original nodes remain, the idea being that detection will fail when too little of the
original community remains in the sample. These undetected communities are removed
from the community network but any member nodes that were sampled are not removed
from the node network (Fig. 24.1). A percolation analysis can show us the effects that
sampling has on both the network structure and its communities. The giant component
in the original network disappears when, due to missing nodes, the sampled network
lacks global connectivity; in the community network, it vanishes when the communities
become uncoupled (non-overlapping). Can we always detect the overlap, all the way
down to the percolation threshold? Or does the overlapping structure disappear (well)
before that sampling point?

Before proceeding with analysis, it’s worth noting that this model makes two as-
sumptions about the communities: that all interactions within each community exist
and are equal, and that there are no differences between individual nodes that share a
community—there are no “captains” or “team leaders.” While simplistic, these never-
theless can form the basis for more complex analyses as needed.

To understand whether sampling hides overlapping communities, disconnects the
network, or both, we determine 𝑆(𝑝), the fraction of observed nodes within the giant
component, as a function of 𝑝, for both the node and community networks. We use four
generating functions (Sec. 22.4.1):

𝑓0 (𝑧) =
∞∑︁
𝑚=0

𝑟𝑚𝑧
𝑚, 𝑓1 (𝑧) = 1

𝜇

∞∑︁
𝑚=0

𝑚𝑟𝑚𝑧
𝑚−1,

𝑔0 (𝑧) =
∞∑︁
𝑛=0

𝑠𝑛𝑧
𝑛, 𝑔1 (𝑧) = 1

𝜈

∞∑︁
𝑛=0

𝑛𝑠𝑛𝑧
𝑛−1.

(24.10)

These functions generate probabilities for ( 𝑓0) a randomly chosen node to belong to 𝑚
communities, ( 𝑓1) a random node within a randomly chosen community to belong to
𝑚 other communities, (𝑔0) a random community to contain 𝑛 nodes, and (𝑔1) a random
community of a randomly chosen node to contain 𝑛 other nodes.

To analyze this model we now separately study the two projections (the node and
community networks) of the original bipartite graph.

Network

Consider a randomly chosen node A that belongs to a group of size 𝑛. Let 𝑃(𝑘 | 𝑛) be
the probability that A still belongs to a connected cluster of 𝑘 nodes (including itself)
in this group after sampling:

𝑃(𝑘 | 𝑛) =
(
𝑛 − 1
𝑘 − 1

)
𝑝𝑘−1 (1 − 𝑝)𝑛−𝑘 . (24.11)
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Figure 24.1 Sampling in a network model with overlapping communities. (a) Using an affi liation
network, we analyze two networks, one representing the linkages between network nodes and a
second detailing the overlapping connectivity between the communities themselves. (b) Missing
nodes (node 3) may prevent communities (community B) from being detected. (c) With suffi cient
missingness, we transition from a well-sampled to an undersampled phase. This can cause
(Fig. 24.2) the community network to become disconnected, preventing us from detecting the
overlapping community structure, even though the network itself remains connected.

The generating function for the number of other nodes connected to A within this group
is

ℎ𝑛 (𝑧) =
𝑛

𝑘=1
𝑃(𝑘 | 𝑛)𝑧𝑘−1 = (𝑧𝑝 + 1 − 𝑝)𝑛−1 . (24.12)

Averaging over community size:

ℎ(𝑧) = 1
𝜈

∞
𝑛=0

𝑛𝑠𝑛ℎ𝑛 (𝑧) = 𝑔1 (𝑧𝑝 + 1 − 𝑝). (24.13)

The total number of nodes that A is connected to, from all communities it belongs to,
is then generated by

𝐺0 (𝑧) = 𝑓0 (ℎ(𝑧)). (24.14)
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Likewise, the total number of nodes that a randomly chosen neighbor of A is connected
to is generated by

𝐺1 (𝑧) = 𝑓1 (ℎ(𝑧)). (24.15)

Before determining 𝑆, we first identify the critical sampling point 𝑝c where the giant
component emerges. This happens when the expected number of nodes two steps away
from a random node exceeds the number one step away, or

𝜕𝑧𝐺0 (𝐺1 (𝑧))
��
𝑧=1 − 𝜕𝑧𝐺0 (𝑧)

��
𝑧=1 > 0. (24.16)

Substituting Eqs. (24.14) and (24.15) into (24.16) gives 𝑓 ′0 (1)ℎ′ (1) [ 𝑓 ′1 (1)ℎ′ (1)−1] > 0
or 𝑓 ′1 (1)ℎ′ (1) > 1, making the condition for a giant component to exist, since ℎ′ (1) =
𝑝𝑔′1 (1), be

𝑝 𝑓 ′1 (1)𝑔′1 (1) > 1. (24.17)

For constant network degrees, 𝑟𝑚 = 𝛿(𝑚, 𝜇) and 𝑠𝑛 = 𝛿(𝑛, 𝜈), where 𝛿(𝑎, 𝑏) = 1 if
𝑎 = 𝑏 and 0 otherwise, this gives 𝑝(𝜇 − 1) (𝜈 − 1) > 1. If 𝜇 = 3 and 𝜈 = 3, for example,
then the transition occurs at 𝑝c = 1/4.

To find 𝑆, consider the probability 𝑢 for node A not to belong to the giant component.
A is not a member of the giant component only if all of A’s neighbors are also not
members, so 𝑢 satisfies the self-consistency condition 𝑢 = 𝐺1 (𝑢). The size of the giant
component is then 𝑆 = 1 − 𝐺0 (𝑢).

