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In recent years, there has been considerable interest in the refining of thin
plate theories. In this paper, the method of matching asymptotic expansions is
used to obtain one such refinement which is believed to be an improvement on
several previous results. Previous authors (Habip (1967), Widera (1969)) attempted
such refinements within the framework of a partially nonlinear theory of elasticity
whereas in the present work all terms neglected by these authors have been
retained.

The forms of the solutions for the displacements and stresses in the interior
of the plate are given in equations (3.7) to (3.12) while those for the boundary
layer are given in (4.40) to (4.45). On comparing both sets of solutions it will be
observed that the order of magnitude of the stresses increases near the edge of
the plate. This effect is due to the occurrence of a boundary layer depending on a
dimensionless thickness parameter e defined in §1. Schematic diagrams illustrating
the change in the order of the stresses appear at the end of the paper.

The assumptions made on the magnitude of the deformation are given in §2.

1. Formulation of the problem

We consider a thin isotropic ideally elastic circular plate of radius Ro, thick-
ness 2H, with the origin of the Langrangian coordinates at the centre on the
middle surface. The plate is initially flat. We shall use cylindrical polar coordinates
R, 0 , Z. Thus

0 ^ R ^ Ro, - H g Z ^ H, 0 ^ 0 ^ 2JI

for the plate.
In deformations symmetrical about the origin, the two non-zero displacements

are independent of 0 . Thus the material point with coordinates R, 0 , Z before
the deformation has coordinates R + U(R, Z), 0 , Z + W(R, Z) after the defor-
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mation where U(R,Z) is the radial displacement and W(R,Z) is the lateral dis-
placement.

We define dimensionless independent variables x and £ by setting

R = xR0 and Z = £#.
Thus

0 ^ x ^ 1 and - 1 g £ ^ 1.

Dimensionless stress and displacement components TKL,u(x, £) and w(x, £)
are defined by

U = /?„«> JF = Row,

Piola stress tensor, (Eringen( 1962)) and £ is Young's Modulus for the material.

The stresses T12 and T are zero since we are considering symmetrical
bending.

A thickness to plate 'width' ratio e may be defined as

H

Using these dimensionless variables, the equilibrium equations, strain-
displacement relations and strain invariants are as follows:

The non-dimensional forms of equilibrium equations are:

e(l + u^Zl1 + eu^T11 + (1 + u,x)T,l3 + 2u,xCT13 + M,?T,i3 +e-1u,iT,3i
3

(1.1)
+ e-1u,?cT

33 - EX-1(1 + x~xu)T22 + ex-^l + «,,)TU + X - 1 M , ; T
1 3 = 0

and

(1.2)
+ E - V J J T 3 3 + fix-VxT11 + ex-^ l + E - 1 ^ , ^ ! 1 3 = 0.

The strain tensor components are

(1.3) Elt = «„ + K O 2 + Kw.J2,

(1.5) £33 =

1

(1.6) 2i

E23 = E12 = 0.
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The strain invariants IE, I1E and IIIE are given by

h = Elt + -^2~E22 + E33,

, 1 1

^̂ £̂ = -^7^11^22^33 ~ ^22^13^-
K

The comma is used in the subscripts to denote partial differentiation with
respect to the variables following it.

The strain energy function S, from which the relations between the stresses
and the strains are derived is assumed to be a single-valued analytic function oi
the Lagrangian coordinates and the strain invariants (as in Eringen (1962)). The
natural or initial state of the body is stress free.

Thus

2 = i(A£ + 2/IE)IE ~ 2fiEIIE + lEli + mEIEIIE + nEIIIE + hEl£+ kEIIE

Dimensionless constants vuv2, ••• may be defined by mE = Evl, nE = Ev2,

lE = Ev3, pE = £v 4 , qE = Ev5, hE = Ev6, kE = £v 7 , ••• where Young 's Modulus E

and Poisson's ration v are given by the relations

2(1 + v)fiE = E and (1 + v)(l - 2v)XE = vE.

