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Abstract
This paper examines the aeroelastic stability of uniform flexible wings imperfectly supported at one end and free at
the other. Real-world aircraft wings inevitably exhibit imperfections, including non-ideal end supports. This work is
motivated by the critical need to fundamentally understand how end-support imperfections influence the aeroelastic
behaviour of fixed wings. The equations of motion are obtained via the extended Hamilton’s principle. The bending-
torsional dynamics of the wing is approximated using the Euler-Bernoulli beam theory. The aerodynamic lift and
pitching moment are modelled using the unsteady aerodynamics for the arbitrary motion of thin aerofoils in the
time domain, extended by the strip flow theory. The imperfect support is modelled via rotational springs (with
linear stiffness) for both bending and torsional degrees of freedom. The Galerkin method is used for the spatial
discretisation. The stability analysis is performed by solving the resulting eigenvalue problem, and the numerical
results are presented in Argand diagrams. The numerical results presented in this study are novel and offer great
insights. It is demonstrated that support imperfections can substantially influence the critical flow velocity for both
flutter and divergence, as well as alter the sequence of instabilities and the unstable mode. The extent of these effects
directly depends on the magnitude of the imperfections. Interestingly–and counterintuitively–in certain cases, a
reduction in the flutter speed is observed as the imperfections decrease.

Nomenclature
Abbreviations
a dimensionless distance between the elastic axis and mid-chord
b semi-chord
c aerofoil chord length
EI bending stiffness
GJ torsional stiffness
Iea mass moment of inertia about the elastic axis
Kw rotational spring stiffness about the x-axis
Kθ rotational spring stiffness about the y-axis
� wing span
L lift
m mass per unit length
M aerodynamic pitching moment
t time
T kinetic energy
U flow velocity
V potential energy
w displacement in the transverse direction
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2 Kheiri and Riazat

xθ static unbalance
y spanwise distance

Greek symbols
δw virtual transverse displacement
δθ virtual torsional displacement
θ pitch angle
ρ fluid density

1.0 Introduction
Aeroelasticity is the science of interactions among aerodynamic, elastic, and inertial loads. These inter-
actions can result into instabilities like divergence and flutter or can manifest themselves, for example, as
transient vibrations due to turbulent flow (i.e., buffeting) [1]. Beam-like structures with aerofoil cross-
section are found in many engineering systems, such as fixed- and rotary-wing aircraft, wind turbines,
compressors and gas turbines. Aeroelastic stability analysis is an essential step in the design process of
such systems. For example, according to airworthiness requirements set by the civil aviation authorities,
such as the Federal Aviation Administration (FAA), it must be shown that an airplane is free from flutter
and divergence for any condition of operation within the flight envelope, including also an adequate (typ-
ically 15%) margin of safety [2]. Demonstrating compliance with aeroelastic stability requirements–such
as those established by the FAA–typically involves a combination of numerical analyses, wind tunnel
testing, ground vibration testing and flight testing [3].

A broad spectrum of aeroelastic models has been developed in the literature, exhibiting substantial
variation in aerodynamic and structural dynamic modeling fidelity, as well as in their coupling method-
ologies. At one end of the spectrum are two- or three-dimensional (3-D) analytical models that utilise
aerodynamic theories such as Theodorsen’s thin-aerofoil theory [1] or Peters’ finite-state theory [4],
and represent structural dynamics using a limited number of degrees of freedom. These simplified low-
fidelity models are widely used due to their computational efficiency and analytical tractability, making
them well-suited for conceptual and exploratory design phases [5]. They are additionally very useful
for conducting fundamental studies, where understanding the underlying physical mechanisms for the
aeroelastic behaviour is the key. Some earlier examples of such aeroelastic models can be found in [6–10]
and some more recent examples can be found in [11–14].

Many studies have employed 2-D, typical-section aeroelastic models, where ‘distributed’ structural
properties such as stiffness are represented using ‘concentrated’ elements. For example, as discussed
by Lee et al. [15], a twisting thin wing or blade behaves like a cubic hardening spring. In other words,
a cubic spring in a typical section model can effectively represent the nonlinear stiffness behaviour of
a wing undergoing large deformations. Concentrated structural elements such as springs can also be
used to represent the structural behaviour in control mechanisms as well as in the parts connecting, for
example, a wing to the fuselage or a pylon to the wing. Many studies have focused on the study of the
effects of concentrated stiffness nonlinearities on the aeroelastic behaviour (including flutter suppres-
sion, dynamic response and control performance) in typical section models; for example, refer to Refs
[13–21]. In fact, the aeroelastic model presented in this paper differs from most studies in the literature by
retaining both distributed and concentrated stiffness representations. The distributed stiffness captures
the elastodynamic deformation along the wing, while the concentrated stiffness models the structural
connection between the wing and the fuselage.

