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Abstract
It was shown experimentally that for a 65-fs 17-J pulse, the effect of filamentation instability, also known as small-scale
self-focusing, is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral
values. Although this discrepancy has been left unexplained at the moment, in practice no signs of filamentation may
allow a breakthrough in nonlinear pulse post-compression at high laser energy.
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1. Introduction

The propagation of a high-power laser pulse in a medium
with cubic nonlinearity entails a number of physical effects.
Many of them are used to control beam parameters:
self-phase modulation for white light generation[1], post-
compression of femtosecond pulses[2–4] and pulse amplitude
and phase characterization[5,6]; generation of a cross-
polarized beam[7]; rotation of a polarization ellipse[8,9];
nonlinear phase shift used for the enhancement of the
temporal contrast of a pulse[10,11]; self-focusing of a beam
as a whole for mode locking[12]. At the same time, cubic
nonlinearity gives rise to destructive effects, which limit
the propagation length of high-power laser pulses in optical
materials. For example, when a laser pulse is propagating in
fibers and capillaries, self-focusing of the beam as a whole
limits the pulse power[3], and at second harmonic generation
(SHG) self-phase modulation leads to degradation of the
phase-matching condition[13,14].

However, the most significant detrimental effect is small-
scale self-focusing (SSSF) occurring in bulk optics, which
leads to beam filamentation. This significantly degrades the
beam quality and eventually, in most cases, leads to optical
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breakdown. SSSF is the spatial instability of a plane wave
propagating in a medium with cubic nonlinearity – the
amplification of transverse spatial perturbations (noise)[15].
The first experimental observation[16] showed a quantitative
agreement with the predictions[15]. This stationary theory
(i.e., related to the instability of a strong monochromatic
plane wave) has been developed in a great variety of works
(many of them are referenced in Ref. [17] and, to name a few,
the pioneering papers in Refs. [18–20]).

The key conclusion is that the SSSF instability occurs in
the θ < θcr range, where θ = κ/k0 is the angle between the
z-axis and the noise transverse wave vector κ , k0 = 2π/λ =
ω0/c is the longitudinal wave vector of the strong plane
wave propagating along the z-axis, ω0 is the optical carrier
frequency, c is the speed of light, the critical angle is as
follows:

θcr = 2
√

n0n2I0, (1)

n0,2 are the linear and nonlinear indexes of refraction corre-
spondingly (such that the total refractive index n = n0 +n2I)
and I0 is the plane wave intensity at the input to the nonlin-
ear medium. Hereinafter we use external angles (the angle
within the nonlinear medium is θ/n0).

The noise power gain is as follows:

Kp = ∣∣Enoise
(
z = L,−→κ )∣∣2

/

∣∣∣Enoise

(
z = 0,−→κ

)∣∣∣2
,
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which is defined as the gain of noise spatial harmonic inten-
sity at spatial frequency −→κ upon propagating the nonlinear
plate (NLP) of thickness L. Strictly speaking, Kp depends on
the noise input phase (see, e.g., Refs. [19–21]) and, assuming
the random origin of the noise, only the phase-averaged mag-
nitude of Kp has practical meaning. The explicit equation for
a phase-averaged Kp is given in Ref. [4] and reads as follows:

Kp (θ) = 1+ 2
x2 sh2(Bx), (2)

where γ = θ/θcr and x = 2γ
√

1−γ 2. The parameter B is the
nonlinear phase shift called the B-integral:

B = k0n2LI0, (3)

where L is the length of the nonlinear medium. Note that for
γ > 1, Kp is close to unity; for γ = 1/

√
2, Kp has a maximum

value Kp,max = ch(2B); and for small angles γ � 1, the noise
power gain is nearly constant and equal to Kp,0 = 1+2B2.

The straightforward extension of this theory (which
describes the spatial instability of a plane wave) to high-
power optical pulses can be derived assuming time t as a
parameter; thus, the B-integral B(t) = k0n2LI0(t) and the
critical angle θcr(t) = 2

√
n0n2I0(t) become time-dependent,

where I0(t) is the intensity of the input pulse that spatially
stays at the plane wave. In this case, the noise energy gain Ke

can be derived as a convolution of the power gain Kp with
the input pulse I0(t):

Ke (θ) =
∫

Kp (θ,t) · I0(t)dt∫
I0(t)dt

= 1+2

∫
x−2sh(Bx)I0(t)dt∫

I0(t)dt
.