Communities

For the community network, we proceed with a similar calculation.
Consider a random community C and then a random member node A. Let𝑄(ℓ | 𝑚)

be the probability that C is connected to ℓ communities, including itself, through node
A, who was originally connected to 𝑚 communities including C:

𝑄(ℓ | 𝑚) =
(
𝑚 − 1
ℓ − 1

)
𝑞ℓ−1

1 (1 − 𝑞1)𝑚−ℓ , (24.18)

where

𝑞1 =
1
𝜈

∞∑︁
𝑛=0

𝑛𝑠𝑛

𝑛∑︁
𝑖=𝑥

(
𝑛 − 1
𝑖 − 1

)
𝑝𝑖−1 (1 − 𝑝)𝑛−𝑖 . (24.19)

(Notice that 𝑞1 = 1 when 𝑥(𝑛) := ⌈𝑛 𝑓c⌉ = 1 for all 𝑛.) The generating function 𝑗𝑚 for
the number of communities that C is connected to, including itself, through A is

𝑗𝑚 (𝑧) =
𝑚∑︁
ℓ=1

𝑄(ℓ | 𝑚)𝑧ℓ−1 = (𝑧𝑞1 + 1 − 𝑞1)𝑚−1 . (24.20)

Once again, averaging 𝑗𝑚 over memberships gives

𝑗 (𝑧) = 1
𝜇

∞∑︁
𝑚=0

𝑚𝑟𝑚 𝑗𝑚 (𝑧) = 𝑓1 (𝑧𝑞1 + 1 − 𝑞1). (24.21)
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The total number of communities that C is connected to is not generated by 𝑔0 ( 𝑗 (𝑧)) but
by 𝑔̃0 ( 𝑗 (𝑧)), where the 𝑔̃𝑖 are generating functions for community sizes in the sampled
network:

𝑔̃0 (𝑧) =
∞∑︁
𝑛=0

𝑠𝑛𝑧
𝑛, 𝑔̃1 (𝑧) =

∑∞
𝑛=0 𝑛𝑠𝑛𝑧

𝑛−1∑∞
𝑛=0 𝑛𝑠𝑛

. (24.22)

The probability 𝑠𝑘 to have 𝑘 nodes remaining within a community after sampling is

𝑠𝑘 =

∑
𝑛

(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑠𝑛∑

𝑛

∑𝑛
𝑘′=𝑥

( 𝑛
𝑘′
)
𝑝𝑘′ (1 − 𝑝)𝑛−𝑘′ 𝑠𝑛

. (24.23)

The denominator in 𝑠𝑘 is necessary for normalization since the community detection
algorithm cannot observe communities with fewer than ⌈𝑛 𝑓c⌉ members. Notice that
𝑠𝑛 = 𝑠𝑛 when 𝑠𝑛 = 𝛿(𝑛, 𝜈) and ⌈𝑛 𝑓c⌉ = 𝑛 = 𝜈. Finally, the total number of communities
connected to C through any member node is generated by 𝐹0 (𝑧) = 𝑔̃0 ( 𝑗 (𝑧)) and the
total number of communities connected to a random neighbor of C is generated by
𝐹1 (𝑧) = 𝑔̃1 ( 𝑗 (𝑧)). As before, the community network has a giant component when
𝜕𝑧𝐹0 (𝐹1 (𝑧)) |𝑧=1 − 𝜕𝑧𝐹0 (𝑧) |𝑧=1 > 0 and 𝑆 = 1−𝐹0 (𝑢) = 1− 𝑔̃0 ( 𝑗 (𝑢)), where 𝑢 satisfies
𝑢 = 𝐹1 (𝑢) = 𝑔̃1 ( 𝑗 (𝑢)).

24.3.2 Missing data reveals an inference gap
For the uniform case with 𝜇 = 3, 𝜈 = 3, and 𝑓c > 2/3, the critical point for the
community network is 𝑝c = 1/2, a considerably higher threshold than for the node
network (𝑝c = 1/4) discussed above. Figure 24.2 shows 𝑆 for 𝜇 = 3 and 𝜈 = 6. The
inference gap, the difference between the critical points for the node and community
networks, grows as the community method’s detection cutoff increases, covering a
significant range of 𝑝 for the larger values of 𝑓c. Intuitively this makes sense: a high
detection cutoff means an algorithm is sensitive and small changes to the community
will lead to detection failure. But even if a method can succeed when half of a community
is missing, which is impressive, we still see a non-trivial inference gap in Fig. 24.2.

Of course, realistic networks do not have constant degrees. What do these results
look like for scale-free networks? Here we take 𝑟𝑚 = 𝛿(𝑚, 𝜇) as before, but now
𝑠𝑛 ∼ 𝑛−𝜆, with 𝜆 ≥ 2. (Scale-free group sizes also model scale-free networks, as
the degree distribution after projection remains scale-free, with the same exponent,
although the maximum degree may increase.) It is known that the global connectivity
of scale-free networks is robust to sampling errors when 2 < 𝜆 < 3 (meaning that
𝑝c → 0). However, this result also requires that the maximum value 𝐾 of the degree
distribution be large (𝐾 ≫ 1) [111]. Indeed, as we lower 𝜆, we discover that, while
our network is more robust under sampling, we are actually less robust when detecting
the communities (Fig. 24.3)—overlapping structure vanishes earlier for smaller 𝜆!
Interestingly, increasing the maximum size of a community 𝑁 = max {𝑛 | 𝑠𝑛 > 0} does
not make the overlapping structure more robust to node sampling.