At the other end of the spectrum of aeroelastic models are high-fidelity, strongly (or tightly) coupled
computational models that integrate computational fluid dynamics (CFD) and computational struc-
tural dynamics (CSD) methods. These models are solved using either a ‘monolithic’ or a ‘partitioned’
scheme. In a monolithic scheme, the CFD and CSD equations are solved simultaneously [22]. Monolithic
schemes require reformulation of both fluid and structural dynamics, and they are generally computation-
ally challenging and mathematically suboptimal [23], and as a result, they have not received considerable
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attention. In contrast, ‘partitioned’ schemes allow for spatial and temporal discretisations tailored to the
fluid/structure models [23]. Despite recent advancements and popularity of computational aeroelastic
models (some examples are Refs [24, 25]), they are still time consuming for aeroelastic stability analysis,
given that, for example, for an airplane normally hundreds of flight scenarios need to be investigated.

In addition to low- and high-fidelity aeroelastic models, there exist medium-fidelity models, which are
commonly used in practice. They typically employ potential-flow-based lifting surface methods, such
as the Doublet Lattice Method (DLM) [26] or the Vortex Lattice Method (VLM) [27] for aerodynamic
modeling. Structural dynamics is generally represented using modal-based methods or finite element
models. Among medium-fidelity approaches, DLM-based models are the industry standard for analysing
aeroelastic stability and time response in the subsonic flow regime [5, 28]. They form the foundation of
widely used commercial aeroelastic software packages, such as MSC Nastran [29] and ZAERO [30].
Some recent examples of aeroelastic models based on DLM/VLM can be found in [31, 32].

Concerning the aeroelasticity of wings, in almost all previous studies, the wing was typically consid-
ered to be clamped (or fixed) at one end and free at the other–a cantilevered wing. However, in reality no
structure or attachment is perfect. Imperfections may be created, for example, during manufacturing, due
to structural fatigue (tear and wear), or during installation, and they may appear in the geometry (e.g.,
pre-existing deformation, curvature, twist and cross-sectional asymmetry), material (e.g., inhomogene-
ity, cracks, void mass and delamination) and supports (e.g., loose/flexible end-supports). Studies have
indicated the importance of monitoring imperfections and defects to ensure the good health of wing-like
structures. For example, blades ‘root attachment problems’ are a common cause of vibration and failure
in axial compressors [33]. In a civil aircraft airframe, fatigue may cause cracks to quickly spread in
susceptible structural elements, such as the over-wing fuselage attachment [34]. This seems particularly
crucial as composite materials are becoming increasingly widespread in aerospace and wind energy
applications.

Although some research has been conducted in the past to examine the effects of structural dam-
age, such as surface cracks and delamination on the aeroelastic behaviour of wings (e.g. Refs [35–38]),
the effect of imperfect end-supports on the aeroelastic stability is still unknown. The effects of support
imperfection, however, have been examined for some other systems involving fluid-structure interac-
tions, such as cylinders in axial flow [39, 40] and pipes conveying fluid [41–43]. It was found that
depending on the system parameters and support imperfection, the critical flow velocity for flutter and
the post-flutter dynamical behaviour could significantly be altered. The objective of the present paper is,
therefore, to explore the effects of support imperfection on the aeroelastic stability of uniform flexible
wings. The rest of the paper is organised as follows. In Section 2.0, the mathematical model is devel-
oped. Next, in Section 3.0, the numerical convergence study and the verification of the mathematical
model are described. The numerical results are presented and discussed in Section 4.0. And the paper
ends with some concluding remarks in Section 5.0.

2.0 Theory
Figure 1 shows the schematic drawing of a flexible high aspect-ratio wing (i.e. �/c � 1, � and c being the
span and chord length of the wing, respectively) subjected to a uniform flow with velocity U. A Cartesian
coordinate system is adopted here, where the x-axis is along the chord, pointing from the leading-edge
towards the trailing-edge, the y-axis is along the span and the z-axis along the wing thickness. The wing
has uniform mass per unit length m, spanwise bending rigidity EI and torsional rigidity GJ. It is assumed
that the y-axis is coincident with the elastic axis of the wing. The bending-torsional dynamics of the wing
is modelled using the Euler-Bernoulli beam theory, where w (y, t) denotes bending displacements in the
z-direction while θ (y, t) represents torsional displacements in the y-direction; t represents time.

The wing is imperfectly supported at y = 0 while it is free at y = �. The support imperfections are
considered for both bending and torsional degrees-of-freedom (DOFs), using rotational springs of linear
stiffness. Modelling support imperfections using linear springs is a simplification, as imperfections in
real-world airframe structures can introduce both stiffness nonlinearities and dissipative effects [15].
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Figure 1. Schematic drawing of a uniform flexible wing imperfectly supported at y = 0 and free at
y = �, where � is the span. Two rotational springs of the stiffness Kw and Kθ are used to model the
support imperfection; the springs are attached to the wing at one end and attached to a rigid support
(e.g., fuselage) at the other end; xyz is the Cartesian coordinate system attached to the undeformed wing;
also, c is the chord length and U is the freestream velocity.