It can be shown that the stresses TKL are given by

( L 8 ) +

vIE ~2E21

( L 1 0 )

- IER-2E22)

- 2v)

(1.11) T 1 3 = ^ - + v2(EuE13 + E33E13) - (Vl + v2)/££1 3

T12 = T23 = 0.
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The formulation of the problem will be completed by specifying boundary
conditions on the £ = + 1 faces and on the edge x = 1 and by giving symmetry
conditions at x = 0.

On the £ = + 1 faces of the plate, the dimensionless normal stress NN and
tangential stress NT are specified as follows:

(1.12) NT = 0 on C = + 1

(1 + v)(l - 2v)

where p(x, e) is assumed to be analytic in e.

The expressions for NT and NN are given by

(1.14) NN = J-X[(l + u,xf + {v>,x)
2Y\l + u,x + e~iW,;)

2T3\

and

(1.15) NT = ( l+^ - )

where

(1.16) J = U +-H(1+ u,

Physically, J is the ratio of the deformed to the undeformed elements of
volume. Thus J = 1 when all deforming forces are removed.

On the edge x = 1, we consider the clamped edge conditions of radial dis-
placement and slope specified. Thus

(1.17) £,e)
1

,X\L, (

To completely solve the problem, w(x, Q must be specified at one particular
point, for example:

(1.18) w(l,0) = £a, +e2a2 + -

Since the bending is symmetrical, conditions at x = 0 are

(1.19) "(0,0 = 0, w ,(0,0 = 0,

that is, there is no radial displacement and the slope is zero along the Z (i.e. 0
axis.
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2. Assumptions governing the deformation

The following assumptions on the magnitude of the deformation will be made
before attempting to solve the problem:

(i) The plate is thin, that is, e < < 1,

(ii) | W | = O(H), thus | w | = O(e),

(iii) | U | = O(eH), thus | u | = O(e2),

(iv) The slope W'x = O(s) for all x, C, and
I + u,x

(v) £ is an analytic function of the strain invariants.

The assumptions are some of those made in the original derivation of the
von Karman equations.

The method of matched asymptotic expansions (described in Van Dyke
(1964)) is used to derive the first few approximations to the displacements u(x, £),
w(x, 0 and the stresses TKL(x, Q.

3. The interior problem

In this section the first three terms for the interior expansion of each of the
dimensionless dependent variables u(x, £;e), w(x, £;e) and TKL (x, £;e) are de-
termined. The differential equations and stress-displacement relations of the large
deflexion theory developed by von Karman (1910) are found to be those of the
first terms of the interior expansions. The boundary conditions on the interior
variables at the edge of the plate are presented in §4 of this paper.

3.1. Asymptotic form for the solutions u(x, C;e), w(x, £;e) and TKL(x, £;e)

Assumptions (ii) and (iii) of §2 suggest that we assume interior expansions
of the form

(3.1) w(x, C; £) = ew^x, £) + e2w2(x, Q + -

(3.2) «(*,C;e) = s2u2(x,0 + e3u3(x,Q +-

Substituting (3.1) and (3.2) into equations (1.3) to (1.11) shows that the TKL will
have expansions of the form

(3.3) TKL = T0
KL(x,0 + eT?\x,Q + - for K = L, and

(3.4) T13 = eT?3(x, 0 + s2T2
l3(x, 0 + -

The quantity J also has the expansion

(3.5) / = l + Wl,{ + 8W2,{ + ...
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To find equations for the coefficients of e" (n = 0,1,2, •••) in (3.1) to (3.4)
we simply substitute these expressions into the equilibrium equations (1.1 and (1.2)
and apply the boundary conditions given in (1.12) and (1.13). The solving of this
system of equations forms the interior problem.

It is also assumed that the function p(x, e) has the expansion

(3.6) p(x,E)

3.2 Asymptotic Solution for the Interior of the Plate

The substituting of (3.1) to (3.5) into the equilibrium equations (1.1) to (1.2)
and then equating the coefficients of e" (n = 0,1,2, •••) in turn to zero enables
one to determine the £ dependence of the interior expansions (3.1) to (3.5). It turns
out that the functions wt(x, Q, ut+ t(x, Q, Tz

KL(x, 0 and Tt
13 (x, 0 for T = 1,2,3, •••

are polynomials in £. The coefficients of each power of C in these polynomials are
functions of x. Application of the boundary conditions given in (1.12) and (1.13)
enables one to derive differential equations for and relations between these func-
tions of x (see equations (3.14) to (3.19), (3.21) to (3.25) of this section).