So that’s where partitions come from? When one ponders mechanisms for how
community structure can appear in a network, it becomes clear that we should expect
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Figure 24.2 The size of the giant component 𝑆 for the node and community networks as a function
of node sampling rate 𝑝. Theory and simulations confirm that the network undergoes a transition
from coupled to non-overlapping communities well before it loses global connectivity. Symbols
represent node (⊙) and community (⊡) networks. Here we used 𝑟𝑚 = 𝛿(𝑚, 𝜇), 𝑠𝑛 = 𝛿(𝑛, 𝜈), with
𝜇 = 3 and 𝜈 = 6. Simulations used 106 nodes.

many types of networks to exhibit overlapping communities. Yet in network data we
often find high-quality non-overlapping communities. The inference gap revealed here
can in part explain this: the overlapping structure is present in the original network but
not so easily seen in the sampled network.

24.4 Uncertain networks as probabilistic graphs
Thus far, we have focused most of our attention on the problem of missing nodes
(although many site (node) percolation arguments translate to the related bond (edge)
percolation problem). Here we go beyond missing nodes or edges by allowing for edges
to be uncertain using probabilistic graphs. Such probabilistic graphs, while making
simplifying assumptions, can capture both missing and spurious edges.

In a probabilistic graph, each edge 𝑒 = (𝑖, 𝑗) is associated with a probability1 𝑃(𝑒)
which we can use to reason about our uncertainties in edges. Assuming edges are
independent, we arrive at an expression for the probability of the entire graph which
we’ve encountered several times before,

𝑃(𝐺) =
∏
𝑒∈𝐸

𝑃(𝑒)
∏
𝑒∉𝐸

[1 − 𝑃(𝑒)] . (24.24)

Simple edge sampling can generate a graph, call it 𝐺𝑠 , by choosing to include each
edge 𝑒 with probability 𝑃(𝑒). Under such a process, what kind of graph statistics can we
expect? What is the prevalence of triangles, for instance? What is the expected average
shortest path length (ASPL)?

1 A good source for 𝑃 (𝑒) would be the posterior probabilities for edges estimated from the edge observer
model; Sec. 23.3.
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Figure 24.3 Sampling and the community structure of scale-free networks. Here 𝑟𝑚 = 𝛿(𝑚, 3),
𝑠𝑛 ∼ 𝑛−𝜆, 𝑓c = 1/2, and 𝑁 := max{𝑛 | 𝑠𝑛 > 0}. Increasing 𝑁 and decreasing 𝜆, measures
known to improve the robustness of scale-free networks [111], actually magnify the inference
gap. Simulations used 105 nodes. Figure from [28].

Shortest paths are emphasized in network measures for two reasons. First, they are
easy to calculate in a given network using an algorithm such as breadth-first search or
(for weighted networks) Dĳkstra’s algorithm. More importantly, they draw on the belief
that heavily used, important paths—say, important for information flow—are short. But
for an uncertain graph, we need to account for both the length of the path and whether
it actually exists. Let 𝜌𝑖 𝑗 denote a path between nodes 𝑖 and 𝑗 and 𝐸 (𝜌) denote the
set of edges comprising a path 𝜌. Then the probability 𝑃(𝜌𝑖 𝑗 ) that 𝜌𝑖 𝑗 exists in our
probabilistic graph is

𝑃(𝜌𝑖 𝑗 ) =
∏

𝑒∈𝐸 (𝜌𝑖 𝑗 )
𝑃(𝑒). (24.25)

This says nothing about multiple paths; indeed, we expect more than one path can
exist between a given pair of nodes. The most probable path between nodes 𝑖 and 𝑗 is
𝜌 (MP)
𝑖 𝑗 = arg max𝜌𝑖 𝑗 𝑃(𝜌𝑖 𝑗 ). Treating the 𝑃(𝑒) as edge weights, we can in principle find
𝜌𝑖 𝑗 using Dĳkstra’s algorithm on the probabilistic graph.

Finding the most probable path can tell us about the existence of paths (although
it is a point estimate only), but what about whether the path is actually used? The
prior belief is that shorter paths are more likely to be used than longer paths. We can
capture this notion by assuming there is a constant “transmission rate” per edge, 𝛽,
and transmissions along a path of length |𝜌 | = ℓ will then occur at rate 𝛽ℓ , which
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we call the “permeability.” Thus, instead of focusing only on most probable paths, we
combine with permeability2 to find 𝜌 (MPP)

𝑖 𝑗 = arg max𝜌𝑖 𝑗
(
𝑃(𝜌𝑖 𝑗 ) 𝛽 |𝜌𝑖 𝑗 |

)
. Most Probable

and Permeable (MPP) paths are also found efficiently with Dĳkstra’s algorithm using
these different weights.

With MPP paths we now have an analog for shortest paths in an uncertain network.
We can use the average MPP path length in place of the ASPL, and we can use MPP paths
for betweenness centrality, allowing us to rank the centralities of nodes in probabilistic
graphs.