Nevertheless, the present formulation is the first theoretical modelling attempt, and it can easily be
extended to account for these complexities. Examples of such extensions for a pipe conveying fluid
system are the works by Kheiri [42] and Riazat and Kheiri [43] in which cubic nonlinearities were used
to model support imperfections.

The stiffness of the springs is represented by Kw and Kθ , respectively. In other words, at y = 0, w = 0
while ∂w/∂y �= 0 and θ �= 0. Following the approach introduced by Kheiri et al. [41], the effect of support
imperfections is considered in the equations of motion rather than the boundary conditions.

The equations of motion are obtained via the extended Hamilton’s principle, following the formula-
tion presented in Ref. [2]:

T = 1

2
∫�

0

(
mẇ2 − 2mbxθ ẇθ̇ + Ieaθ̇

2
)

dy, (1)

where T is the kinetic energy of the wing; b is the semi-chord (i.e. c = 2b), xθ = e − a is the so-called
static unbalance parameter, and Iea is the mass moment of inertia per unit length about the elastic axis;
also, (.) = ∂ ( ) /∂t.

The potential energy may be written as

V = 1

2
∫�

0

(
EIw′′2 + GJθ ′2) dy + 1

2
Kww′2 (0, t) + 1

2
Kθ θ

2 (0, t) , (2)

where the integral term represents the strain energy due to bending and torsion and the last two terms
on the r.h.s. denote the potential energy due to springs (used to model support imperfections); also,
( )′ = ∂ ( ) /∂y.1

Thus, the Lagrangian of the system, i.e., L= T − V , is obtained and its variation is added to the
virtual work due to aerodynamic lift per unit length L and pitching moment (about elastic axis) per unit
length Mea:

δWnc = ∫�

0 (Lδw + Meaδθ) dy, (3)

where δw and δθ are the bending and torsional virtual displacements, respectively.

1Similarly, ( )′′ = ∂2 ( ) /∂y2 and ( )′′′′ = ∂4 ( ) /∂y4.
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After some mathematical manipulations, the equations of motion in the differential form can be
written as

∫ �

0

{[
mẅ − mbxθ θ̈ + EIw′′′′ − L

]
δw + [

Kww′δ̄(y)
]
δw′} dy = 0,

∫ �

0

[
Ieaθ̈ − mbxθ ẅ − GJθ ′′ + Kθ θ δ̄(y) − Mea

]
δθ dy = 0, (4)

where δ̄ (y) denotes the Dirac delta function.
In this paper, the indicial aerodynamic theory based on Wagner’s function is used to represent the

unsteady aerodynamic lift and pitching moment in the time domain for small arbitrary motions of the
wing. The two-dimensional aerodynamic theory is extended to three dimensions using the strip flow
theory. This approach is widely used in the literature; some recent examples are Refs [44–47]. Since
the indicial aerodynamic theory is valid for arbitrary motions, as opposed to Theodorsen’s thin-aerofoil
theory, which is valid for simple harmonic motions, the solution is accurate not only at the onset of flutter,
but also for all flow velocities below the flutter speed. Additionally, a time domain formulation facilitated
by the use of the indicial aerodynamic theory can be used for the investigation of the dynamic response
of the aeroelastic system to external disturbances such as gusts. Moreover, as seen in the following, the
stability analysis is conducted more straightforwardly, compared to an iterative solution process, which
is typical of frequency domain stability analyses.

It is noted that since the wing is assumed to be of high-aspect ratio, the effects of three-dimensionality
of the flow and tip vortices are neglected. Ignoring such effects typically leads to aerodynamic loads
that are higher than those encountered in reality, which in turn results in a lower flutter speed – a more
conservative prediction. A recent comparative study [48] showed that for wings with the aspect ratio of
15 and higher, a two-dimensional aerodynamic model is sufficiently accurate to conduct an aeroelastic
analysis.

According to Wagner’s problem of the step change in angle-of-attack, lift may be written as [1]:

L = πρb2
[−ẅ + Uθ̇ − baθ̈

]
− 2πρUb

(
v3/4 (0) ϕ (τ) + ∫τ

0

dv3/4 (σ )

dσ
ϕ (τ − σ) dσ

)
, (5)

where v3/4 (t) = ẇ − Uθ − b (1/2 − a) θ̇ is the instantaneous vertical velocity of the fluid particle (the
so-called downwash) in contact with the three-quarter chord point of the aerofoil section; a is the dimen-
sionless distance between the elastic axis and mid-chord; τ = Ut/b is the dimensionless time; also, ϕ (τ)

represents Wagner’s function, which can conveniently be approximated as

ϕ (τ) = 1 − γ1e
−ε1τ − γ2e

−ε2τ , (6)

in which γ1 = 0.165, γ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.
The aerodynamic pitching moment about the elastic axis may also be written as

Mea = πρb2

[
−baẅ − Ub

(
1

2
− a

)
θ̇ − b2

(
1

8
+ a2

)
θ̈

]