(4)

This approach, which we refer to as stationary, is apparently
well justified for nanosecond pulses but rather debatable
for much shorter pulses, for example, for the tens of fem-
toseconds range. As opposed to the stationary approach, the
solution of equations that describes the propagation of a
short intense laser pulse in a nonlinear dispersive medium
hereinafter will be called a nonstationary theory and will be
discussed in Section 2.

Thus, SSSF development is determined, on the one hand,
by the noise power and its spatial spectrum at the input
to the medium and, on the other hand, by the nonlinearity
the measure of which is the B-integral. A large number
of experiments with nanosecond pulses showed that the
influence of input noise is actually not essential, since the
spatial noise cannot be completely eliminated anyway and
for the most dangerous angles γ ∼ 1/

√
2, the gain Kp

depends exponentially on B. Therefore, the B-integral is
the main parameter that determines the SSSF growth rate,
leading to the breakdown of optical elements B > 3. This
statement, being valid for nanosecond pulses, was erro-

neously transferred to the femtosecond time scale (see, e.g.,
Refs. [22–25]) and, unfortunately, is continuously repeated,
including in recent reviews[2,3]. However, for femtosecond
pulses the absence of optical damage and presumably SSSF
at B � 3 was experimentally observed in a number of
works[26–33]. The reasons for such a significant difference
between high-power femtosecond and nanosecond pulses are
discussed below and may be divided into two groups: (i)
noise power reduction at the input to the nonlinear medium
and (ii) noise gain Kp and Ke reduction.

1.1. The reduction of noise power at the input to the nonlin-
ear medium

For nanosecond lasers, a typical beam intensity is several
GW/cm2, which gives θcr of about 1 mrad; for femtosecond
lasers, the typical intensity is several TW/cm2 and the angle
θcr is already tens of mrad. Such a substantial increase in
θcr leads to a decrease in the spectral density in the most
‘hazardous’ region γ ∼ 1/

√
2 due to three effects.

The first of them is spatial self-filtering of the beam
during propagation in free space[32]. If the nonlinear medium
is rather far away from the noise source (NS; which is
in most cases any optical surface touched by the beam),
then the most ‘hazardous’ noise transverse spatial frequency
| −→κ cr |= k0θcr simply walks-off from the beam aperture; the
larger the θcr, the smaller the distances required for spatial
self-filtering. This effect was experimentally confirmed qual-
itatively[26,32] and quantitatively[34]. Second, for short pulses,
free space is also a temporal filter[35], separating the noise
pulse from the main pulse in time rather than in space. Since
high spatial frequency noise propagates at an angle to the
z-axis, it lags behind the main pulse. As the delay becomes
comparable with the pulse duration, the maximum intensity
of the main pulse ‘meets’ the leading edge of the noise,
which is equivalent to a reduction of input noise power. With
the increase of the delay, the reduction may be exponentially
small. Third, the noise spatial spectral density evidently
decreases as θ increases. The particular model noise spectra
were simulated in Ref. [36]. The results showed that this
effect can significantly reduce SSSF; however, this strongly
depends on the spectral density decay law, which requires a
special experimental study.

1.2. Substantial reduction of noise gain for short pulses

The spatiotemporal instability of a plane wave in the approx-
imation of a slowly varying amplitude was investigated in
Ref. [37] and an expression for the instability increment
taking into account higher-order dispersions, spatiotempo-
ral focusing (the nonstationary diffraction term) and self-
steepening was obtained in Ref. [38]. Analytical expressions
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for the noise power gain similar to Equation (2) cannot be
obtained. In Refs. [39,40], the development of SSSF was
studied without the approximation of slowly varying ampli-
tude. It was shown numerically that, in the case of anomalous
dispersion, SSSF does not develop for laser pulses with a
duration of less than 10 field periods. Experimental confir-
mation of this effect has not been demonstrated. Moreover,
with normal dispersion, this effect has not been studied
either theoretically or in simulation.

In Section 2 of this work we perform a detailed analysis of
noise gain at nonstationary nonlinear interaction and deter-
mine the parameters at which SSSF is suppressed. Results of
the measurements of spatial noise gain and their comparison
with the stationary theory (Equation (4)) and numerical sim-
ulation of the nonstationary problem considered in Section 2
are presented in Section 3.

