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1. Introduction
A bounded monotonic sequence is convergent. Dr J. M. Whittaker recently

suggested to me a generalisation of this result, that, if a bounded sequence
{aj of real numbers satisfies the inequality

an+2 ^\(an+l+an\ (1)

then it is convergent. This I was able to prove by considering the corresponding
difference equation

Dr J. B. Tatchell gave me a different proof depending on the fact that (1) is
equivalent to saying that the sequence {an+i+ian} is bounded and decreasing.
His argument also applied in the case of the difference inequality

an+2 ^ (l-k)an+1+kaa,

where k and \—k are strictly positive. This suggested that there should be a
more general result in which the mean of an and an+l is replaced by a mean of
r consecutive members of the sequence. In this paper I prove the following

Theorem. If{an} is a bounded sequence which satisfies the inequality

an+r< Y M.+r - . (2)
s= 1

where the coefficients ks are strictly positive and k1+k2 + ...+kr = 1, then
{an} is a convergent sequence. But i/{an} is unbounded, it diverges to -co.

The conclusion does not necessarily follow if some of the coefficients ks

are zero. For example, if {an} is bounded and

then the sequences {a2n} and {a2n+1} are convergent, but {an} is not necessarily
convergent.

2. A proof of the theorem
My proof depends on the properties of the associated difference equation.

But I first give an interesting proof due to Professor R. A. Rankin.
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Let us write
An = max (<*„_!, an_2, ..., an_r).

Then, by (2),

a. ^ An (3)
and so An+1 ^ ^4n. Therefore, either An tends to a finite limit v4 or An diverges
to —oo.

If An-> — co, then «„-»•-oo by (3). We show that, if A is finite, an-*A.
For any positive value of e, there exists a positive integer N such that

A ^ An g ^ + e

whenever n ^ N. If 1 ̂  51 ^ r, we have

"»t^M.+ E M.t»-tiM»+ E M.+.

For each m ^ N, we can find an integer 5 (1 ^ j ^ r) such that

Hence

But am ̂  Am ^ A + e. Therefore if k is the least of the coefficients ks,

A ^ am + (l-k)(A + e-am) = kam+(l-k)(A+E)

from which it follows that

an^A j—e,

where O<A:<1. We have thus proved that, for every positive value of e,
there exists an integer N such that, whenever m jg N,

A s ̂ am^A + e;
k

hence am tends to A as m—>oo.

3. Another proof
Lemma. Under the conditions of the theorem, every solution An of the

difference equation

2-i
s = 1

tends to a finite limit as n-*co.
If the roots zu z2, ..., zr of the equation

z'= E Mr"s (4)
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are distinct, the general solution of the difference equation is

A= £ «A".
5 = 1

If the roots are not distinct, the solution has to be modified. For example,
if zt = z2, the first two terms have to be replaced by (a+/to)z"; if Zi = z2 = z3,
the first three terms have to be replaced by (a+pn + yn^zi; a n ^ so on. But
this does not affect the truth of the lemma.

By a straightforward application of Rouche"'s Theorem, we can show that
all the roots of (4) lie in | z | ^ 1; and, by elementary trigonometry, the only
root on | z | = 1 is a simple root at z = 1. The truth of the lemma is then
evident.

The sequence {an} satisfies
r

an + 2 = ZJ k*an + r-s>
5 = 1

where the coefficients ks are strictly positive and have sum unity. If we replace
«„+,._! by

r

2J 'isan + r-l-s
s = 1

in the expression on the right-hand side, we increase the right-hand side, getting
r - l

an + r^ £ {klks+ks+l)an_r_1_s+klkran.l.
s - 1

Repeating the process, we obtain

an+r^ £ A£l)an_l+r_s (5)
s = 1

for every integer / ^ n. Here As(0) = ks. The coefficients As(l) are given by
the recurrence relations

As(l+\) = ksAxQ)+As+1(l) (6)

for s = 1, 2, ..., r-l, and
^ ( / + l ) = Mi(0- (7)

Evidently

t A£l+1)= £ A£[),
5 = 1 S = 1

and so

£ As(l)= £ As(0)= £ fc,= l. (8)
5 = 1 S = l S = l

From equations (6) and (7), we find that

Ai(! + r)= £ ksA^ + r-s),
5 = 1

which is the difference equation of the lemma. Hence At(l) tends to a finite
E.M.S.—L
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limit ax as /->oo. Making / tend to infinity in (6) and (7), we find that

A2([)->a2 = (l-kl)<x1,

^3(I)-»«3 = 0-fci-*2)«i
and so on;

T

4,(0 ->a, = ax £ k,.