− 2πρUb2

(
1

2
+ a

) (
v3/4 (0) ϕ (τ) + ∫τ

0

dv3/4 (σ )

dσ
ϕ (τ − σ) dσ

)
. (7)
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By substituting Equation (6) into the expression for lift (see Equation (5)), we obtain:

L = πρb2

[
−ẅ + Uθ̇ − baθ̈ ]−2πρUb[ ẇ − Uθ − b

(
1

2
− a

)
θ̇

]
ϕ (0)

− 2πρU2

[
w − b

(
1

2
− a

)
θ

]
dϕ

dτ
(0) + 2πρU2

[
w (0) − b

(
1

2
− a

)
θ (0)

]
dϕ

dτ

+ 2πρU2

2∑
k=1

[
bγkεk

(
1 −

(
1

2
− a

)
εk

)
Ak + γkε

2
k Hk

]
, (8)

and the expression for the pitching moment becomes

Mea = πρb2

[
−baẅ − Ub

(
1

2
− a

)
θ̇ − b2

(
1

8
+ a2

)
θ̈

]

− 2πρUb2

(
1

2
+ a

) [
ẇ − Uθ − b

(
1

2
− a

)
θ̇

]
ϕ (0)

− 2πρU2b

(
1

2
+ a

) [
w − b

(
1

2
− a

)
θ

]
dϕ

dτ
(0)

+ 2πρU2b

(
1

2
+ a

) [
w (0) − b

(
1

2
− a

)
θ (0)

]
dϕ

dτ

+ 2πρU2b

(
1

2
+ a

) 2∑
k=1

[
bγkεk

(
1 −

(
1

2
− a

)
εk

)
Ak + γkε

2
k Hk

]
, (9)

where Ak and Hk (k = 1, 2) are:

Ak = ∫τ

0 e−εk(τ−σ)θ (σ ) dσ , Hk = ∫τ

0 e−εk(τ−σ)w (σ ) dσ . (10)

Following dimensionless variables are defined

η = w

�
, ζ = y

�
, τ = Ut

b
, μ = m

πρb2
, u =

(
πρb2

EI

) 1
2

U�,

AR = �

b
, � = EI

GJ
, r2 = Iea

mb2
, kη = Kw�

3

EI
, kθ = Kθ �

GJ
, (11)

where μ is called mass ratio, AR aspect ratio, � stiffness ratio and r the dimensionless radius of gyration.
Using the above dimensionless variables, the partial differential equations (Equation (4)) are rendered

dimensionless. Then, Galerkin’s method is utilised to spatially discretise the dimensionless partial differ-
ential equations by assuming η (ζ , τ) = �N

i=1�i (ζ ) qi (τ ) and θ (ζ , τ) = �N
i=1�i (ζ ) pi (τ ), where �i (ζ )

and �i (ζ ) are, respectively, the bending and torsional mode shapes, and qi (τ ) and pi (τ ) are their cor-
responding generalised coordinates; also, N is the number of modes, which is assumed to be the same
for bending and torsion.

The discretised, dimensionless bending-torsional equations of motion are expressed as

M(1)

ij q̈i + M(2)

ij p̈i + C(1)

ij q̇i + C(2)

ij ṗi + K(1)

ij qi + K(2)

ij pi + G(1)

ij H1i + G(2)

ij H2i

+ G(3)

ij A1i + G(4)

ij A2i + F(1)

i (τ ) = 0, (12)

and

M(3)

ij q̈i + M(4)

ij p̈i + C(3)

ij q̇i + C(4)

ij ṗi + K(3)

ij qi + K(4)

i pi + G(5)

ij H1i + G(6)

ij H2i

+ G(7)

ij A1i + G(8)

ij A2i + F(2)

i (τ ) = 0, (13)
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where

M(1)

ij = (1 + μ) u2AR2δij, M(2)

ij = (a − μxθ ) u2ARbij, C(1)

ij = 2u2AR2ϕ (0) δij,

C(2)

ij = −u2AR

[
1 + 2

(
1

2
− a

)
ϕ (0)

]
bij, K(1)

ij = λ4
i δij + 2u2AR2ϕ̇ (0) δij + kη�

′
i (0) �′

j (0)

K(2)

ij = −2u2AR

[
ϕ (0) +

(
1

2
− a

)
ϕ̇ (0)

]
bij

G(1)

ij = −2u2AR2γ1ε
2
1δij, G(2)

ij = −2u2AR2γ2ε
2
2δij,

G(3)

ij = −2u2ARγ1ε1

(
1 −

(
1

2
− a

)
ε1

)
bij, G(4)

ij = −2u2ARγ2ε2

(
1 −

(
1

2
− a

)
ε2

)
bij

F(1)

i = −2u2AR2δijqi (0) ϕ̇ (τ ) + 2u2AR

(
1

2
− a

)
bijpi (0) ϕ̇ (τ ) , (14)