This method will be illustrated by determining the form of w^x, Q and the
stresses T0

KL in detail.
Substituting (3.1) to (3.5) into (1.2) and equating the coefficient of s° to zero

gives the equation

Integration of this shows that

(l + w1,c)T0
3 3=X0(x).

Expanding NN (given in (1.14)) in powers of e, we obtain

NN = K0(x) + O(e).

Applying the boundary conditions given by equation (1.13), it follows that

K°(X) = (l+vx°i(-2v) ( u s i n g (3>6) °n C =

K0(x) = 0 on C = - I-

Thus
po(x) = 0,

(1 + wliC)r0
33 = 0.

If we examine (1.3) to (1.10) closely, we may show that, due to the different orders
in e of w(x, £; e) and u(x, £; s),
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[7] Bending of elastic plates 487

TO
33 = w1>c/(wliC); T o

n = To
22 = w1>c[/(w1>c) - g(wu#]

where f(w1 ?) and <7(w1;) are polynomials in w 1 ? with constants coefficients and
infinite degree.

Thus

(1 + w1>c)w1)?/(wli?) = 0.

Therefore w1>? is constant and may be — 1, 0 or the solution of / (w 1 ? ) = 0. Since
J = 1 for all e ^ 0 when there is no deformation, the only acceptable solution is
that w1)C = 0. Hence

w1(x,Q= W.ix),
and

ro
K£(x,O = 0.

By continuing the process explained at the beginning of this section, we
obtain

(3.7) w(x,C;e) = eW.ix) + B2W2(X) + e3

(3.8) u(x,C;e) = e2[_b2(x) - W[(x)Q + £3[b3(x) - W2'{x)Q + £4

(3.9)
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(111) r'W;s> | f J i f | ^ f

(3.12) r"(*,:;«)
v l - v 2 ( 6

(W[)21 / 1 -

x2 J H r r

j — ~^J J
(3.13) p(x,e) = e4p4(x) + e5p5(x) +

Higher terms in the series given in (3.7) to (3.12) are considerably more
complicated than those already listed.

The functions <t»f(x) are middle surface stress potentials and are defined by
setting

The method for finding the Tn
KL(outlined earlier in this section) gives the results

and

Thus we have equations defining the middle surface stress potentials.
The functions bt(x) give the radial displacements of points on the

middle surface and appear in the same way as the lateral displacements

The differential equations for W1(x), O'X(JC) and b2(x) are [after considerable
work]:

£W°°
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(3.15) ^ ( v > O l ) = - ! ( l - v 2 ) ( i ^ ,

and

(3.16) CKh) = - w;w; - ^-ZJ$ ^ 1 ,

where the differential operator Q is defined by

(3.17)

and V2 is the Laplacian in cylindrical polar coordinates.
Instead of (3.15) we may use the defining equation of 0>[{x), that is

(3.18) <Di(x) = 3txb'2 + vb2

and instead of (3.16) we may use

(3.19) 3(1 - v2)b2(x) = x*J(x) - v<Di(x).

The boundary conditions on Wt(x), <I>i(x) and b2{x) at x = 0 are, using
equation (1.18),

(3.20) 62(0) = FF/(O) = <&{(()) = [ - ^ ( V 2 ^ , ) ] = 0.

Further, W^O) and <D';(0) are finite.
It should be noted that equations (3.14) and (3.15) are the celebrated von

Karman equations. The solution of these equations gives the first approximation
to the interior problem.

The differential equations for W2(x), Q>'2(
x) ana< b3(x) are:

(3.21) VX ! ( ^ « +

(3.22) ^ $ 2 ) = - 3 ( l - v 2 )

and

(3.23) £l(b3) = - -jL{W[ Wd - (1 -

Notice that these equations are linear in W2{x), $>'2{x) and b3(x) unlike the
von Karman equations.

