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Towards the Full Mordell–Lang Conjecture
for Drinfeld Modules

Dragos Ghioca

Abstract. Let φ be a Drinfeld module of generic characteristic, and let X be a sufficiently generic affine

subvariety of G
g
a. We show that the intersection of X with a finite rank φ-submodule of G

g
a is finite.

1 Introduction

McQuillan proved the Mordell–Lang conjecture in its most general form [19].

Theorem 1.1 (The full Mordell–Lang theorem) Let G be a semi-abelian variety de-

fined over a number field K. Let X ⊂ G be a Kalg-subvariety, and let Γ ⊂ G(Kalg) be a fi-

nite rank group, i.e., Γ lies in the divisible hull of a finitely generated subgroup of G(Kalg).

Then there exist algebraic subgroups B1, . . . , Bℓ of G and there exist γ1, . . . , γℓ ∈ Γ such

that

X(Kalg) ∩ Γ =

ℓ⋃
i=1

(γi + Bi(Kalg)) ∩ Γ.

We note that in Theorem 1.1, if X does not contain any translate of a positive

dimensional algebraic subgroup of G, then the full Mordell–Lang theorem says that

X(Kalg) ∩ Γ is finite. Also, a particular case of the full Mordell–Lang theorem (in the

case Γ is the torsion subgroup Gtor of G) is the Manin–Mumford theorem, which was

first proved by Raynaud [20].

Faltings [8] proved the Mordell–Lang conjecture for finitely generated subgroups

Γ of abelian varieties G. His proof was extended by Vojta [25] to finitely generated

subgroups of semi-abelian varieties G. Finally, McQuillan [19] extended Vojta’s result

to finite rank subgroups Γ of semi-abelian varieties G. Later, Rössler [21] provided a

simplified proof of McQuillan’s extension in which he used uniformities for the in-

tersection of translates of a fixed subvariety X ⊂ G with the torsion subgroup of the

semi-abelian variety G. Essentially, Rössler showed that the full Mordell–Lang con-

jecture follows from the Mordell–Lang statement for finitely generated subgroups,

combined with a uniform Manin–Mumford statement as proved by Hrushovski [18].

It is important to note that the exact translation of the Mordell–Lang conjecture

to semi-abelian varieties in characteristic p is false due to the presence of isotrivial

varieties. However, Hrushovski [17] saved the Mordell–Lang theorem for finitely

generated subgroups of semi-abelian varieties in characteristic p by treating isotrivial

varieties as special. The isotrivial case was treated by Rahim Moosa and the author
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in [12] where there was obtained a full Mordell–Lang statement for isotrivial semi-

abelian varieties in characteristic p. On the other hand, if we replace G by a power

G
g
a of the additive group scheme, then the exact translation of the Mordell–Lang

conjecture either fails (in characteristic 0) or it is trivially true (in characteristic p).

Inspired by the analogy between abelian varieties in characteristic 0 and Drinfeld

modules of generic characteristic, Denis [6] proposed that analogs of the Manin–

Mumford and Mordell–Lang theorems hold for such Drinfeld modules φ acting on

G
g
a (in characteristic p). Denis conjectures describe the intersection of an affine

subvariety X ⊂ G
g
a with a finite rank φ-submodule Γ of G

g
a. Using methods of

model theory, combined with some clever number theoretical arguments, Scanlon

[22] proved the Denis–Manin–Mumford conjecture. In [9], the author proved the

Denis–Mordell–Lang conjecture for finitely generated φ-modules Γ under two mild

technical assumptions. In this paper, we extend our result from [9] to finite rank

φ-submodules Γ.

We also note that recently there has been significant progress in establishing ad-

ditional links between classical diophantine results over number fields and similar

statements for Drinfeld modules. The author [10] proved an equidistribution state-

ment for torsion points of a Drinfeld module, which is similar to the equidistribu-

tion statement established by Szpiro–Ullmo–Zhang [24] (which was later extended

by Zhang [28] to a full proof of the famous Bogomolov conjecture). Breuer [3]

proved a special case of the André–Oort conjecture for Drinfeld modules, while spe-

cial cases of this conjecture in the classical case of a number field were proved by

Edixhoven–Yafaev [7] and Yafaev [27]. Bosser [2] proved a lower bound for linear

forms in logarithms at an infinite place associated to a Drinfeld module (similar to

the classical result obtained by Baker [1] for usual logarithms, or by David [4] for

elliptic logarithms). Bosser’s result was used by Thomas Tucker and the author [14]

to establish certain equidistribution and integrality statements for Drinfeld modules.