M(3)

ij = (a − μxθ ) �u2ARbji, M(4)

ij =
(

μr2 + 1

8
+ a2

)
�u2δij, C(3)

ij = 2�u2AR

(
1

2
+ a

)
ϕ (0) bji,

C(4)

ij = �u2

(
1

2
− a

) [
1 − 2

(
1

2
+ a

)
ϕ (0)

]
δij, K(3)

ij = 2�u2AR

(
1

2
+ a

)
ϕ̇ (0) bji,

K(4)

ij = −
[

cij + 2�u2

(
1

2
+ a

)
ϕ (0) δij + 2�u2

(
1

4
− a2

)
ϕ̇ (0) δij − kθ�i (0) �j (0)

]

G(5)

ij = −2�u2AR

(
1

2
+ a

)
γ1ε

2
1bji, G(6)

ij = −2�u2AR

(
1

2
+ a

)
γ2ε

2
2bji,

G(7)

ij = −2�u2

(
1

2
+ a

)
γ1ε1

(
1 −

(
1

2
− a

)
ε1

)
δij, G(8)

ij = −2�u2

(
1

2
+ a

)
γ2ε2

(
1 −

(
1

2
− a

)
ε2

)
δij

F(2)

i = −2�u2AR

(
1

2
+ a

)
bjiqi (0) ϕ̇ (τ ) + 2�u2

(
1

4
− a2

)
δijpi (0) ϕ̇ (τ ) , (15)

in which δij = ∫1
0 �i�jdζ = ∫1

0 �i�jdζ is the Kronecker’s delta function (considering orthonormal
mode shapes �i and �i), bij = ∫1

0 �i�jdζ , and cij = ∫1
0 �′′

i �jdζ ; Aki = ∫τ

0 e−εk(τ−σ)pidσ and Hki =
∫τ

0 e−εk(τ−σ)qidσ ; note that the fact that �′′′′
i = λ4

i �i has been employed (see below); also, the overdot
and prime have been re-defined as (.) = d ( ) /dτ and ( )′ = d ( ) /dζ .

So far in the modelling, imperfections have been considered for both bending and torsional DOFs;
however, for simplicity, in the parametric study and in the analysis, we consider imperfections only for
the torsional DOF, i.e. kη → ∞. Therefore, �i(ζ ) represent mode shapes for free vibration of a clamped-
free beam in bending, while �i (ζ ) represent the mode shapes for free vibration of a free-free beam in
torsion:

�i (ζ ) = coshλiζ − cosλiζ − βi (sinhλiζ − sinλiζ ) , i = 1 · · · N (16)

�1 (ζ ) = 1,

�i (ζ ) = √
2cosαiζ , i = 2 · · · N (17)

where λi, βi and αi are given in Ref. [2]; also, �1 represents the rigid-body mode shape. Note that �i

and �i are orthonormal, i.e. ∫1
0 �i�idζ = ∫1

0 �i�idζ = 1 and ∫1
0 �i�jdζ = ∫1

0 �i�jdζ = 0, (i �= j).
Equations (12) and (13) can be cast into the first-order or state-space form by defining a new vector

of aeroelastic states X = [q̇ ṗ q p H1 H2 A1 A2]T , where, for example, q̇ = {q̇1q̇2 · · · q̇N}T , and H1 =
{H11H12 · · · H1N}T :

AẊ =BX + F (τ ) , (18)
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Table 1. Parameters of the wing used in Ref. [7] and the correspond-
ing dimensionless parameters

Parameter Value Parameter Value
� 16 m μ 10.74
b 0.5 m � 2
m 0.75 kg/m r2 0.5333
I0.5c 0.1 kg.m AR 32
a 0 xθ 0
e 0
EI 2 × 104 N.m 2

GJ 1 × 104 N.m 2

ρ 0.0889 kg/m 3

Table 2. Numerical convergence study using a different number of mode shapes for a
wing with the parameters given in Table 1; also, kθ = 106

Parameter N = 6 N = 8 N = 10 N = 12 N = 14
ucf 1.046 (3.5%) 1.030 (1.9%) 1.021 (1.0%) 1.015 (0.4%) 1.011
ucd 1.154 (2.3%) 1.142 (1.2%) 1.135 (0.6%) 1.131 (0.3%) 1.128

in which matrices A, B and vector F (τ ) are provided in Appendix 6. It should also be noted that using
the Leibniz integral rule, one can show that Ḣk = q − εkHk and Ȧk = p − εkAk.

Assuming qi (0) = pi (0) = 0 and X = X̄expiωτ , where ω called eigenfrequency, Equation (18) is re-
formulated as an eigenvalue problem which can then be solved for stability analysis, using, for example,
eig function of MATLAB.