Lastly, let’s consider triangles in a probabilistic graph. Usually these are quantified
with transitivity or the clustering coefficient (Ch. 12). The (deterministic) clustering
coefficient for node 𝑎 is given by 𝑐𝑎 = Δ𝑎/

(𝑘𝑎
2
)
. For a probabilistic graph, a triangle

between nodes 𝑎, 𝑏, and 𝑐 will occur with probability 𝑃(𝑒𝑎𝑏)𝑃(𝑒𝑏𝑐)𝑃(𝑒𝑐𝑎). Similarly,
the probability for a two-path on those nodes through 𝑎 is 𝑃(𝑒𝑎𝑏)𝑃(𝑒𝑎𝑐). We can use
these to define an expected clustering coefficient for the probabilistic graph:

𝑐𝑎 = E

[
𝑇𝑎
𝜏𝑎

]
≈ E[𝑇𝑎]
E[𝜏𝑎] , (24.26)

where
E[𝑇𝑎] =

∑︁
𝑏,𝑐∈𝑁𝑎 ,
𝑏≠𝑐

[𝑃(𝑒𝑎𝑏)𝑃(𝑒𝑏𝑐)𝑃(𝑒𝑐𝑎)] ,

E[𝜏𝑎] =
∑︁

𝑏,𝑐∈𝑁𝑎 ,
𝑏≠𝑐

[𝑃(𝑒𝑎𝑏)𝑃(𝑒𝑎𝑐)] ,
(24.27)

(and a better approximation than that given in Eq. (24.26) would incorporate the vari-
ances of 𝑇 and 𝜏, and their covariance).

24.5 Size estimation
One challenge with real network data is trying to use a limited sample of the network
to learn about the unseen remainder of the network. Here we describe some strategies
for inferring the total number of links,3 what we call size estimation, when only a
subgraph has been observed. This is useful both for understanding scientifically how
much network we’re dealing with, and logistically for marshalling our resources—if we
are going to pay for experiments, it’s good to know if we can expect to find, say, 1% of
the data, or half the data.

Suppose we have a sample network 𝐺samp = (𝑉samp, 𝐸samp) and we wish to under-
stand the complete network 𝐺full = (𝑉full, 𝐸full) (with 𝑉samp ⊆ 𝑉full and 𝐸samp ⊆ 𝐸full)
from the sample. Our sample 𝐺samp is the subgraph of 𝐺full induced by 𝑉samp. We
assume 𝐺full is generated by some statistical model 𝑃𝜃 (𝐺full) parameterized by 𝜃 and

2 Pfeiffer and Neville [371] refer to most probable and permeable paths as maximum likelihood handi-
capped (MLH) paths.

3 We focus on edges, but estimating the number of nodes is interesting too!
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that 𝐺samp is then sampled from it with probability

𝑃𝜃 (𝐺samp) =
∑︁

𝐺full⊇𝐺samp

𝑃𝑝 (𝐺samp | 𝐺full)𝑃𝜃 (𝐺full), (24.28)

where 𝑝 refers to a parameter of the sampling mechanism, which we assume is inde-
pendent of the network’s generating model.

Let us assume for now we know 𝑁full and wish to estimate 𝑀full. Such a situation
is common when we know a priori the network nodes but it is prohibitive to confirm,
observationally or experimentally, all possible interactions, i.e., all elements of the
𝑁full × 𝑁full A. (If we did not assume 𝑁full in Eq. (24.28), we would need to sum over
more than all networks of 𝑁full nodes.)

Suppose sampling depends only on the nodes and not on how they are connected.
Then the sampling mechanism that appears in Eq. (24.28) factors into 𝑃𝑝 (𝐺samp |
𝐺full) = 𝑄𝑝 (𝑁samp)𝑛(𝐺samp, 𝐺full), where 𝑄𝑝 (𝑁samp) is the probability of sampling
the observed nodes and 𝑛(𝐺samp, 𝐺full) is the number of ways that the 𝑁samp nodes
can be sampled from 𝑁full. Enumerating the ways the nodes can be sampled is tricky.
If nodes are unlabeled and are all degree zero, it becomes simple, 𝑞(𝐺samp, 𝐺full) =( 𝑁full
𝑁samp

)
, but obviously this is a huge oversimplification. However, suppose every node is

identifiable, uniquely labeled and distinguishable (and the labels are the same in 𝐺samp
and every possible 𝐺full). Then there is only one way to choose the observed nodes,
and 𝑛(𝐺samp, 𝐺full) = 1. This assumption is not universally true, but quite reasonable:
proteins, for instance, are all well identified by their open reading frames (ORFs), and
we can expect the assumption to hold in many other contexts such as (some) social
networks.

Under the assumptions of connection independence and node identifiability, the sam-
pling mechanism is entirely described by 𝑄𝑝 (𝑁samp). For independent node sampling,
meaning we now interpret the sampling parameter 𝑝 as every node is independently
sampled with probability 𝑝, we have 𝑄𝑝 (𝑁samp) = 𝑝𝑁samp (1 − 𝑝)𝑁full−𝑁samp . Solving
𝜕𝑄/𝜕𝑝 |𝑝= 𝑝̂ = 0 for 𝑝 gives us the MLE 𝑝 = 𝑁samp/𝑁full, which is quite intuitive.

Next, because nodes are identifiable (and not because they are independently sam-
pled) the conditional probability

𝑃𝜃 (𝐺full | 𝐺samp) =
𝑛(𝐺samp, 𝐺full)𝑃𝜃 (𝐺full)∑

𝐺′full⊇𝐺samp 𝑛(𝐺samp, 𝐺
′
full)𝑃𝜃 (𝐺′full)

, (24.29)

which comes from using Bayes’ theorem on the factored 𝑃𝑝 (𝐺samp | 𝐺full), does not
depend on 𝑝. It only depends on the model for 𝐺full. Therefore, we need to make some
assumptions about how 𝐺full is generated.