But, by (8),

i
s= 1

from which it follows that
1

Since the coefficients ks are strictly positive and have sum unity, we see that
0 < a 1 < l .

In the inequality (5), put / = n+r—m. Then
r

an+r^ S As(n + r-m)am_s.
s = 1

Now make n-* oo. This gives
lim sup an = lim sup an+r

H-+00 n-*oo

^ t <Vm-s- (9)
s = 1

Write this as
r

limsupan+ ^ (-as)am_,g «,«„,_!.
s = 2

Since ax>0,
ax lim inf am = ax lim inf am_l

m~* oo m-*oo
r

§ lim sup an+ lim inf £ (-as)am-s-
n->co m-*oo s = 2

But each as is positive. Hence
r

aj lim inf an ^ lim sup an— Y, as ^ m SUP a«-
n-*oo n-*oo s = 2 n-*ao

But the sum of all the coefficients <xs is unity, and a1 > 0. Hence

a! lim inf an ̂  ô  lim sup an,

or
lim inf an ^ lim sup an. (10)

If {an} is a bounded sequence, lim sup an and lim inf an are both finite, and
lim inf an S lim sup an. Therefore, by (10), lim sup an and lim inf an are equal;
the sequence converges.
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If {an} is an unbounded sequence, lim supaB< + 00 by (9). If lim sup an

is finite, by (10) so also is lim inf an, which is impossible since the sequence is
unbounded. Therefore lim sup an= —00; the sequence diverges to —00.

4. Further remarks on the theorem
The condition of the theorem are sufficient, but not necessary; the co-

efficients k, need not be all positive. For example, if {an} is a bounded sequence
satisfying

then it is a convergent sequence.
The key to the second proof of the theorem is that, if the coefficients ks

are strictly positive and have sum unity, every solution of the difference equation

s 1

tends to a finite limit as n-*co, because the equation

has one root z = 1 on the unit circle and r — 1 roots in | z \ < 1; or, if we take
out the factor z— 1, all the roots of

s-'+'Z ij-'-^o, (li)
s = 1

where
Z,= l-fc1-fc2-. . .-fcI ,

lie in I z | <1 .
A polynomial

whose zeros all lie in | z | < 1 is called a Schur polynomial. Duffin [SIAM
Review, 11 (1969), 196-213] has shown that g{z) is a Schur polynomial if and
only if I c0 I < I cm I and

m - l

where bars denote complex conjugates, is also a Schur polynomial. This
algorithm enables one to test whether a given polynomial is a Schur polynomial,
but it does not provide a simple set of conditions on the coefficients cr.

If the polynomial on the left-hand side of (11) is a Schur polynomial, the
argument of § 3 shows that, as /-» + 00,
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where

a, =
/ / /

Since z = 1 is not a root of equation (11),

l + / ! + /2 + .•• + /,_! # 0.
As in § 3, we obtain

B-»co S = 1

Since the sum of the coefficients as is unity, the largest, ak say, is positive.
Write

Ps = a, if as > 0, ys = 0 if os > 0,

= 0 if as g 0, ys = - a , if as ;g 0,

so that us = fls- ys. Then
lim sup fln-X'&am_s+i:y5am_s ^ atam_t, (12)

n-*oo

where the prime indicates that the term with s = k is omitted. If only one
<xs is positive, the sum Z' does not occur.

From the inequality (12) it follows that

(1 — E'/?s) lim sup an + Zys lim inf an g ak lim inf an.
But

Ofc + Lf t -Zy , = 1.
Hence

(1 -Z'^s)(lim sup an-lim inf o j g 0.

The conclusion will therefore follow as before if E'/?S<1. This condition is
satisfied if there is only one positive <x5 or if the sum of all the positive as except
the greatest is less than unity.

The method of this section will enable one to test whether a bounded
sequence {aa} satisfying the equality

r

<*n + r^ £ M n + r-S'
s = 1

where the coefficients ks are not all strictly positive, but have sum unity, is
convergent. It does not seem to be possible to give any simple general necessary
and sufficient conditions.
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