3.0 Convergence Study and Verification of the Model
In order to find the minimum number of mode shapes required for obtaining accurate numerical results,
we obtained the dimensionless flow velocity for flutter and divergence, represented by ucf and ucd,
respectively, for different numbers of mode shapes used in the Galerkin approximation for an imper-
fectly supported wing with kθ = 106 – essentially a cantilevered wing. The parameters for the wing of a
high-altitude long-endurance (HALE) aircraft [7] were used, which are given in Table 1.

As seen from Table 2, with 10 modes for bending and the same number of modes for torsion, the
results are within an acceptable range (≤ 1%) with respect to those with 14 modes. These numbers of
modes were also found to yield accurate numerical results for imperfectly supported wings with finite
kθ ; for example, for a wing with kθ = 1, even with N = 6, the relative errors for ucd and ucf were below
1%. However, to ensure greater accuracy, N = 14 is adopted for the rest of numerical solutions in this
paper.

To verify (following the definition provided in [49] for verification) the present model, the critical
speeds for the aeroelastic instabilities of two different wings are numerically obtained and compared with
those reported in the literature. The first wing is the wing of a HALE [7] (see Table 1), and the other is
the Goland wing [50] whose parameters can also be found in [51]. As seen from Table 3, the numerical
results from the present model are in very good agreement with those reported in the literature; the
maximum relative error is below 5%.
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Table 3. Comparison between the critical speeds for the aeroelastic instabilities of two
wings obtained from the present model and those found from the literature

Present Study Literature
Test Case Ucf (m/s) Ucd (m/s) Ucf (m/s) Ucd (m/s)
HALE wing 33.82 37.73 32.21 [7] 37.29 [7]
Goland wing 137.16 142.95 137.46 [50] —

4.0 Results and Discussion
As discussed previously, in the present numerical studies, the support imperfection is only considered
for the torsional DOF at ζ = 0, and the wing is considered perfectly clamped at ζ = 0 as far as bending
vibrations are concerned. This is done to isolate the impact of support imperfections on the stability of
the system, while reducing the influence of interactions between different imperfections.

Here, the dynamics of imperfectly supported wings are described by showing the evolution of the
first few eigenfrequencies of the system, represented by ω, in Argand diagrams, as the dimensionless
flow velocity u is varied. In the Argand diagram, which is a complex plane, the abscissa and ordinate
correspond to the real and imaginary parts of ω (Re (ω) and Im (ω)), respectively; Re (ω) corresponds
to the dimensionless frequency while Im (ω) is related to damping. In the Argand diagram, the positive
half-plane (Im (ω) > 0) is the stable half-plane whereas the negative half-plane (Im (ω) < 0) is the unsta-
ble half-plane. If an eigenfrequency locus crosses from the positive half-plane to the negative half-plane
while Re (ω) > 0, the instability is flutter, whereas if Re (ω) = 0, the instability is divergence; for more
details, the reader is referred to Ref. [52].

Figure 2(a–d) shows the Argand diagrams for a wing with the parameters of the HALE wing (Table 1)
as the imperfection becomes more significant (i.e. kθ is reduced). In the plots, the numerals printed
along each locus represent values of u. Figure 2(a) shows the Argand diagram for the wing with almost
no imperfection (kθ = 106). As seen, for u > 0, all modes (or eigenfrequencies) lie in the stable half-
plane, which means that flow induces positive damping in all modes and any vibrations due to external
disturbances would die out with time. However, as u is increased, damping in the first torsional mode
gradually diminishes, and the locus eventually crosses from the stable half-plane to the unstable half-
plane at u = ucf � 1.01, while Re (ω) �= 0, indicating flutter. The mode evolving on the Im (ω)-axis also
becomes unstable at a slightly higher flow velocity, i.e. u = ucd � 1.13, indicating divergence. This mode,
which is called ‘zeroth mode’ in the plots, is due to either Ak or Hk generalised coordinates. In fact, 4N
loci with zero frequency are obtained numerically; however, to have clear Argand diagrams, the stable
loci have been filtered out and only the unstable loci have been shown. From the plot, it is seen that the
first torsional mode is re-stabilised at u � 2.40 while the system remains statically unstable due to the
zeroth mode. The other modes remain stable up to the maximum flow velocity investigated, i.e. umax = 3.

It should be emphasised that the modes or eigenfrequencies shown in the Argand diagrams are aeroe-
lastic modes rather than classical vibration modes of a beam. This means that each locus contains
appreciable contents from various vibration modes and the aerodynamics. Nevertheless, for ease of
discussion, here, we have adopted a similar appellation as that used in Ref. [52] for the loci of eigenfre-
quencies. A locus of eigenfrequency is called the ‘1st bending mode’ since its frequency (i.e., Re (ω))
at u = 0 matches that of the beam’s uncoupled, first bending-mode frequency, and a locus is called the
‘1st torsional mode’ because Re (ω) at u = 0 matches the frequency of the first torsional mode of the
beam, etc.