Suppose 𝜋, the probability for an edge to appear in 𝐺full, is well approximated by
the density of the sample, i.e.,

𝜋 ≈ 𝜋̂ =
2𝑀samp

𝑁samp (𝑁samp − 1) . (24.30)

From this, we have 𝑀samp/
(𝑁samp

2
) ≈ 𝑀full/

(𝑁full
2

)
, and we can solve for an estimate of
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the unseen network’s size,

𝑀̂full = 𝑀samp
𝑁full (𝑁full − 1)
𝑁samp (𝑁samp − 1) . (24.31)

While the assumptions so far are quite strong, and we should be skeptical, nevertheless
Eq. (24.31) gives us a straightforward way to perform size estimation. Let’s see it in an
application.

Example Let’s take these results and apply them to HuRI. This network, after remov-
ing self-loops, has 𝑁samp = 8,272 nodes and 𝑀samp = 52,068 edges. Luck et al. [283]
build their experimental protocol around a PPI screening space of approximately 17,500
protein-coding genes: “To increase interactome coverage and generate a reference map
of human binary PPIs, we expanded the ORFeome collection to encompass ∼ 90% of
the protein-coding genome.” Indeed, the GENCODE Release 42 Human dataset lists
19,379 protein-coding genes. We use this value for 𝑁full, yielding 𝑀̂full = 285,787 from
Eq. (24.31). According to this, HuRI captures 𝑀samp/𝑀full = 18.22% of the human
interactome!

It’s worth exploring some of the limitations of this estimation procedure.

Uncertainty in the number of nodes Some problems may give you information on
the nodes of the full network independent of the sample, but many will not. How might
our estimates of 𝑀full change if we don’t know 𝑁full? Suppose our uncertainty in the
now unknown 𝑁true compared to 𝑁full is 𝜖 ≪ 1 such that

𝑁full = (1 ± 𝜖)𝑁true. (24.32)

Then, 𝑝 = 𝑁samp/𝑁full becomes

𝑝 =
𝑁samp

𝑁true
=

𝑁samp

(1 ± 𝜖)𝑁full
≈ (1 ∓ 𝜖)𝑝. (24.33)

(The approximation comes from a Taylor series for small 𝜖 : (1± 𝜖)−1 = 1∓ 𝜖 + O (
𝜖2) .)

Using 𝑝 instead of 𝑝 in

𝑀̂full = 𝑀samp
𝑁full (𝑁full − 1)
𝑁samp (𝑁samp − 1) ≈ 𝑀samp

(
𝑁full
𝑁samp

)2
=
𝑀samp

𝑝2 (24.34)

shows us the effect of the error 𝜖 is

𝑀̃ =
𝑀samp

𝑝2 =
𝑀samp

(1 ∓ 𝜖)2𝑝2 ≈ (1 ± 2𝜖) 𝑀samp

𝑝2 . (24.35)

In other words, an uncertainty of 𝜖 in the true network’s number of nodes leads to an
uncertainty of roughly 2𝜖 in the estimated number of edges.
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Uncertainty in measurements of edges Probably your observations will contain
errors such as false positives (reported edges not actually present) and false negatives
(non-reported edges actually present). The true number of edges 𝑀 = 𝑀TP + 𝑀FN,
where 𝑀TP is the number of true positive edges and 𝑀FN is the number of false negative
edges. Likewise, the observed number of edges 𝑀̃ = 𝑀TP + 𝑀FP, where 𝑀FP is the
number of false positive edges. Suppose your experimental or observational process
has been validated so it has known precision and recall:

Precision =
𝑀TP

𝑀TP + 𝑀FP
, Recall =

𝑀TP
𝑀TP + 𝑀FN

. (24.36)

The precision (or positive predicted value) tells us many edges detected by our obser-
vations were true while recall (or true positive rate) tells us how many true edges were
detected by our observations. These relate nicely to 𝑀 and 𝑀̃ , allowing us to estimate
𝑀̂ ≈ 𝑀 given 𝑀̃ and the observation process’s precision and recall:

Precision
Recall

=
𝑀TP + 𝑀FN
𝑀TP + 𝑀FP

=
𝑀

𝑀̃
⇒ 𝑀 ≈ 𝑀̂ =

Precision
Recall

𝑀̃. (24.37)

Other sampling mechanisms What if nodes are not independently sampled at a
constant rate? We can model a sampling mechanism where nodes are sampled indepen-
dently but non-uniformly. Let 𝑝𝑖 be the probability that node 𝑖 is sampled and assume the
values of 𝑝𝑖 for different nodes 𝑖 are not equal but are drawn from the same distribution,

𝑝𝑖 ∼ 𝐷 (𝛽) ∀𝑖, (24.38)

where 𝛽 is some parameter(s) for the sampling rate distribution 𝐷. Since nodes are still
sampled independently, the probability for an edge to be sampled is now 𝜋𝑖 𝑗 = 𝑝𝑖 𝑝 𝑗 .
Under these assumptions, the expected value of 𝑝 converges to the expected value of
𝑝𝑖 and the variance of 𝑝 → 0 for 𝑀full → ∞ making 𝑝 an unbiased and consistent
(converges to the true value) estimator. A similar argument holds for 𝜋𝑖 𝑗 , allowing us
to proceed with inference. We can even relax this further by assuming that the rate
at which node 𝑖 is sampled depends in some way on 𝑖. We capture this by assuming
𝑝𝑖 ∼ 𝐷𝑖 (𝛾𝑖; 𝛽), where 𝛾𝑖 parameterizes how the information related to 𝑖 changes the
distribution of 𝑝𝑖 . Such information could be related to 𝑖’s network properties, such as
the degree or clustering, or it could be related to non-network attributes. If we assume
the network is uncorrelated given these parameters such that 𝑃(𝛾𝑖 , 𝛾 𝑗 ) = 𝑃(𝛾𝑖)𝑃(𝛾 𝑗 )
for edge 𝑖, 𝑗 and nodes are drawn independently given the probabilities 𝑝𝑖 , then we can
once again show [448] estimator 𝑝 is unbiased and consistent.