Instead of equations (3.22) and (3.23) we may use

(3.24) *i(x) = 3[xb3' + vb3

and
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(3.25) 3(1 - v2)b3(x) = x®"2{x) - v*i(x).

The boundary conditions on W2{x), <&'2(x) and b3(x) at x = 0 are

(3.26) bM = W2'(0) = *2'(0> = [^(V2ff2) ] = 0.

Further, W2(0) and <S>"2{0) are finite.
The solution of equations (3.21) to (3.23) gives the second approximation

to the interior problem.

3.3 Discussion

Previous attempts (Habip (1967) and Widera (1969)) to obtain an asymptotic
theory for the moderately large deflexion of a transversely isotropic plate and an
anisotropic plate by assuming partially nonlinear expressions for the EKL are in
error.

Both authors assumed that

£ 3 3 - -w, c ,

thus neglecting terms like ^1 —— I in the expression for £ 3 3 .

This assumptions is incorrect since calculations show that the order of magnitude
of these nonlinear terms is the same as that of the term (l/e)w,?*. A similar error
was made in their expression for terms corresponding to E13. It is clear that the
results in these two papers will be incorrect.

The approximations obtained here will not, in general, be valid near the
circular edge of the plate due to the occurrence of a boundary layer. Further,
boundary conditions on the functions W^x), W2(x), b2(x), b3(x), <b[(x) and
<&'2(x) at x = 1 can only be obtained by studying the boundary layer problem.
This is the topic in §4 of this paper.

At this point, it is interesting to note that the boundary layer considered in
this work depends upon e, while the solution of the von Karman equations
often involves the consideration of a boundary layer due to a large load param-
eter L**. This leads to a two parameter expansion for (dw/dx) of the form

~ = eL1/3 Wit + eW{2 + eL~i!3W'l3 + •••

+ e2Lll3W2\ + e2W2'2 + e2L~ll3W2'3 + •••

* The calculations are based on the solutions given in equations (3.7) and (3.8); thus w,?e=0(e2).

* * Hart and Evans (1964) used a load parameter k which is related to L by k = y/3( 1 — v2)jU.
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where the solutions to the von Karman equations and equations (3.21) and
(3.22) may be written as

W&x) = L1/3 W/i + WU + L~U3W/3 + .- , i = 1,2.

In terms of the given applied load, p4(x) = O(L); explicitly,

p4(x) = 2L(l+v)(l-2v)«4(x)

where q^(x) = 0(1) compared with L.

4. The boundary layer problem.

The results of §3 were obtained without any reference to the boundary
conditions on the edge x — 1. Since the functional form of the interior expansions
has been determined, it is clear that these expansions cannot, in general, satisfy
the clamped edge boundary conditions given in §1 since p(C,£) and \j/(£,e) are
essentially arbitrary functions of £. Thus the interior expansions only represent
the solution away from the boundary.

Unlike the variational approach of Reissner (1963), which attempted to
determine boundary conditions on the interior solutions, we are concerned with
the effects of the boundary layer solutions on the boundary conditions of the
interior solutions. Thus we use a boundary layer approach similar to that carried
out by Reiss (1962), Reiss and Locke (1961), Friedrichs and Dressier (1961),
Kolos (1964) and Gol'Denveizer and Kolos(1965), for the linear theory. Since the
present work is highly nonlinear in character, the:calculations are considerably
more complicated than the work by these authors. Thus most calculations will be
omitted and only sufficient work^will be presented to enable the determination
of the first two nonzero terms in the boundary layer expansions of u(x, £, e),
w(x, £ e) and the TKL(x, £ s).

The final form of the boundary layer solutions appear in equations (4.40)
to (4.45).

4.1 Formulation of the boundary layer problem

Similar to Reiss (1962), we 'stretch' the coordinate normal to the edge by
defining a new coordinate r\ by

(4.1) „ = ^

This stretching (4.1) implies that the boundary layer effects penetrate a 'distance'
of order of magnitude s into the plate from the edge. The non-dimensional forms
of the equilibrium equations (1.1) and (1.2) in terms of r\ and C are:

https://doi.org/10.1017/S1446788700034510 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034510


492

(4.2)

and

(4.3)

- ( 1

+ £

- s:

e~

B. P.

-8-1u,,)Ti1+8-1«,,,T11

'.s-'u^T^-e-'u^T^+t

-1u,triT
33 + x-lu,,Ti3 + E.

x-Xl+x-'^T22 =0.