As seen from Fig. 2(b), in contrast to the wing with almost no support imperfection, for kθ = 100

(i.e. a wing with significant support imperfections), the stability is lost by divergence at a much lower
flow velocity (u = ucd � 0.62) and by flutter at u = ucf � 1.98. While the system is already unstable, the
second bending mode also undergoes flutter at u � 2.37. Note that by decreasing the end-spring stiffness
(used to model support imperfection), the frequency of the torsional modes is generally diminished.
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Figure 2. Argand diagrams showing the evolution of the first few dynamical modes of an
imperfectly-supported wing with parameters given in Table 1 for: (a) kθ = 106, (b) kθ = 100, (c)
kθ = 10−1, and (d) kθ = 10−6. The numerals in the plots, close to the loci correspond to the values of
the dimensionless flow velocity. The x and y axes have been normalised with respect to the natural fre-
quency of the first torsional mode of a cantilevered beam; also, ucd and ucf represent the critical value
of u for divergence and flutter, respectively.

By further increasing the support imperfection (i.e. by decreasing kθ to kθ = 10−1), as shown in
Fig. 2(c), the first torsional mode of the system loses stability by flutter at u = ucf � 0.22 while the
mode evolving on the Im (ω)-axis becomes unstable at a slightly higher flow (u = ucd � 0.23). Higher
modes, such as second torsional and bending modes, also become unstable at higher flows.

Finally, Fig. 2(d) shows the Argand diagram for the system with effectively no torsional stiffness at
ζ = 0. As seen from the plot, the system loses stability by divergence at essentially u = 0+. At higher
values of u, the system loses stability by flutter in the second torsional mode at u = ucf � 1.77 and in the
second bending mode at u � 2.42.

As seen from the Argand diagrams, by increasing imperfections, the dynamical behaviour may signif-
icantly change. This includes the reduction in the critical flow velocities for the instabilities, the change
in the sequence of the instabilities (e.g. first flutter and then divergence or first divergence and then flut-
ter), as well as the unstable mode. Nevertheless, it must be noted that all of the above predictions are
based on the linear theory developed in Section 2.0. It is well-known that a linear theory remains accu-
rate until the first instability is reached, and past the threshold of the first instability, predictions made
by linear theories may not be trusted. A nonlinear theory should be developed in the future to verify the
predictions made by the linear theory.
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Figure 3. Variation of the dimensionless critical flow velocity for flutter (ucf ) of an imperfectly supported
wing as a function of the end-spring stiffness (kθ ) for different values of mass ratio. Also, the dashed line
shows the critical flow velocity for divergence, which is independent of μ. The rest of system parameters
are the same as the dimensionless variables given in Table 1.

Next, we examine the sensitivity of the flutter speed of the imperfectly-supported wing to the sys-
tem parameters, such as mass ratio, stiffness ratio and the dimensionless radius of gyration. Figure 3
shows the variation of ucf as a function of kθ for various mass ratios. Additionally, the variation of the
dimensionless divergence speed (dashed line), which is independent of μ, is shown. As seen from the
plot, when kθ → ∞ or kθ → 0, by increasing μ, ucf decreases. This might look counterintuitive at first
glance since one generally expects to see the flutter speed increasing with the increase of mass. This is,
in fact, confirmed if one obtains the dimensional flutter speed Uf ; thus, one should regard the difference
between the dimensionless and dimensional parameters. Also, note that the dimensionless flow velocity
was defined differently in this paper compared to what is generally adopted in the literature for typical
section models.

As also seen from Fig. 3, for each μ, ucf for kθ → 0 (i.e. pinned-free wing) is larger than ucf for kθ → ∞
(i.e. clamped-free wing). This might appear as if the clamped-free wing is less stable than the pinned-free
wing, which again looks counterintuitive. As shown in Fig. 2(d), for sufficiently large imperfections (i.e.
very low values of kθ ), the wing undergoes divergence at negligibly small flow velocities, and thus, flutter,
if happens, would be the second instability; see the dashed line in Fig. 3, which shows the divergence
speed boundary. On the other hand, for kθ → ∞, flutter may be the first or second instability, depending
on the value of μ. As seen from the curves, ucf may undergo some sharp changes in the range of kθ ∈(
10−2, 102

)
. This is particularly visible for the lower mass ratios. These abrupt changes may be attributed

to the ‘mode exchange’ or ‘role reversal’ phenomenon [52], in which the unstable mode shifts from
a lower mode to a higher mode or vice versa as a system parameter, such as kθ , is varied. This can
result in sharp variations in the critical flow velocity, even if the system parameter changes only slightly.
For example, considering Fig. 4(a, b), the mode undergoing flutter shifts from second torsional mode
(ucf � 2.02) to first torsional mode (ucf � 0.57), while kθ is increased from 1.2 to 1.3. Interestingly, within
a narrow range of kθ inside

(
10−2, 102

)
, by increasing kθ , ucf decreases – the wing becomes dynamically

less stable by decreasing support imperfections. A similar behaviour has previously been observed for
imperfectly supported pipes conveying fluid [41].