Much work continues on estimating the size of networks. In PPI networks such as
HuRI, for instance, it’s common to estimate the unseen network’s size by equating the
densities (Eq. (24.30)) but only across edges of a very thoroughly studied subgraph.
This is commonly done using literature curated data, the set of edges extracted by
analyzing preexisting studies; the argument being that those interactions are more
heavily investigated and replicated. For HuRI, Luck et al. [283] include this PPI network,
which they call “Lit-BM.” Luck et al. [283] themselves provide an estimate of 2–11%
coverage for HuRI, less coverage than our estimate of 18% but we are not terribly far
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off. It is on the whole much more probable to overestimate coverage than underestimate
it, and we should in general be prepared for such.

24.5.1 Size estimation from capture–recapture
(This approach to size estimation works when you have access to multiple networks,
such as from different experiments or temporal snapshots.)

Capture–recapture (also called mark and recapture) is an idea used for population
estimation in ecological studies [14, 61]. Imagine you are trying to count the number
of animals that live in a given area. You can go out and capture them with traps, but it
will not be possible to capture all of them, especially at the same time. How then can
you count the population?

At first glance, this sounds like an impossible problem, but there is a lovely way to
address it. Suppose we have a population of unknown size 𝑀 and we capture a sample
of 𝑀1 individuals from that population. We tag each individual somehow with a marker
that we assume will stay affixed, then release the captured sample. Later, we repeat
the capture process exactly as before and capture a second sample of size 𝑀2. Let the
number of individuals tagged in sample 1 who were recaptured in sample 2 be 𝑀12. If
we make some assumptions, like that tags don’t fall of individuals but also that the two
captures are independent from one another, then we have a way to infer 𝑀 .

The Lincoln–Petersen (L–P) estimator, which was the impetus for capture–recapture,
recognizes that if individuals are equally likely to appear in either sample, then the pro-
portion of tagged individuals found in sample 2 should be equal to the proportion of
the total population that was tagged in sample 1, or

𝑀12
𝑀2

=
𝑀1
𝑀
⇒ 𝑀̂ =

𝑀1𝑀2
𝑀12

, (24.39)

which we solved for𝑀 to estimate the unknown population size 𝑀̂ ≈ 𝑀 . If we also want
to compute confidence intervals, it’s helpful to have the variance of the estimator [14],

Var
(
𝑀̂

)
=
(𝑀1 + 1) (𝑀2 + 1) (𝑀1 − 𝑀12) (𝑀2 − 𝑀12)

(𝑀12 + 1)2 (𝑀12 + 2) . (24.40)

An estimate with a 95% confidence interval, say, can now be given by 𝑀̂±1.96
√︃

Var
(
𝑀̂

)
.

Equation (24.39) is a simple, brilliant idea. It can be extended and generalized in
many ways, for example going from 2 to 𝐾 measurements, and considerable work has
focused on understanding and improving upon it, especially for small sample sizes. It
doesn’t work perfectly, though; its assumptions can be restrictive and difficult to validate.
For the estimate to be accurate, we need four ingredients: captures are independent, all
individuals are equally likely to be captured, population size is constant during captures,
and tags remain affixed. These seem innocuous, but imagine yourself a soaking-wet
biologist, stomping through the woods in a downpour, trying to find an elk who just ran
off with a loose tag—you may be quite skeptical of iid capture probability!4

4 Indeed, wildlife biologists and ecologists have long debated the accuracy of such estimates [14].
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What can the L–P estimator tell us about networks? Our notation in Eq. (24.39) is
suggestive. Imagine each edge is a member of the population we are estimating. We
observe network edges in one experiment, then repeat the experiment and reobserve
them. Using the intersection of the edges, we can estimate the total number of edges 𝑀
from Eq. (24.39). Thus we have another protocol for size estimation.

Example Let’s illustrate the L–P estimator using the Malawi Sociometer Network.
This is a dynamic network (Ch. 15) and we can use the edge events (Sec. 15.2) to
“simulate” two samples. First, divide the full set of edges into two sets:

𝐸1 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡𝑖) ∈ events, 𝑡𝑖 ≤ 𝑡∗},
𝐸2 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡𝑖) ∈ events, 𝑡𝑖 > 𝑡∗},

(24.41)

where we take 𝑡∗ = max𝑖 𝑡𝑖/2. Then, using 𝑀1 = |𝐸1 |, 𝑀2 = |𝐸2 |, 𝑀12 = |𝐸1 ∩ 𝐸2 | in
Eqs. (24.39) and (24.40) gives a size estimate of 𝑀̂ = 396.97 ± 22.12 edges. In terms
of the full number of observed edges, this means we estimate5 the Malawi Sociometer
Network data to capture 87.41 ± 4.87% of edges. Good coverage.