2. Numerical simulation

The numerical simulation of SSSF was performed using two
approaches. The first one is based on the slowly varying
amplitude approximation that gives a modified nonlinear
Schrödinger equation (NSE) for a complex field amplitude−→
U

(
t,z,−→r )

[38,41]. It is convenient to write the NSE using
normalized time t, z and r coordinates and normalized scalar
field � (assuming linear polarization) as follows:

ξ = z
L
, η = t − z/u

τ0
, −→ρ = −→r

√
k0n0

L
, � = U√

I0
, (5)

where u = (∂k/∂ω)−1 is the group velocity at frequency ω0,
I0 is the maximum of the input pulse intensity (the field unit
is the square root of intensity) and τ0 is the duration of the
input pulse. With Equation (5) taken into account, the NSE
has the following form:

(
∂
∂ξ

− i
2 D ∂2

∂η2 − i
2

(
1− i

2πN
∂
∂η

)
Δ−→ρ

)
� =

− iB
(

1+ i
2πN

∂
∂η

)
|�|2�,

(6)

where

N = τ0/T, (7)

D = k2L/τ 2
0 , (8)

k2 = ∂2k
∂ω2

∣∣∣
ω0

is the group velocity dispersion and T = λ/c =
2π/ω0 is the optical field period.

The second approach proposed in Refs. [42–44] is
based on the unidirectional wave equation (UWE) for a
complete oscillating optical complex field

−→
E

(
t,z,−→r ) =−→

U
(
t,z,−→r )

eiω0t with the assumption of the particular
optical dispersion, which is explicitly written for dielectric

permittivity as ε = ε0 + αω2. Note that, if this particular
empirical dispersion law is supposed to be used in the optical
band for reasonable optical materials, then the parameters
ε0 and α have to be chosen accordingly to mimic the
physical dispersion. It turns out that for realistic materials,
ε0 � αω2

0 and the refractive index in the optical band is
n ≈ n0 +αω2/2, where n0 = √

ε0 ≈ c/u and the dispersion
coefficients are k2 ≈ 3αk0/n0 and k3 ≈ 3α/cn0. The equation
for the normalized optical complex scalar field � = E/

√
I0

(assuming linear polarization) in the UWE approximation
with the same coordinate normalization (Equation (5)) can
be written as follows:

(
∂2

∂ξ∂η
− D

12πN
∂4

∂η4 −πNΔ−→ρ

)
� = B

2πN
∂2

∂η2
|�|2�.

(9)

Third- and higher-order dispersions as well as the third har-
monic generation are already neglected in the NSE (Equation
(6)). The UWE (Equation (9)) intrinsically contains sec-
ond and third dispersion orders. Using the same definition
(Equation (8)) one can obtain D = 3αk0L/n0τ

2
0 . As for the

third harmonic generation, it was also neglected in the UWE
(Equation (9)).

From Equations (6) and (9) it is clear that the nonsta-
tionary problem depends, besides the B-integral (Equation
(3)), on two dimensionless parameters, N and D. Note that
the D/B ratio is equal to the ratio of the nonlinear length
Lnl = 1/(k0n2I0) to the dispersion length Ld = τ 2

0 /k2.
Instead of D, another parameter C can be introduced,

which (in contrast to D) is convenient in that it depends
neither on the input pulse duration nor on the nonlinear
medium length L:

C = 2π2 DN2

B
= k0c2k2

2n2I0
. (10)

Parameter C appears naturally in the wave equations (Equa-
tions (6) and (9)) if the longitudinal coordinate z were
normalized to L/B, that is, ξ̃ = Bz/L, and time t were
normalized to the optical period T .

Both Equations (6) and (9) were solved numerically for
identical parameters and boundary conditions. An intense
pulse with uniform spatial distribution combined with weak
spatial noise with the same temporal shape was fed to the
nonlinear medium input (z = 0), and the noise energy gain
was calculated:

K (θ) =
∫∫

0

∣∣Enoise,out
(
t,−→κ )∣∣2dtdφ∫∫

0

∣∣Enoise,in
(
t,−→κ )∣∣2dtdφ

, (11)

where φ is the polar angle in −→κ -space. The noise input
phase was a random function uniformly distributed in the
interval from 0 to 2π . The integration over the polar angle
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(a)     B = 5, C = 15 (b)     B = 5, C = 60

(
)

= / = /

(
)

(c)     B = 10, C = 15 (d)     B = 10, C = 60

Figure 1. Gain K as a function of γ = θ/θcr for C = 15 (a), (c) and C = 60 (b), (d); B = 5 (a), (b) and B = 10 (c), (d); for N = 50 (black curves), N = 15
(green curves), N = 7.5 (red curves) and N = 5 (blue curves). The solid curves show the results of numerical simulation, while the dashed curves are plotted
by Equation (4), with B replaced by Beff.

φ in Equation (11) replaces the averaging over multiple
realizations of randomly distributed input noise phase.