Garfoot

+ ( 1 -

rlu,,T,

x-\l -

+ £~1H

[12]

- le-'w^T13 - £-1w,,T,1c
3+(l + e - ^ ,

+ e - V ^ T 3 3 + ex-^l + e-^dT13

- a - 1 * , , ! 1 " = 0.

The strain tensor components may be rewritten as

(4.7) £„ - l u , t - i . » , , - J f U , , u , c - 5 l » , , ,w . t

and
£12 = E23 = 0.

The strain invariants IE, IIE and IIIE are given by equations (1.7) in §1.
The equations for the non-dimensional stresses TKL are given by (1.8) to

(1.11) in §1.

The expression for the slope at the edge transforms to

The quantity J becomes

(4.9) J = )( ^

xj\ e e E2

On the faces £ = + 1 we have the conditions

(4.10) NN= J - 1 [ ( l - e - 1 « , , ) 2 + (£-1w,,)2]-1x(
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[13] Bending of elastic plates 493

(4 11) = _ K l ~ e>7, e) o n f = l

(4.12) = 0 on C = - 1

and

(4.13) NT =

(4.14) = 0 on f = ± 1.

On the edge t] = 0 (i.e. x = 1), the boundary conditions applicable are (1.18)
and

(4.15) «(1,0 = p(C, e), ~ £ _ ^ ' P = ,̂(C, E).

As will be seen later in equations such as (4.48), p(C,£) and ^(C,e) cannot be
arbitrarily prescribed.

4.2 Asymptotic form of the solutions u {x, f; e), w (*, £; fi) and TKL (x, £; e).

We define dimensionless boundary layer displacements and stresses u, w
andfK Lby

«("»/, C;e) = «(x,C;e)

(4.16) w(jj,C;e) = w(x,C;e)

Assumptions (ii) and (iii) of §2 suggest that we assume boundary layer ex-
pansions of the form

(4.17) w(r,,C;e) = 8^01,0 + e2w2{ri,0 + -

and

(4.18) 0fa,C;e) = e2fl2(i?,0 + «3fl3(iJ,0 + -

Substituting (4.17) and (4.18) into equations (1.8) to (1.11) shows that the
tKtha.\e expansions of the form

(4.19)

while the quantity J has the expansion

(4.20) J = 1 + #l i C + e[tv2iC - M2I, + ^.{Vi^, - u2
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Assumptions (ii) and (v) of §2 suggest that we assume

(4.21) p(C,e) = e2p2(0 + e3p3(0 + -

(4.22) «KC, £) = - # 2 ( 0 - eVa(0 + •' •

4.3 Matching conditions

The basic asymptotic matching principle (Van Dyke (1964), page 90) for the
present problem requires that:

the boundary layer expansion of the interior expansion
= the interior expansion of the boundary layer expansion.

This principle requires that the terms of the boundary layer solutions can be
written in the form:

, o = - Un, 0 + iQ ^ p - n' [ ^ («„ - Ax, 0) ] ^ « = 2,3,(4.23) un{tj Q ^

(4.24) wn(r,,0 = wn(rj,0+ £ ^-^-rf\^-r(Wn^,0)1 , n = 1,2,

and

(4.25) T«L(n,Q = ± ^ % 0 + 2 ^ r i '

B = 1 , 2 , 3 , -
where uB, vvn and rfL decay to zero as r\ -* oo, the plus sign being taken for
K = L = 1,2,3, and the minus sign taken for fn

13.
The remaining terms in (4.23) to (4.25) are the interior contributions to the

boundary layer solutions. The boundary layer expansion for the function p(x, e)
defined by equation (3.6) has the form

Substituting equations (4.17) to (4.19) and (4.23) to (4.25) into equations (4.2)
to (4.7) and (1.7) to (1.11), we obtain sets of equations which, together with the
appropriate boundary conditions, constitutes the boundary layer problem.