Probably the most pressing concern for using the L–P estimator on networks is
the assumption that all edges are equally likely to be observed. (That edges are ob-
served independently is also important.) This has been shown to not hold in real-world
problems, such as estimating edges in the Internet topology [403]. To overcome this,
Roughan et al. [403] introduce a “stratified” model by assuming that edges fall into one
of 𝐶 classes and the capture probability is different between classes but the same for all
edges within a class. We describe this approach now.

First, suppose we know the class of a given edge. If we take 𝐾 iid measurements,
then the model’s probability that we observe an edge in class 𝑗 a total of 𝑘 times is

Pr(𝑘 | 𝐾, 𝑝 𝑗 ) =
(
𝐾

𝑘

)
𝑝𝑘𝑗 (1 − 𝑝 𝑗 )𝐾−𝑘 , (24.42)

where 𝑝 𝑗 is the observation probability for a 𝑗-class edge. The observation probability
could be estimated with the MLE

𝑝 𝑗 =

∑
𝑖∈𝐶 𝑗

𝑘𝑖

|𝐶 𝑗 |𝐾 , (24.43)

where 𝑘𝑖 is the number of times edge 𝑖 was observed and 𝐶 𝑗 is the set of links in class
𝑗 .

But Eq. (24.43) breaks down because in practice we only have the 𝑗-class edges that
were observed at least once. If we knew all the edges in class 𝑗 , we would have already
solved the size estimation problem!

In other words, we actually have the conditional distribution

Pr(𝑘 | 𝑘 > 0, 𝐾, 𝑝 𝑗 ) =
(
𝐾

𝑘

) 𝑝𝑘𝑗 (1 − 𝑝 𝑗 ) (𝐾−𝑘 )
1 − (1 − 𝑝 𝑗 )𝐾

, (24.44)

5 Here we use error propagation [455] on a ratio 𝑟 = 𝑀/(𝑀̂ ± 𝛿𝑀) to get 𝑟 ± 𝛿𝑟 .
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known as the truncated binomial distribution. If we estimate its parameter, we can
then estimate the number of hidden (Pr(𝑘 = 0)) edges. The MLE 𝑝 𝑗 for Eq. (24.44)
satisfies [396]

𝑀 (obs)𝐾𝑝 𝑗 =
(
1 − (1 − 𝑝 𝑗 )𝐾

) 𝑀 (obs)∑︁
𝑖=1

𝑘𝑖 , (24.45)

which we can solve numerically, where 𝑀 (obs) is the number of observed edges. With
𝑝 𝑗 solved from Eq. (24.45), we can estimate the total number of edges with the MLE

𝑀̂ 𝑗 =
𝑀 (obs)

1 − (1 − 𝑝 𝑗 )𝐾
. (24.46)

Lastly, we can iterate through each class 𝑗 to derive our total estimate.
So far, we assume the class of a given edge is known, which is not realistic. We

can address this using expectation–maximization (EM) to simultaneously estimate edge
class and class parameters.

The EM method, which we also saw in the edge observer model (Sec. 23.3), iterates
between (E-step) averaging a latent (hidden) variable (in our case, edge classes) and
(M-step) finding model parameters by maximizing a likelihood. To use EM, we first
extend the model to capture how edges fall into classes. We do this with two new
statistical parameters: 𝑤 𝑗 , the proportion of edges in class 𝑗 , and 𝑐 (𝑖)𝑗 , the probability
that edge 𝑖 belongs to class 𝑗 . We describe the model in terms of EM in Alg. 24.1. After
fitting, the model can also categorize the edges: we estimate the class of edge 𝑖 to be
arg max 𝑗 𝑐

(𝑖)
𝑗 , the most probable class. And the number of edges in class 𝑗 is given by

𝑀̂ 𝑗 = 𝑀
(obs)
𝑗

/ (
1 − (1 − 𝑝 𝑗 )𝐾

)
, and we have our size estimates.

One wrinkle. The number of classes 𝐶 is now a free parameter. The more classes
we have, the more complex the model is, up to the extreme of a single class for every
edge. Thus we are forced into a tradeoff between model fit and model simplicity. This
is a classic problem in model selection, and one way to tackle it is with the Akaike

Algorithm 24.1 The EM algorithm for estimating the parameters of the multi-class
model, where 𝐶 is the number of classes. Here we use a uniform initialization, but the
choice is not too important. For a convergence condition, continue iterating until the
total change in 𝑝 𝑗 from one iteration to the next is less than, say, 10−6.

1: 𝑝 𝑗 ← 𝑗/(𝐶 + 1), 𝑤 𝑗 ← 1/𝐶 ⊲ Initialization (uniform)
2: while (not converged) do
3: 𝑐 (𝑖)𝑗 ← 𝑤̂ 𝑗 Pr(𝑘𝑖 | 𝐾, 𝑝 𝑗 ) (Eq. (24.42)) ⊲ E-step
4: for 𝑗 = 1 to 𝐶 do ⊲ Start M-step
5: while (not converged) do
6: 𝑝 𝑗 ←

(
1 − (1 − 𝑝 𝑗 )𝐾

) ∑
𝑖 𝑘𝑖𝑐

(𝑖)
𝑗

/(
𝐾

∑
𝑖 𝑐
(𝑖)
𝑗

)
7: 𝑤̂ 𝑗 ←

∑
𝑖 𝑐
(𝑖)
𝑗 /

(
𝑀 (obs) (1 − (1 − 𝑝 𝑗 )𝐾

)
⊲ End M-step
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Information Criterion (AIC), given by

AIC = 2𝜂 − 2 ln( 𝐿̂), (24.47)

where 𝜂 is the number of parameters and 𝐿̂ is the maximum likelihood of the model.
We can then compare models by plotting AIC as a function of 𝜂 or, in our case, as a
function of 𝐶 (as 𝐶 determines the total number of parameters).