Moreover, Bosser’s result is quite possibly also true for linear forms in logarithms at

finite places for a Drinfeld module. Assuming this last statement, Thomas Tucker

and the author proved [13] the analog of Siegel’s theorem for finitely generated φ-

submodules. We believe that our present paper provides an additional proof of the

fact that the Drinfeld modules represent the right arithmetic analog in characteristic

p for semi-abelian varieties in characteristic 0.

The plan for our paper is as follows: in Section 2 we provide the basic notation for

our paper, while in Section 3 we prove our main result (Theorem 3.1).

2 The Mordell–Lang Theorem for Drinfeld Modules

First we note that all subvarieties appearing in this paper are considered to be closed.

We define next the notion of a Drinfeld module.

Let p be a prime and let q be a power of p. Let C be a projective non-singular

curve defined over Fq. Let A be the ring of Fq-valued functions defined on C , regular

away from a fixed closed point ∞ ∈ C . Let K be a finitely generated field extension

of the fraction field Frac(A) of A. We let Kalg be a fixed algebraic closure of K, and let

Ksep be the separable closure of K inside Kalg.

We define the operator τ as the Frobenius on Fq, extended so that for every x ∈
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Kalg we have τ (x) = xq. Then for every subfield L ⊂ Kalg we let L{τ} be the subring

of endomorphisms of Ga defined over L (the addition is the usual addition, while the

multiplication is given by the usual composition of functions).

Following Goss [16], a Drinfeld module of generic characteristic defined over K is

a morphism φ : A → K{τ} for which the coefficient of τ 0 in φa is a for every a ∈ A

and there exists a ∈ A such that φa 6= aτ 0. For the remainder of this paper, unless

otherwise stated, φ : A → K{τ} is a Drinfeld module of generic characteristic.

A Drinfeld module ψ : A → Kalg{τ} is isomorphic to φ (over Kalg) if there exists

a nonzero γ ∈ Kalg such that for every a ∈ A we have ψa = γ−1φaγ.

For every field extension K ⊂ L, the Drinfeld module φ induces an action on

Ga(L) by a ∗ x := φa(x) for each a ∈ A. Let g be a fixed positive integer. We extend

diagonally the action of φ on G
g
a.

The subgroups of G
g
a(Kalg) invariant under the action of φ are called φ-submod-

ules. For a φ-submodule Γ its full divisible hull is

Γ
′ :=

{
x ∈ G

g
a(Kalg) | there exists 0 6= a ∈ A such that φa(x) ∈ Γ

}
.

We define the rank of a φ-submodule Γ ⊂ G
g
a(Kalg) as dimFrac(A) Γ ⊗A Frac(A).

Definition 2.1 An algebraic φ-submodule of G
g
a is an irreducible algebraic sub-

group of G
g
a invariant under φ.

Denis proposed the following problem [6, Conjecture 2].

Conjecture 2.2 (The full Denis-Mordell–Lang conjecture) Let X ⊂ G
g
a be an affine

variety defined over Kalg. Let Γ be a finite rank φ-submodule of G
g
a(Kalg). Then there

exist algebraic φ-submodules B1, . . . , Bℓ of G
g
a and there exist γ1, . . . , γℓ ∈ Γ such that

X(Kalg) ∩ Γ =

ℓ⋃
i=1

(γi + Bi(Kalg)) ∩ Γ.

Conjecture 2.2 was proved by Thomas Tucker and the author [15] in the case

trdeg
Fq

K = 1 and Γ is a finitely generated subgroup of rank 1. In this paper we

will deal with the “function field” case of Conjecture 2.2, i.e., trdeg
Fq

K > 1. Before

stating our result, we need to introduce the following notion.

Definition 2.3 We call the modular transcendence degree of φ the smallest inte-

ger d ≥ 1 such that a Drinfeld module isomorphic to φ is defined over a field of

transcendence degree d over Fq.

In [9, Theorem 4.11] the author proved the following result towards Conjec-

ture 2.2.