We restricted the consideration to the linear regime, when
the noise growth had no back-action on the strong pulse. For
this, the noise amplitude was chosen so small that even at
the output of the nonlinear medium it stayed much smaller
than the amplitude of the strong pulse. The field of the
strong wave at the input Ein (t,z = 0) did not depend on the
transverse coordinates and in time it was a Gaussian pulse
with duration τ0 : Ein (t,z = 0) = E0e−(t/τ0)2/2. The noise had
the same temporal shape, and its spatial spectrum was much
wider than the instability range. The shape of the spatial
spectrum was of no importance for calculating K.

The results of numerical simulation showed that Equations
(6) and (9) give similar results. The solid curves for K (γ )

obtained using Equation (6) are plotted in Figure 1. For
N = 50, the simulation results agree very well with Equa-
tion (4) – the dashed and solid curves overlap in all four
Figures 1(a)–1(d). For shorter pulses, the magnitudes of K
are significantly smaller, and the K maximum shifts from
γ = 1/

√
2 towards smaller γ . This has a simple physical

explanation. Due to normal dispersion, the strong pulse is
subjected to stretching as it propagates through a nonlinear
medium, and thus its peak intensity decreases and as a result
the overall nonlinear phase shift at the medium output is less
than the B-integral determined by Equation (3). The effective
B-integral can be defined as follows:

Beff = k0n2max
t

∫ L

0
I (t,z)dz, (12)

where the intensity I (t,z) is the solution of Equation (6)
or (9) that describes the evolution of a strong pulse in a
dispersive nonlinear medium. If Beff is substituted for B in
Equation (4), the result for the noise becomes quite close to
the solution of Equation (6) (comparing the solid and dashed
curves in Figure 1). In particular, both the maximum values
of K and the values of γ at which K has a maximum agree
well. There is a significant difference only at the angles close
to γ ∼ 1. This difference is mainly related to the definitions
of θcr and B (Equations (1) and (2)) that make the critical
angle proportional to the square root of B. Therefore, the
replacement of B by Beff < B makes the critical angle by
factor

√
Beff/B < 1 lower. This, in turn, makes the stationary

analytic dashed curves in Figure 1 bump into the horizontal
axis at a value lower than γ = 1. At the same time, in
the accurate numerical simulation (solid curves in Figure 1)
there is some noise gain even at the angles close to γ = 1,
which occurs in the beginning of the pulse propagation
until the pulse is not yet stretched and the peak intensity is
still high. Thus, the suppression of SSSF for shorter pulses
(smaller N) can be explained by the pulse stretching due to
normal dispersion, which effectively decreases the value of
the B-integral down to Beff.

Using the results obtained in Ref. [45], it can be easily
shown that the durations of the input and output pulses
practically do not differ if BD � 0.5. Otherwise, the pulse
is stretched and K decreases. The decrease in peak intensity
due to stretching during pulse propagation also explains
the shift of the K maximum towards smaller γ , as θcr is
proportional to the square root of the intensity (Equation (1))
and, therefore, decreases during propagation.
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Figure 2. Experimental layout. NS – noise source (randomly scratched 0.5 mm thick glass plate), NLP – nonlinear plate (BK7 glass or KDP), PHM – mirror
with a pinhole.
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Figure 3. Experimental noise spectra (a) and noise gain K (θ) (b).

3. Experimental results and discussion

The experimental layout is shown in Figure 2. A beam of the
laser PEARL (PEtawatt pARametric Laser[46]) with central
wavelength 910 nm, pulse energy up to 17 J, full width at
half maximum (FWHM) pulse duration 65 fs (N = 13) and
diameter 18 cm passed through an orifice with a diameter
of 10 cm located in vacuum at a distance of 8 m from the
last compressor grating. The purpose of the orifice was to
trim out the lateral wings of the beam to make the residual
central part more like a flat-top for better interpretation of
the results. The intensity averaged across the nearly flat-
top beam was 0.8 TW/cm2. Next, the beam propagated
through a thin glass plate, which introduced a spatial NS
and an NLP. The distance between the orifice and the NS
was 2 cm and that between the NS and NLP 3 cm; thus,
the diffraction on the orifice’s hard edge was insignificant
within the NLP. Glass (BK7) with a thickness of 7 mm
or a potassium dihydrogen phosphate (KDP) crystal with
a thickness of 4 mm was used as an NLP. The values of
B and C in these two cases were B = 14 and 10, C = 37
and 9.6, respectively. The 0.5-mm thick randomly scratched
glass plate was used as an NS and was placed just in
front of the NLP. The distance between the NS and the
NLP was set small enough (3 cm) to exclude spatial[32] and
temporal[35] self-filtering. Downstream of the NLP, the beam
upon reflection from two wedges was attenuated by about a
factor of 1000 and escaped from the vacuum chamber. The
B-integral in the vacuum window did not exceed 0.05. In
the focal plane of the lens (F = 73 cm), there was a mirror
with a pinhole (PHM) 2.5 mm in diameter through which the