In general, size estimation in networks is quite interesting, and attempting to probe
beyond the certainty of a limited sample into the unknown is exciting. Unfortunately,
progress is usually made by taking on some heavy assumptions, and these should
make us skeptical. For example, we usually assume edges are sampled independently.
But it may be the sampling mechanism is biased towards motifs or other structures;
it’s certainly the case that edges won’t exist independently in the network. That said,
experiments such as assays testing for protein interactions (à la HuRI), may meet this
assumption. But, in general, don’t be too surprised if your estimates (and CIs) are off
by noticeable factors.

24.6 Other approaches
The edge observer model described in Sec. 23.3 also fits nicely into our suite of network
error analysis methods. (Indeed, such models are known as observer error models.) It
attempts to estimate the most likely set of edges from repeated, noisy observations, and
its estimates of the probabilities of edges can serve as the base for the probabilistic
graphs described in Sec. 24.4. Lastly, like the multi-class capture–recapture method in
Sec. 24.5.1, it uses the EM algorithm for parameter fitting.

But the EM algorithm gives us point estimates for our parameters. We may, when
interrogating uncertainty, be better served with a full Bayesian treatment—in essence,
beginning from the same model but then generating samples from the posterior, 𝑃(A, 𝜃 |
data) (Eq. (23.8)) using, for example, MCMC. The main difference is that instead of one
estimate for the posterior probability for an edge to exist, (𝑄𝑖 𝑗 , Eq. (23.25)), we would
have a distribution, and we can assess our per-edge uncertainty based on how wide or
narrow that distribution turned out to be. Young et al. [503] pursue this in depth.

24.7 Summary
The fundamental challenge of measurement error in network data is capturing the
error-producing mechanism accurately and then inferring the unseen network from the
(imperfectly) observed data. Computational approaches can give us clues and insights, as
can mathematical models. Mathematical models can also build up methods of statistical
inference, whether in estimating parameters describing a model of the network or
estimating the network’s structure itself. But such methods quickly become intractable
without taking on some possibly serious assumptions, such as edge independence. Even
without addressing the full problem of network inference, we can still explore features
of the unseen network, such as its size, using the available data.
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Bibliographic remarks
For an introduction to uncertainty quantification in general, we can recommend Smith
[435] and Sullivan [451]. A long thread of computational studies of network mea-
sures under uncertainty includes Borgatti et al. [67], Frantz et al. [169], and Martin
and Niemeyer [294] but sociologists have been concerned for far longer; see, for ex-
ample, Granovetter [189]. Percolation has been one of the main mathematical tools
for understanding missing nodes and edges. The percolation condition for a random
network (Eq. (24.9)) was first derived by Cohen et al. [111]. Likewise, the calculation
showing how sampling may make an overlapping community structure appear to be
non-overlapping was studied in Bagrow et al. [28] based on the model and calculation
of Newman and Park [339]. Pfeiffer and Neville [371] introduced the probabilistic graph
analysis we describe in Sec. 24.4.

Size estimation has been of interest to researchers studying PPI networks for some
time [448, 413]. The approach we describe here was introduced by Stumpf et al.
[448]. Readers interested in learning more about capture–recapture sampling, which
we applied to a dynamic network to estimate our coverage of edges, may start with
Amstrup et al. [14] or Böhning et al. [61]. Basic capture–recapture can be extended,
and we describe the model of Roughan et al. [403] who allow for different edges to
be captured with different probabilities. Their model was proposed in the context of
estimating the size of the Internet (at the Autonomous Systems level), a particularly
interesting application of size estimation.

Exercises
24.1 What is the probability that a node with degree 𝑘 = 1 appears to have degree

𝑘 = 0 in a network with iid node sampling and a 𝑝 sampling rate? What can this
tell us about missing data?

24.2 Suppose every edge 𝑒 in a network is sampled with constant probability 𝑃(𝑒) = 𝑝.
What is the expected transitivity (Eq. (12.9))?

24.3 Size estimation with capture–recapture requires data from independent exper-
iments or from different time periods. If we take a single network, randomly
divide it into two parts in an attempt to simulate two capture periods, and apply
the Lincoln–Petersen estimator, we will fail to find useful size estimates. Why?

24.4 (Focal network) Use a modularity optimization method to find a high-quality
partition of the Malawi Sociometer Network. (For simplicity, take the weighted
version and ignore edge weights.)

(a) Report modularity𝑄, the number of communities, and the mean and median
community size.

(b) Now, suppose the network is under-observed, meaning edges are missing.
Simulate this missingness with iid edge sampling and a 𝑝 = 1/2 sampling
rate. Make a computer function subsample(G,p) that takes the network
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and the edge sampling rate as input and returns a subsampled copy of the
network.

(c) Apply subsample independently to the original network 100 times. For
each sampled network, reapply the modularity optimization and record its
𝑄. Report the distribution of𝑄 over the subsampled realizations. How does
the modularity of the sampled networks compare to that of the original?

24.5 (Focal network) Repeat the analysis of Ex. 24.4 but vary the edge sampling rate
𝑝 and report the mean 𝑄 as a function of 𝑝. Interpret the dependence between 𝑄
and 𝑝.
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