4.4 Asymptotic solution for the edge of the plate

In a manner similar to that for finding wt(x, f), we can show that

Wi(J7,0 = Wj (a constant),

( 4 2 ? ) 7^,0 = 0

Matching conditions require that

(4.28)
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The procedure for determining the rest of the terms in equations (4.17) to
(4.19) (or equivalently (4.23) to (4.25)) is considerably more complicated.
Luckily, a general procedure exists. We shall describe this in detail.

The f*L (»7,0 may be written as (by using (4.25), (4.19) and (4.4) to (4.7)
and (1.7) to (1.11))

(4.29) tfi t = ( \ [(1 )5 + J + ^tfi t ( 1 + v ) ( \ _ 2 v ) [(1 v)5B,, + vvvn,J + q^

(4.30) t ^ = ^ - ^ y [ « „ , { + w..,] + ql
nl,,

(4.31) In
3_3i = ( 1 + v ) ( \ _ 2 v ) l>

S".i + (J - v ^ " - J + « - "

and

(4.32) f 2 2 i =

where n = 2,3,4, ••• and the q^-^t], Q can be found in terms of um_u wm_t and
the t^l2 for m = 3,4, •••,/!.

The differential equations satisfied by the t*L are

(4.33) ' „" + <"{ = *»fo,0

and

(4.34) *»" + '«" = y»(»j»o.

where Xn and 7B decay to zero as r\ -* oo and can be found in terms of um, wm, the
tm-i, Xm-lt 7m_!, wm, wm and the f ^ i for m = 3, 4, - , n.

Using equations (4.29), (4.30) and (4.31), equations (4.33) and (4.34) may be
rewritten as

(4.35) 2(1 - v)un+Um + (1 - 2V)MB+1,CC + w,+1>,{ = 2(1 + v)(l

and

(4.36) 2(1 - v)wB+liK + (1 - 2v)wn+1>TO + Qn+lM = 2(1 + v)(l - 2v)F,

where

(4.37) Xu = Xn - q1^ - q%

and

(4.38) ?n = Ym-q£-q%.

Equations (4.33) to (4.36) hold for - l ^ C ^ l , 0 ^ ? / < o o ; this is the
domain of a semi-infinite strip problem.
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Using (4.10) to (4.14), it can be shown that

(4.39) r33 (,, ± 1) = «;3(,, ± 1) = 0

while on r\ = 0 (i.e. x = 1), the boundary conditions are given by equations
(4.15). Applying the Laplace Transform to (4.29) to (4.39), it can be shown*
that necessary and sufficient conditions for the t*L, un+1 and wB+1 to decay to
zero as rj -* oo are (see Appendix in Garfoot (1970)):

(Dn.l) f tl
m\0,Qdl = - f [* Xn{t,,Qdr,dl = Anl

J-i J-i Jo

(Dn. 2) I CfB
n(O,OdC = - f f

J-i J - l Jo

(Dn. 3) f ri3(0,OdC = - f f°
J-i J-i Jo

(Dn. 4) f S.+1(0,C)dC + v(l + v) f C'n
13(0,

J-i J-i

- -vd+v) r r
J-i Jo

(•1 y«o
+ (l-v2)

J-i Jo

(Dn. 5) f C«n+i(0,OdC + ^ ( l + v)

= i d - v2) f' f °° [2i;X. - r?Yn + 2(£ - 1>,«»
J~i Jo

2 J- i Jo

and "5

(Dn. 6) J (1 - O , + ^ 0 , QdC + ^(1 + v)(2 - v)

x f' C3»,"(0,OdC = 2(1 + v) ,f' f" i,?^dC
J-i J-i Jo

- 1 ( 1 + v)(2 - v) J ̂
* When the solutions of the transformed equations are inverted, it will be seen that these

contain non-decaying contributions which are polynomials in b as well as decaying contributions.
Conditions (Dn.l) to (Dn.6) are obtained by setting these non-decaying polynomials to zero.
See Gusein-Zade (1965) for the solution of a similar problem.
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- v ( l + v)
J-\ Jo

~ | (1 - v2)J t j" [«
forn = 1,2,3,---.

