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Where does the book fit? It’s fine for a U.S. graduate program but harder to place in the U.K.
or Australia. Much of it would be accessible to a good third or fourth year undergraduate and I
would love to see all mathematicians learning measure theory in this way. In practice, however,
the case for any measure theory (as opposed to integration theory) can be hard to argue
particularly when statisticians often settle for discrete random variables at undergraduate level. A
graduate student in analysis or mathematical statistics would find “Probability and Measure”
suitable for self-study and highly rewarding. I recommend it strongly. (The text itself is horribly
disfigured by broken formulae on page after page but appears remarkably free from misprints and
€rrors.)

GAVIN BROWN

San, C.-H., Hilbert’s third problem: scissors congruence (Pitman, 1979), pp. 240, £9-95.

If two planar polygons have the same area then one of them can be cut into triangular pieces
which can be rearranged to cover the other polygon exactly. This fact, which is the two
dimensional version of Hilbert’s third problem, is usually attributed to F. Bolyai (1832) and to P.
Gerwein (1833). It is pointed out in this book that the problem was solved about twenty years
earlier by William Wallace (who was later a Professor at Edinburgh). The above problem was
posed by Wallace as Question 269 in volume 3 of the new series of Leybourn’s Mathematical
Repository in 1814 and the printed solution is by Lowry. The solution given is simple and
elegant. Gauss considered the three dimensional version of the problem and pointed out that to
prove that two prisms with the same base and equal altitudes have the same volume it seems
essential to use an infinite process of some kind. Hilbert’s third problem asked for a rigorous
justification of Gauss’s assertion. An attempt at such a proof had already been made by R.
Bricard in 1896 but Hilbert’s publicity of the problem gave rise to the first correct proof—that by
M. Dehn appeared within a few months. The third problem was thus the first of Hilbert’s
problems to be solved. Although several improvements and clarifications of Dehn’s proof have
appeared, this prompt solution seems to have led mathematicians to regard the third problem as
rather an uninteresting one. Indeed, the problem seems not to have been discussed at all at the
American Mathematical Society’s 1974 Symposium on Hilbert’s problems.

The book under review seems to be the third book entirely devoted to this problem. The
previous ones were both written by V. G. Boltianskii (the first was published in Russian in 1956
and in English in 1963, the second and larger book in Russian in 1972 and the English translation
was published by J. Wiley in 1978). Someone who wants a quick, clear and elementary account of
the problem and its solution should read one of Boltianskii’s books; indeed the books are
probably accessible to a bright sixteen year old. Someone who wants to find a research problem
in geometry might profitably read Sah’s book.

The solution of the problem can be explained as follows. If P is a polyhedron in R*® whose
edges have lengths [,1,,...,1, and whose corresponding dihedral angles are 0,,6,,...,0,, define its
Dehn invariant d(P) to be Y I;®6; whose values are in R®(R/nZ). Two polyhedra P,,P, are
equidecomposable if each can be cut into pieces P;,,...,P;, with P,; congruent to P,;. It is not
hard to check that if P,, P, are equidecomposable then their Dehn invariants are equal. To give
an example for Hilbert’s problem it is enough therefore to find two polyhedra P, P, with equal
volume but d(P,)#d(P;). Two such are the cube and the regular tetrahedron of unit volume.
They have Dehn invariants 12®(n/2)=0 and 12.\3/ 3® cos™}(1/3)+0 respectively. In 1965,
J.-P. Sydler proved that two polyhedra in R?® are equidecomposable if and only if they have the
same volume and the same Dehn invariant. This would seem to be the final word on Hilbert’s
third problem in its original form.