Theorem 2.4 With the above notation, assume in addition that the modular tran-

scendence degree of φ is at least 2. Let X ⊂ G
g
a be an affine subvariety defined over Kalg

such that there is no positive dimensional algebraic subgroup of G
g
a whose translate lies

inside X. Let Γ be a finitely generated φ-submodule of G
g
a(Kalg). Then X(Kalg) ∩ Γ is

finite.
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In Theorem 3.1 we extend the previous result to all finite rank φ-submodules Γ.

We also note that our proof immediately extends to provide a stronger statement than

Theorem 3.1, provided the result from Theorem 2.4 is strengthened.

Remark 2.5 We have two technical conditions in Theorem 2.4 that we will also keep

in our extension from Theorem 3.1. The condition that φ has modular transcendence

degree at least equal to 2 is a mild technical condition, however necessary due to the

methods employed in [9]. The condition that X does not contain any translate of a

positive dimensional algebraic subgroup of G
g
a is satisfied by all sufficiently generic

affine subvarieties X.

3 Proof of Our Main Result

We continue with the notation from Section 2. We define the torsion submodule of φ

as

φtor = {x ∈ G
g
a(Kalg) | there exists a ∈ A \ {0} such that φa(x) = 0}.

Next we state our main result.

Theorem 3.1 Let K be a finitely generated field of characteristic p and let g be a pos-

itive integer. Let φ : A → K{τ} be a Drinfeld module of generic characteristic. Assume

the modular transcendence degree of φ is at least 2. Let X ⊂ G
g
a be an affine subvari-

ety defined over Kalg such that there is no positive dimensional algebraic subgroup of G
g
a

whose translate lies inside X. Let Γ be a finitely generated φ-submodule of G
g
a(K), and

let Γ
′ be its full divisible hull. Then X(Kalg) ∩ Γ

′ is finite.

In our proof of Theorem 3.1 we need a uniform version of Scanlon’s result [22].

He proved the Manin–Mumford theorem (or equivalently, the Denis–Mordell–Lang

conjecture in the case Γ = φtor) for Drinfeld modules (see his Theorem 1).

Theorem 3.2 Let φ : A → K{τ} be a Drinfeld module and let X ⊂ G
g
a be an affine

variety defined over Kalg. Then there exist algebraic φ-submodules B1, . . . , Bℓ of G
g
a and

there exist γ1, . . . , γℓ ∈ φtor such that

X(Kalg) ∩ φtor =

ℓ⋃
i=1

(γi + Bi(Kalg)) ∩ φtor.

In [22, Remark 19], Scanlon notes that his proof of the Denis–Manin–Mumford

conjecture yields a uniform bound on the degree of the Zariski closure of X(Kalg) ∩
φtor, depending only on φ, g and the degree of X (see also [23]). In particular, we

obtain the following uniform statement for translates of X.

Corollary 3.3 Let X ⊂ G
g
a be a subvariety which contains no translate of a positive

dimensional algebraic subgroup of G
g
a. Then there exists a positive integer N such that

for every x ∈ G
g
a(Kalg), the set (x + X(Kalg)) ∩ φtor has at most N elements.

Proof Because X contains no translate of a positive-dimensional algebraic subgroup,

for every x ∈ G
g
a(Kalg) the algebraic φ-modules Bi appearing in the intersection
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(x + X(Kalg)) ∩ φtor are trivial. In particular, the set (x + X(Kalg)) ∩ φtor is finite.

Thus, using the uniformity obtained by Scanlon for his Manin–Mumford theorem,

we conclude that the cardinality of (x + X(Kalg)) ∩ φtor is uniformly bounded above

by some positive integer N.

We will also use the following fact in the proof of our Theorem 3.1.

Fact 3.4 Let φ : A → K{τ} be a Drinfeld module. Then for every positive integer d,

there exist finitely many torsion points x of φ such that [K(x) :K] ≤ d.

Proof If x ∈ φtor, then the canonical height ĥ(x) of x (as defined in [5,26]) equals 0.

