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GLOBAL ASYMPTOTIC STABILITY IN
A PERIODIC LOTKA-VOLTERRA SYSTEM

K. GOPALSAMY1

(Received 28 February 1984)

Abstract

A set of easily verifiable sufficient conditions are obtained for the existence of a globally
asymptotically stable periodic solution in a Lotka-Volterra system with periodic coeffi-
cients.

1. Introduction

The purpose of this article is to derive a set of "easily verifiable" sufficient
conditions for the existence of a globally asymptotically stable strictly positive
(componentwise) periodic solution of the Lotka-Volterra system

, , ) (1.1)

where b,, atJ (/, j = 1,2,... ,n) are continuous positive periodic functions with a
common period a. In ecology (1.1) denotes the dynamics of an w-species popula-
tion system in which each individual competes with all others of the system for a
common pool of resources. The assumption of periodicity of the parameters bt, atj
in (1.1) is a way of incorporating periodicity of the environment (e.g. seasonal
effects of weather, food supplies, mating habits etc.).
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121 Global asymptotic stability 67

We will need the following preparation; let R and Rn respectively denote the
set of all real numbers and the /i-dimensional real Euclidean space; R* will
denote the nonnegative cone of Rn. Define the constants b\, b", a\}, a," (i, j =
1,2,...,«) by the following

inf b,(t) = min &,-(/) = bj,
teR <e[0, w]

inf au{t) = min a, (t) = a\

O = max &,.(*) = ft,",
»e[0,w]

supa ( 0 = max a -(0 = a,"-
R »e[0,u]

We analyse the system (1.1) under the following assumption on the coefficients
of (1.1);

fe,'>0 and a ' ( > 0 ; i = 1,2 «.

Since solutions of (1.1) corresponding to nonnegative initial conditions remain
nonnegative it will follow that

as a consequence of which we have

0 < x,(0) < bya'n = x," ^ x , (0 < b?/a'u; t > 0, i = 1,2,... ,n. (1.5)

Expressions (1.1) and (1.5) together lead to

' / 4 ) - < x , , / > 0 , i - l , 2 n. (1.6)
1 7*, *

Now (1.2), (1.3) and (1.6) lead to

*,.(/)> *,' for/ > 0,i = l ,2 , . . . ,n . (1.7)
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From the foregoing preparation we have the following:

LEMMA. Assume that bt, atj (i, j = 1,2,. . . ,«) are strictly positive continuous
periodic functions with a common period <o > 0 such that (1.2) and (1.3) hold. Then
the set S defined by

5 = { x = (*!,...,*„) eR+ |x , '<x , < < ; / = 1,2,...,/!}

/s invariant with respect to (1.1).

2. Existence of a periodic solution

Let us consider the system (1.1) in Rn with the norm in Rn being defined by
||x|| = max1 < / < n |JC,|, x = (xv x2,- • • ,*„) e Rn. We know from the form of the
systems (1.1) and (1.4) that there exists (for all finite values of /) a unique solution
of (1.1) corresponding to any x° = (x°, . . . ,x°) e Rn; let such a solution be
denoted by

x(t,x°)= {Xl(t,x°),...,xH(t,x0)}; t>0,

x(0,x°) = x°. (2.1)

We define a shift operator also known as a Poincare period map A: R" -» R" by
the formula

Ax° = x(a,x°), x°eRn. (2.2)

If one can show that the operator A has a fixed point say z = (zv z2,. • -,zn), then
it will follow that for the system (1.1) there is a solution say x*(t) defined for
r e [ 0 , u ] satisfying the condition

x*(o>) = x*(0) = z (2.3)

or equivalently

xf (w, z) = z,; J = l ,2 , . . . ,n . (2.4)

Since the right side of (1.1) is periodic in t for fixed x e Rn, it will follow that
x*(t) can be extended for / > w by periodicity, in the sense that

x*(mu + t) = x*(t) for m = 1,2,3, . . . , (2.5)

for all t > 0, and such an extension will be a periodic solution of (1.1). Thus the
existence of periodic solutions of (1.1) will follow from the existence of fixed
points of the shift operator A defined above in (2.2).

The following result is well known:

THEOREM (Brouwer). Suppose that a continuous operator U maps a closed
bounded convex set Q c Rn into itself. Then fi contains at least one y e SI for which
Uy = y holds.
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THEOREM 2.1. Suppose the coefficients of (1.1) satisfy (1.2) and (1.3). Then (1.1)
has at least one strictly positive periodic solution.

P R O O F . Define a set fi c R n as follows:

fl = ( JC = (xlt...,xn) e R n | min x\ < x < max *,";./ = l , 2 , . . . , n > .
V l<j<n l<i°<n '

The set S2 is a bounded, closed and convex set in Rn and the operator A maps Q
into itself since Q is invariant with respect to (1.1). This means that

xo = {x°,...,xo
n)ea=>{x1(t,x

o),x2(t,x
o),...,xn(t,x°)}ea

for all t> 0 (2.6)

and hence {x^u, x0),...,xn(u, x0)} e Q which implies that AQ c fi. The solu-
tions of (1.1) are continuous functions of their initial values, from which the
continuity of the operator follows. Now by the Brouwer theorem the existence of
at least one fixed point of A in Q follows. Since such a fixed point has positive
co-ordinates, the corresponding periodic solution is strictly positive by the invari-
ance of S2, and the proof is complete.