Sah’s book discusses many variants of the original problem and ties them in with other parts of
mathematics. He starts by giving an axiomatic and abstract framework in which to discuss the
problem and its variants. These variants are many: the real numbers are replaced by as general a
field as possible, the n-dimensional version is treated, the affine, euclidean, hyperbolic and
spherical cases and even versions for more general manifolds are handled. As well as the usual
congruence in space, equivalence of polyhedra under various restricted groups of transformations
(such as translations) are considered. All these possibilities give a large number of problems and
many of them have not been solved yet. I found some of these variants more interesting than 1
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had expected at a first glance. The treatment of these problems given in this account is rather
algebraic and the original geometry is sometimes hard to find. The main interest of Sah’s account
is that he constantly tries to make connections with other topics in mathematics. Some of these
connections may turn out to be fruitful. Among the subjects that arise are group representations,
Hopf algebras and the cohomology of groups. As an example of how a simple geometric problem
can be generalised and abstracted this book could hardly be beaten.

) ELMER REES

STrRATILA, S. and Zsip6, L., Lectures on von Neumann algebras (Abacus Press, 1979), pp. 478,
£29-95,

Although the study of operator algebras commenced in the 1920’s, it was not until 1957 that
the first comprehensive monograph on the subject, J. Dixmier’s “Les algébres de’opérateurs dans
P’espace hilbertien”, appeared, to be followed in 1964 by the same author’s “Les C*-algébres et
leurs représentations” (both Gauthier-Villars, Paris). In 1971 a unified, if idiosyncratic, treatment
was given by Sakai in his “C*-algebras and W*-algebras” (Springer-Verlag, Berlin). Since these
works appeared there has been considerable and spectacular progress in understanding the
structure of von Neumann algebras, largely as a result of the formulation in the late 1960’s of the
Tomita-Takesaki theory of modular Hilbert algebras. Until recently there was no readily
accessible exposition of the theory of von Neumann algebras which included the Tomita-Takesaki
theory. The situation has now changed dramatically with the publication, in the last year or so,
of works by Bratteli and Robinson, Pedersen, Takesaki, and the volume under review.

In their book Stritild and Zsido, unlike some of the other authors just mentioned, concentrate
on von Neumann algebras; their aim is to give a clear and self-contained exposition of the theory
up to and including the Tomita-Takesaki results. They have, in many ways, been successful in
this. The first eight chapters are devoted to a careful presentation of the classical, i.e. pre-Tomita-
Takesaki, theory, the approach being in the Murray-von Neumann tradition: underlying Hilbert
spaces are always clearly in view, and comparison of projections is to the fore. This approach is,
in my opinion, easier for a newcomer to the subject than the elegant, but less transparent,
approach of Dixmier using traces, or the non-spatial formulation of Sakai. The authors write
clearly and include concise alternative proofs of certain important results (notably Yeadon’s proof
of the existence of a trace in a finite von Neumann algebra).

Chapter 9 prepares the ground for the Tomita-Takesaki theory with a systematic study of
unbounded linear operators on Hilbert space. The chapter contains much useful material in a
very accessible form. As well as presenting the standard results, such as polar decomposition and
Stone’s theorem, the authors discuss a certain operator equation and its solution in the form of
an integral. It is interesting to see this result, the key to the fundamental results of the Tomita-
Takesaki theory, set in this wider context.

The lengthy final chapter, entitled “the theory of standard von Neumann algebras™, is devoted
to an exposition of the Tomita-Takesaki theory. The basic objects in the theory, such as Hilbert
algebras and the modular operator, are defined and their properties established. It is shown that
a normal, faithful, semifinite weight on a von Neumann algebra satisfies the KMS condition with
respect to a suitable modular automorphism group. Finally, Conne’s remarkable unitary cocycle
result is proved, and some of its applications given. At the end of each chapter there are exercises
and comments amplifying earlier points. The book ends with a short appendix on fixed point
theorems, followed by a very up to date bibliography of some 120 pages.

It is a pity that such a substantial portion of the book is given over to the bibliography, as
many of the references do not relate directly to matters in the text, and moreover some important
topics have been omitted. There is, for example, no treatment of direct integral decomposition. 1
am also disturbed at the lack of concrete examples of von Neumann algebras of types II and III.
Surely any comprehensive treatment of the subject should include a proof, at least as an exercise,
that the objects under consideration actually exist (to be fair to the authors, they do give several
references). A minor criticism I would make is of the English, which, though always clear, is
sometimes not idiomatic. Also, some of the terminology is unconventional, for example “of
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