Figure 5 shows the variation of both ucf and ucd as a function of kθ for several values of stiffness
ratio. As seen from Fig. 5(a), for kθ > 4.4, by increasing �, ucf decreases. Considering a fixed value for
EI, this means a wing with a lower GJ (thus higher �) becomes unstable at a lower flow velocity. This
seems reasonable since for the configuration considered in this study, flutter occurs predominantly by
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are the same as those in Table 1.
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Figure 5. Variation of the dimensionless critical flow velocity for (a) flutter (ucf ), and (b) divergence
(ucd) of an imperfectly supported wing as a function of the end-spring stiffness (kθ ) for different values
of stiffness ratio. The rest of the system parameters are the same as the dimensionless variables given in
Table 1.

a torsional mode. However, interestingly, a similar trend is not observed for lower values of kθ . This is
primarily due to the occurrence of the role reversal phenomenon. As seen from Fig. 5(b), for sufficiently
low values of kθ , regardless of the value of �, ucd approaches zero. On the other hand, for higher values
of kθ , ucd becomes non-zero, and it decreases as � is increased. This indicates that the divergence of the
imperfectly supported wing is also predominantly influenced by the wing torsional stiffness. For a given
kθ and �, by comparing Fig. 5(a) and 5(b), one can find out whether flutter or divergence occurs first.

To further clarify the trend observed from Fig. 5(a) in the range kθ < 4.4, Fig. 6 shows the Argand
diagrams for a wing with kθ = 1 and for various values of �. As seen from the diagrams, flutter can
occur not only via different torsional modes, it may also occur via bending modes. This observation
further supports the frequent occurrence of the mode exchange (or role reversal) phenomenon in the
present dynamical system. Another factor that should be taken into account is that except for the case
with � = 1 (Fig. 6(a)), divergence occurs first, and flutter occurs next, at higher flow velocities.
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Figure 6. Argand diagrams showing the mode-exchange or role reversal phenomenon for kθ = 1:
(a) � = 1 (first torsional mode flutter), (b) � = 2 (second torsional mode flutter), (c) � = 3 (second
bending mode flutter), and (d) � = 4 (first torsional mode flutter). The rest of the system parameters are
the same as those in Table 1.

From Fig. 7, it is seen that, depending on the degree of imperfections, increasing r2 may decrease or
increase ucf . Similar mechanisms to those discussed in relation to Figs. 3 and 5 also operate here. Since
r2 only appears in the dynamics, it does not influence ucd, which is confirmed by a single dashed line
shown in the figure.

5.0 Concluding Remarks
The present paper, to the best of the authors’ knowledge, provided the first theoretical examination of
the effects of support imperfections on the aeroelastic stability of uniform flexible wings. Following
the extended Hamilton’s principle, the linear equations of motion were obtained in the dimensionless
form, discretised spatially using Galerkin’s method, then cast in the state-space form and finally solved
numerically to obtain the eigenvalues.

The numerical results showed that support imperfections can generally change the onset of the
aeroelastic instabilities, their sequence, and the unstable mode, when compared to the wing with no
support imperfections. The significance of the changes was found to be dependent on how large the
imperfections were and to a lesser extent on the system parameters, such as mass ratio and stiffness
ratio. For small support imperfections, small or no changes in the aeroelastic behaviour were observed.
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Figure 7. Variation of the dimensionless critical flow velocity for flutter (ucf ) of an imperfectly supported
wing as a function of the end-spring stiffness (kθ ) for different values of dimensionless radius of gyration.
Also, the dashed line shows the critical flow velocity for divergence, which is independent of r2. The rest
of the system parameters are the same as the dimensionless variables given in Table 1.

However, for large support imperfections, i.e. loosely supported wings, dramatic and sometimes unex-
pected changes may take place. For example, it was found that because of the role reversal or mode
exchange phenomenon, flutter speed may change sharply when the support stiffness is varied slightly
within a narrow range. Also, in some scenarios, by decreasing imperfections (i.e., stiffer support), the
critical flow velocity for flutter is decreased.

Nevertheless, the linear theory predictions cannot be trusted beyond the first instability, and thus, a
nonlinear model should be sought in future to verify the linear model. In addition, experimental studies
should be conducted to validate the numerical results presented in this paper. The authors hope that this
first study can stimulate further research on the topic in the community.
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Appendix
6.0 First-order matrices
The matrices A, B and vector F from the first-order equations of motion are given as follows:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(1) M(2) C(1) C(2) 0 0 0 0
M(3) M(4) C(3) C(4) 0 0 0 0

0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −K(1) −K(2) −G(1) −G(2) −G(3) −G(4)

0 0 −K(3) −K(4) −G(5) −G(6) −G(7) −G(8)

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 −ε1I 0 0 0
0 0 I 0 0 −ε2I 0 0
0 0 0 I 0 0 −ε1I 0
0 0 0 I 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F(1)

−F(2)

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where 0 and I are N-by-N zero and identity matrices, respectively.
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