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Abstract

A duality theory for a class of fractional programs is developed. A fractional
program which is non-convex is convexified using a one-to-one transformation.
The resulting convex equivalent is then dualized with generalized geometric
programming duality.

1. Introduction

We consider the following fractional program:

minimize g(x) = c(x)/f(x) over xe C<=R" (1)

subject to Ax^b (2)

where c(-) is a convex function defined on a closed convex set C and /(•) is a
linear function of the form f\x+fQ which is assumed to be positive over the
constraint set {xeC\Ax^b}. A is a given mxn matrix, beRm, fieR" and
/<,£/? are given.

Considerable effort has been directed at constructing duals to non-convex
mathematical programs of the fractional type [1, 5, 9, 12, 3, 7]. However, most
of this research has used Lagrangian ideas. Here, we propose to use the uncon-
strained version of generalized geometric programming [8] to construct a new
dual to the fractional program posed above. This approach is valuable since it
separates the primal and dual variables. The resulting convex program can then
be approached independently of the primal nonconvex program.

A detailed discussion of the applications, theory and computational aspects of
fractional programming has recently been given by Craven [4].
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2. Geometric duality

The generalized theory of geometric programming [8] pairs the following two
convex mathematical programs termed primal and dual respectively:

1. Minimize g(x)overxeC (3)

subject to xex- (4)

2. minimize g*(x*) over x* e C* (5)

subject to x*ex*. (6)

Here g() is a convex function defined on a closed convex set C<=R", % is a
closed convex cone in R", and #*(•) defined on C* denotes the conjugate transform
ofg(-), that is,

x*-0(x)) (7)
xeC

and
C* = {x* e R" | sup (xT x* - g(x)) < oo }. (8)

xeC
Also, x* is the dual cone of #, that is,

x* = {x* |x T x*^0for all xex}. (9)

At optimality, the following relations hold [8].

(i) min g(x)+ min <?*(x*) = 0, (10)
xeCnx J'EC'IIJ'

(ii) xedg*(x*), x*edg(x), (11)

(ii i)xTx*=0. (12)

Here dg(x) denotes the subgradient set of g( •) at x, that is,

dg(x) = {x* | <x*, y-x> < ^ ) - g ( 4 for aU yeC}. (13)

For the purposes of Section 3, we require the following definition of the positive
homogeneous extension c+(x,X), XeR of a convex function c(x) defined on a
closed convex set C:

I sup xTx* if A = 0 and sup xTx* < oo,
xUC x'eC (14)

Xcix/X) i fA>0andx// l6C.

This is defined on C+ where
C+ = {(x, k) 11 = 0 and supxTx* < oo}^ {(x,X) \ X > 0 and x/XeC}. (15)

It has been shown that the conjugate transform of c+(x, X) defined on C+ is the
identically zero function defined on the convex set c*(x*)+X* < 0 [8].
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3. Fractional duality

A useful means of analysing a fractional program is to transform it into an
equivalent convex program. This approach was initiated by Charnes and Cooper [2]
for the case where c(x) is linear. For general convex c(x), Manas [6] has introduced
the following one-to-one transformation of the form

*o= !//(*), z=zox. (16)

In the transform variables, the program defined by (1) and (2) is

minimize g(z,z0) = c(z/zo)zo (17)

subject to Az-bzo^0, (18)

/ 1 z + / o z o = l, (19)

z0 > 0, (20)

which is convex and equivalent to the original non-convex program [11].
We may close the functions without loss of generality in order to invoke the

duality theory. Hence the above program may be written

minimize c+(z,z0) over (z,zo)TeC + , ae{l}, (21)

subject to (z,zo,a)6/ (22)
where

X = {{z,a,zo)\Az-bzo>0,f[z+fozo-a=0}. (23)

Here a is associated with an identically zero component of the objective function.
We require the dual of the cone %, that is,

{(z*,a*,z5)|<z,z*> + Zoz;+aa*>0,forall(z,«,z0)6Z}. (24)

This is readily found as

V
a*

AT

0 }u+[-i)v, (25)

where ue Rm and u ̂  0, v e R.
Hence, following the prescription in Section 2, the dual program is

minimize a* (26)

subject to c*(z*)-feT«-/oa*<0, (27)

z*=Aru-fia*, (28)

u 2* 0. (29)

Here c*{z*) denotes the conjugate transform of c(z). For the particular case that
c(z) is linear in z, these results are equivalent to those obtained by Charnes and
Cooper [2]. However, for general convex c(z), they are different from previous
results [1, 3, 5, 7, 9, 12, 13] since this duality separates primal and dual variables.
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