core of the laser beam associated with the strong pulse and
large transverse size easily passed. The halo consisting of
the spatial noise was reflected by the PHM. The PHM plane
was image relayed onto the charge-coupled device (CCD)
camera. Note that the wedges, the vacuum viewport and the
lens had the apertures large enough to transfer the spatial fre-
quencies up to θ < 5.5 mrad without significant distortion.
Therefore, the CCD camera captured the time-integrated
noise spatial spectrum in the 2 mrad < θ < 5.5 mrad range,
all of which is in the θ � θcr range (θcr ≈ 40 mrad in
our case).

First of all, the NS scratch density was chosen such that
most of the noise was introduced by the NS, whereas the
noise from the other optical elements located both upstream
and downstream of the NLP could be neglected (comparing
the black and green curves in Figure 3(a)). These measure-
ments were made in a linear regime with B � 1. The blue
and red curves in Figure 3(a) show the noise spectra for glass
and KDP crystal, respectively. The ratio of the nonlinear
and linear spectra, that is, noise gain K (θ), is shown by
solid curves in Figure 3(b). Note that these curves have been
plotted assuming that all the noise was generated upstream
of the NLP on the NS, which is not entirely true. An upper
estimate can be made assuming that all the noise without
the NS (black curve in Figure 3(a)) was not amplified, since
it was ‘born’ downstream of the NLP. The dashed curves
in Figure 3(b) correspond to K (θ) calculated in accordance
with this assumption.

A small modulation of the function K (θ) could be associ-
ated with the fact that the NS was at some particular distance
from the NLP (see Ref. [21] for detail). From Figure 3(b) it is
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clear that the values of K for glass and KDP crystal slightly
differ from each other, but in general we can conclude that
K ≈ 2, and the upper estimate is K < 5 in both cases.
The quasi-stationary theory (Equation (4)) at θ � θcr for a
Gaussian pulse gives Ke = 1+2B2/

√
3, that is, Ke = 116 for

B = 10 (KDP) and Ke = 227 for B = 14 (glass). The results
of the simulation (Equation (6)) yield K = 106 and 112 for
KDP and glass, respectively, which also greatly exceed the
measured values.

Thus, the experimental results demonstrate significant
suppression of SSSF at θ � θcr, which cannot be explained
by the existing theoretical concepts. Possible reasons for this
discrepancy could be the following. First, Equations (6) and
(9) do not take into account the finite temporal response
of Kerr nonlinearity (it was assumed to be inertia-free, i.e.,
instant), which can lead to the generation of Raman-shifted
waves. Second, in simulation the temporal shape of the noise
at the input to the nonlinear medium coincided with that of
the strong pulse, which may not exactly correspond to the
experimental conditions. Third, in the simulation both the
amplitude and the phase of the strong beam were assumed
to be ideally uniform in space (plane wave), while in the
experiment the beam had a large-scale structure. Fourth, the
plane wave depletion was not considered in the simulation,
so the spatial noise intensity was kept low even at the output
of the NLP. In reality, this assumption may be easily violated.
The well-known example is the so-called beam hot spots,
which may be considered as the ultimate stage of SSSF when
the noise absorbs a substantial fraction of the main beam
energy. Clarification of the exact reason for the discrepancy
between the theoretical and experimental data is the subject
of our further research.

4. Conclusion

The detailed numerical simulation of the propagation of
femtosecond laser pulses in a medium with Kerr nonlinearity
showed that, in the case of normal dispersion (in contrast to
anomalous dispersion[39,40]), SSSF is not suppressed. Even
for short laser pulses, noise gain is well described by the
stationary theory (Equations (2) and (4)) if the B-integral
(Equation (3)) is replaced by Beff (Equation (12)). Neverthe-
less, the considerable reduction of noise gain, which may be
considered as the suppression of SSSF, was observed exper-
imentally. Direct measurements of the noise gain showed
its significant decrease in comparison with both the quasi-
stationary theory and numerical simulations. The explana-
tion for this discrepancy needs further study, but in practice
no signs of filamentation enables successful implementation
of nonlinear pulse post-compression at high laser energy and
high B-integral values, resulting in a higher compression
ratio and peak power.
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