Each boundary condition for un and wB on r\ = 0 contains at least one un-
known constant due to the contribution of the interior solutions as coefficients
of rf in equations (4.23) to (4.25). These constants can be written in terms of the
interior solutions evaluated at x = 1. By applying conditions (Dn. 1) to (Dn. 6),
these constants may be determined, thus un, wn, the f̂ î  and boundary conditions
on the interior solutions at x = 1 may be found as in Garfoot (1970).

In obtaining the solution of (4.33) to (4.36), one must use the expressions
for the Xn, Yn, and the q^ as given in the Appendix.

After carrying out the indicated computations the following boundary
layer expansions for u, w, and the tKL are obtained:

(4.40) 0fo,C;«) = 8»^(i) + e2[w2fa,o + w2(i) -

(4.41) ufa, C;«) = £2[ - U2(IJ, 0 + 62(1) - M D ]

(4.42) t u(ij,C;e) = < +82[t2
1 + r2

u( l ,0]

+ s^tl1 + r3"(i,0 - •jri.Ui.O] + -

(4.43) f " ( IJ ,C;8) = et\2 + E\t\2 + r a " ( l , 0 ]

+ 83[ti2 + T3
2 2(l ,0-«jT2^(l ,0] + -

(4.44) f 13(//,C;e) = - et\3 - t2t\3 + e3[ - t^3 + T3
X3(1,Q]

+ £4[ - tl3 + T4
13(1,Q - r,Ti?x(l,0~] + -

(4.45) f 33(»/,C;£) = £t33 + e2t33 + e3t33 + s*[t33 + T4"( l ,0] + -

Sketches illustrating the nature of the boundary layer for the stresses appear at
the end of the paper.

4.5 Boundary conditions for the clamped edge

The decay conditions (Dn. 1) to (Dn. 6) lead to the following boundary
conditions on the interior solutions:
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(4.46) 62(1) = i J iP2(0dC + iv J &>2(

(4.47) W{{\) = - \ j'tPziOdt; - Y ff
and

(4.48) J i [P'2(0 - MOM = o.

Equations (4.46) to (4.48), (4.15), (4.21) and (4.22) enable «2(0,Q and w2 ,(0,Q
to be found (see (4.56)), thus u2{r\, Q and w2{r\, £) can be determined.

Also

(4.49) &3(1) = i J K(Qdi + iv J ^ CO3'(0 -

- M l + v) J ^I 'ccodC - iv

(4.50) ^(1) = - | J ^(OdC - y J F[fi

J ^gJ'CO.Odf + | v J i+ | v ( l + v)

and

(4.51) | ^ ( O - ^3(O]df = A23 + 2(1 + v) J |

I («2

Equations (4.49) to (4.51) enable u3(rj, Q and w3(rj, Q to be determined by a method
similar to that for finding u2 and vv2.

Using (1.18) and (4.40) we find that

(4.52) ^ ( 1 ) = ^ .

The consistency condition on 1/^(0 and p4(Q is
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+ lv(i + v)(V2FTO,-1 f f " '
^ J-i Jo

where

J-i Jo J-i

+ 2(1 + V) J^^2""3'"

with 73*and ^ j 3 * given by

F3*and q|3* are fully known in terms of t]f, tx-[, u2,u3, w2 and w3.
Equations (4.46) to (4.48) and (4.52) supplement equations (3.20) to complete

the boundary conditions on the differential equations for W^x), ®i(x) and b2(x).
The final conditions on the differential equations for W2(x), <&'2(x) and &3(jc)are:

(4.54) W2(l) = a2-w2(0,0);