Also, as shown in [5], the difference between the canonical height and the usual Weil

height is uniformly bounded on Kalg. Actually, Denis [5] proved this last statement

under the hypothesis that trdeg
Fq

K = 1. However, his proof easily generalizes to

fields K of arbitrarily finite transcendence degree. For this we need the construction

of a coherent good set of valuations on K as done in [11] (see also the similar construc-

tion of heights from [26]). Essentially, a coherent good set UK of valuations on K

is a set of defectless valuations satisfying a product formula on K (for more details,

we refer the reader to [11, §§2, 3]). Then Fact 3.4 follows by noting that there are

finitely many points of bounded Weil height and bounded degree over the field K

(using Northcott’s theorem applied to the global function field K).

Moreover, [11, Corollary 4.22] provides an effective upper bound on the size of

the torsion of φ over any finite extension L of K in terms of φ and the number of

places of L lying above places in UK of bad reduction for φ. Because for each field L

such that [L :K] ≤ d, and for each place v ∈ UK , there are at most d places w of L

lying above v, we conclude that there exists an upper bound for the size of torsion of

φ over all field extensions of degree at most d over K in terms of φ, d and the number

of places in UK of bad reduction for φ.

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. First we note that at the expense of replacing K by a finite

extension, we may assume X is defined over K.

Because each polynomial φa is separable we conclude that Γ
′ ⊂ G

g
a(Ksep). Let

z ∈ X(Ksep)∩Γ
′. For each field automorphism σ : Ksep → Ksep which restricts to the

identity on K we have zσ ∈ X(Ksep) (because X is defined over K). By the definition

of Γ
′, there exists a nonzero polynomial P ∈ A such that φP(z) ∈ Γ. Because φP

has coefficients in K, we obtain that φP(zσ) = (φP(z))σ
= φP(z). The last equality

follows from the fact that φP(z) ∈ Γ ⊂ G
g
a(K). We conclude that φP(zσ − z) = 0, and

so Tz,σ := zσ − z ∈ φtor. Moreover, Tz,σ ∈ (−z + X(Kalg)) ∩ φtor (because zσ ∈ X).

Using Corollary 3.3 we conclude that for each fixed z ∈ X(Kalg) ∩ Γ
′, the set {Tz,σ}σ

has cardinality bounded above by some number N (independent of z). In particular,

we obtain that z has finitely many Galois conjugates over K, and so,

(3.1) [K(z) :K] ≤ N.

Similarly we get [K(zσ) :K] ≤ N, and so (using also (3.1)), we conclude

[K(Tz,σ) :K] ≤ [K(z, zσ) :K] ≤ N2.
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As shown by Fact 3.4, there exists a finite set of torsion points w for which

[K(w) :K] ≤ N2. Hence, recalling that N is independent of z, we conclude that the

set

H := {Tz,σ | z ∈ X(Kalg) ∩ Γ
′ and σ : Ksep → Ksep}

is finite. Because H is a finite set of torsion points, there exists a nonzero polynomial

Q ∈ A such that φQ(H) = {0}. Therefore, φQ(zσ − z) = 0 for each z ∈ X(Kalg) ∩ Γ
′

and for each σ. Hence φQ(z)σ
= φQ(z) for each σ. We conclude that

(3.2) φQ(z) ∈ G
g
a(K) for every z ∈ X(Kalg) ∩ Γ

′.

Let Γ1 := Γ
′ ∩ G

g
a(K). Because Γ

′ is a finite rank φ-module and G
g
a(K) is a tame

module (i.e., every finite rank submodule is finitely generated; see [26] for a proof of

this result), we conclude that Γ1 is finitely generated. Let Γ2 be the finitely generated

φ-submodule of Γ
′ generated by all points z ∈ Γ

′ such that φQ(z) ∈ Γ1. More

precisely, if w1, . . . , wℓ generate the φ-submodule Γ1, then for each i ∈ {1, . . . , ℓ},

we find all the finitely many zi such that φQ(zi) = wi . Then the finite set of all zi

generates the φ-submodule Γ2. Thus Γ2 is a finitely generated φ-submodule and

moreover, using equation (3.2), we conclude that

X(Kalg) ∩ Γ
′
= X(Kalg) ∩ Γ2.

Because Γ2 is a finitely generated φ-submodule, Theorem 2.4 finishes the proof of

Theorem 3.1.
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[3] F. Breuer, The André-Oort conjecture for products of Drinfeld modular curves. J. Reine Angew. Math.

579(2005), 115–144.
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