3. Global asymptotic stability

By definition we say that a periodic solution, say u(t) = (u^t),. ..,«„(/))> of
(1.1) is globally asymptotically stable (or attractive) if and only if every other
solution x(t) = {x1(/),...,xB(O} of (1.1) with x,(0) > 0 (i = 1,2,...,n) is de-
fined for all t > 0 and satisfies

lim | u , ( 0 - x , ( 0 | = 0 ; i = l ,2 , . . . .n . (3.1)
»-»oo

A consequence of such a global asymptotic stability is that there cannot be
another strictly positive periodic solution of (1.1)

THEOREM 3.1. Suppose the coefficients of (1.1) satisfy (1.2), (1.3) and the following

min aJt) > I £ max a,,} + a, j = l,2,...,n, (3.2)

for some positive number a. Then (1.1) has a periodic solution (with strictly positive
components) which is globally asymptotically stable.

PROOF. Let x(t) = {x1(t),...,xH(t)} be any solution of (1.1) with x,(0) > 0
(/ = 1,2,..., n). Since solutions of (1.1) remain nonnegative we can let

!/,(/) = log «,(0 and *,.(0 = logx,.(0 (3.3)
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where u(t) = {u^t) «„(')} is a strictly positive periodic solution of (1.1), the
existence of which follows by Theorem 2.1. It will follow from (3.3) and (1.1) that

dt

Consider a Lyapunov function v(t) defined by

"(0= t

(

i= 1,2,. . . , « : / > 0. (3.4)

t>0. (3.5)
i-l

Calculating the upper right derivative D+v of v along the solutions of (3.4), we
have

i-l
\au{t)\\<u'-e*\- I |aiy

7 - 1

I / . \ I V"* I i

,=1 7=1

-«I MO-*.(')!•

,u. -

An integration of (3.6) leads to

i - l

(3-6)

(3.7)

It follows from (3.7) that L"^i\U,(t) - X,(t)\ is bounded for t > 0, implying that
the right side of (3.4) remains bounded for / > 0; thus it will follow then that
L"_! \U,(t) — Xi(t)\ is uniformly continuous on [0, oo). Consequently the uniform
continuity of L"_! |u,(f) — x,(0\ o n [0, oo) will follow. Such a uniform continuity
with the integrability on [0, oo) (see (3.7)) of E"_x |M,(0 ~ ^,(01 will lead to (3.1)
(for more details see [3]) and the proof is complete.

4. An autonomous system

We will briefly indicate a study of autonomous systems of the form

y = l
(4.1)
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where /?,, atJ (/, j = 1,2,...,n) are positive constants. For autonomous systems
of the form (4.1), the existence of at least one positive (componentwise) steady
state is a necessary condition for the "persistence" of the system (4.1); by
persistence we mean here that no species of the system (4.1) is threatened with
extinction, which is translated into a mathematical condition of the form
lim,_ooinf *,(/) > 0 (/ = 1,2,...,n). We refer to [3] for more details regarding
persistence and existence of steady states. For (4.1) we have the following:

THEOREM 4.1. Assume the constant parameters /?,, atj (i, j = 1,2,...,n) satisfy
the following

(i) aJj>0andaJJ>(L^1,,^aij)+e,j = l,2,...,n, (4.2)

for some positive number e.

(ii) fil>I."j_1alJ{{iJ/ajJ),i = l,2,...,n. (4.3)

Then there exists a unique steady state y* = (y*,---,y*) with yf > 0 (j =

1,2,...,«) o/(4.1) satisfying

L v ; = ft; ' = 1,2 n, (4.4)
7 - 1

and the steady state y* of (4.1) is globally asymptotically stable, in the sense that any
arbitrary solution y{t) = {yx(t) , . . . ,yn(t)} of (4.1) with y/0) > 0 (j = 1,2,. . . ,«)
satisfies the condition

l i m ^ ( / ) = 7 * ; i = l ,2 , . . . ,n . (4.5)
l-XX

PROOF. Any nonzero steady state of (4.1) is a solution of the linear system of
equations

I V y = ft' i = l,2,...,n. (4.6)
y-i

One can also see that any solution of (4.6) is also a fixed point of the mapping T
defined by T: D -* Rn where

7 - 1

l}, i = l,2,...,n. (4.7)
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It is not difficult to verify using (4.2) and (4.3) that any fixed point of Thas to be
in D, and T is a contraction on D. The existence of a unique fixed point of T, say
y*, will follow and one can directly verify that no component of y* can be zero or
negative by (4.3).

The global asymptotic stability of y* is achieved exactly in the same manner as
in Theorem 3.1 by substituting

£/,(/) = log tf and * , ( ' ) = log >>,(*), / = 1,2 «,

and repeating the remainder of the proof of that theorem and we do not go into
such a repetition.

5. Some comments

The results obtained here provide a significant generalisation of the author's
earlier result [2] where the parameters atJ in (1.1) were assumed to be time
invariant. Periodic Lotka-Volterra systems of the form (1.1) have been previously
considered by Cushing [1] under different and weaker assumptions; locally
asymptotic stability of periodic solutions have been established by Cushing [1]
after proving the existence of periodic solutions by means of bifurcation theoretic
techniques; the stability condition of Cushing [1] requires a knowledge of the
periodic solution. The major implication of our result in Theorem 3.1 is that
under the conditions of that theorem, no complex behaviour of the system (1.1) is
possible. For some remarks regarding the evolutionary and ecological significance
of the periodicity of the environment, we refer to [4]. By following the method of
[4], one can further generalise the result of Theorem 3.1 to periodic systems with
time delays in the interspecific interactions.
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