( 4 < 5 5 )

| ( 1 - v)W2'(l)
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3-(l - v)b'3(l)

v)2[vV2W2 - (1 - v)W2"], = 1 j l Ctl\0,Od: = ^(1 - vz)V^ 2

where

V2 = f f y4*(i,O^C+ C ql3*(0,OdC= f1 f" y4*(i,
J-i Jo

+ 2(TTvj J 1
[t/'5(0 "

with Y,f (r/, 0 given by

Equation (4.55) is a consistency condition for ^ 5 ( 0 and p5(Q.
The expression for q\3*(0,0 is quite lengthy, however, both ql3*(0,C) and

y4* are fully known in terms of t[J, t'2
J, tl

3
J, u2, u3, u4) w2, w3 and w4.

The boundary conditions on u2, u3, u4, vv2, w3 and vv4 on the edge r\ = 0
are:

(4.56) u 2 (0 ,0 = &2(1) - W«1)C - P2(0

with b2(l), Wi'(l) given by (4.46) and (4.47)

(4.57) fi3(0,0 = b3{l)-V

with b3(l), W2'(l) given by (4.49) and (4.50).

(4.58) u 4 ( 0 , 0 = &4(1) - CW3'(1
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where

and

Bending of elastic plates 501

p*(0 =

Both p4*(0 and ^J(Q are known in terms of W^x), b2(x), W2 (1), u2, u3, w2 and vv3.
Thus, in principle, « 4 (J / ,Q and vv4(?/,C) can be determined, so enabling Y4*(f/,0
and ql3*(0,Q to be calculated.

4.6 Conclusion

At this stage we now have sufficient information available to completely
determine the first two terms in each of the expansions of the interior dependent
variables as given in §3, equations (3.7) to (3.12) and the first two terms for the
boundary layer expansions of the dependent variables given in equations (4.17)
to (4.19). It should be noted that the boundary conditions given in equations
(3.20). (4.46), (4.47) and (4.52) for the first interior approximation are similar
to those for a clamped edge using the von Karman plate theory. It is only in the
boundary conditions of the second approximation that the boundary layer has
an effect (see (4.49), (4.50) and (4.54)). Further, the prescribed edge conditions
are not completely arbitrary and must satisfy conditions such as (4.48), (4.51),
(4.53) and (4.55).

Figures 1 to 3 illustrate the change in the order of magnitude of the stresses
near the edge of the plate.

r
T22

0(G)

t" t 2 2 0(G2) O(G2)

boundary layer interior

x = I - G

Figure 1.

x decreasing
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T13

T:
13

0(G)

T'3 o(e3)

boundary layer interior
x= l

Figure 2.

x decreasing

O(G)

x = x decreasing

Several other boundary conditions (Garfoot (1970)), such as normal and
tangential stress specified on the edges, can be similarly dealt with by using the
decay conditions (Dn. 1) to (Dn. 6).
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Appendix

On carrying out the substitutions and calculations, we find that the Xn and
Yn are given by
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X2(t1,0 = -u2,n/S-2u2^-u2^tl3 + t{l-t

Y2(ri,0 = -{VV2.,/!1 + 2vv2,^1 3 + w2^tl
33- t1,3},

- u3Mt33

+ 2a2Mf\3 - «2fKf» + tY - tf,

- w2>Kf|3

{1
U2l,{ - X3 + (2

U + 1\t{

V -12
3
2 + nW -122}

u3Mt33} + { -

X2 + tl1} + w2,nT2
2\l,0

w2,c{ - y3 + 1 2
1 3 + >z'i3}

The expressions Xs, Ys, X6, Y6, ••• are considerably more complicated and shall
not be listed.

The qli(t\, C) are given by

q \ x = q \ 2 = <7i13 = q T = o ,

+ ^2- V (vv 2 , , ) 2 - (1 - V ) W 1 ' ( 1 ) W 2 , , - V M 2 J + (vj + 3V 3 )(M 2 > , + vv2iC)2

{w2^U2rl — M2j,M2,?} ^ ( "2 , ? + ^2,i()("2,i( + ^2,c)>
2(1
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2 ")2 + ^ T ^ + (1 - v) W[ (l)5a,c

+ i ( l - v)(w2>c)
2 + iv(w2,,)2 - vWY(l)w2l, ~ vu2j

+ (vx + 3v3)(fi2>, + w2>c)
2 - v j f o , , ) 2 + K«2.t + w2>,)2}.

The expressions for gj/, n = 3,4, ••• are complicated and shall not be given.
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