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Abstract

A class of optimal control models which involve different weightings in the integrand
of the objective function is considered. The motivation for considering this class of
problems is that this type of objective function is used to account for eccentric movement in
biomechanical models. The computation of these optimal control problems using control
parametrization directly is difficult, firstly because of ill-conditioning, and secondly because
the objective function is not differentiable. A method for smoothing the integrand is
presented with convergence results. An example is computed which shows favourable
computational improvements.

1. Introduction

Optimal control models of animal movement involve an objective function usually
expressed as an integral over a time period of a function (the integrand) which
represents some physical quantity such as power, work, torque, etc. References
[5] [7] contain examples of such objective functions. Many of these objective func-
tion integrands are not differentiable (at some values of time) with respect to the
control (torque) and state (angular position and velocity) variables, either because of
an absolute value being taken or because the absolute value function is being weighted
with one if the argument is positive and one third if the argument is negative. This
latter operation represents a ‘lopsided’ absolute value function, and is used to account
for eccentric movement, that is, to account for the difference between the cases of
velocity in the same direction as the torque and velocity in the opposite direction to
the torque.

The computation of these optimization problems using the control parametriza-
tion technique proves difficult, firstly because they are ill conditioned, and secondly
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because of these points in time of non-differentiability of the integrands. We address
the latter problem in this paper. The numerical evaluation of the integrals is prone
to almost random errors of sizeable magnitude, as most quadrature methods require a
high degree of smoothness of the integrand to attain their theoretical accuracy. This in
turn affects the optimization algorithm in terms of convergence as these codes assume
function values are accurate to a greater accuracy than the quadratures can produce
for a non-smooth integrand. The integration of the costate dynamics is also affected
by the non-differentiability but to a lesser extent. These points of non-differentiability
are in general unknown, so it is very difficult to account for them in any automatic
quadrature or numerical integration method. Hence we employ smoothing techniques
as a general purpose technique to overcome the computational problems and to enable
the production of convergence results for the method as part of the control paramet-
rization technique. The smoothing of the absolute value function is reported in {8].
Another smoothing technique may be found in [1]. This current paper covers the case
of a ‘lopsided’ absolute value function.

This paper proceeds directly to the smoothing technique employed and then pro-
duces a sequence of convergence results which relate the new results of this paper to
previous results for state constraints and the control parametrization method. Finally
arealistic worked example is presented.

2. The problem statement

Consider a process described by the initial value dynamics on [0, T,

x(1) = f(t, x(@), u®)), x(0) =x°, .1

where the state variables x € R” and the control variables # € R". Assume there are
upper and lower bounds on the controls for all ¢ € [0, T], so that u(¢): [0, T] —» U,
where U is a compact and convex set defined by

U={pelRiag<v; <8, i=1,...,rh

A bounded measurable function u from [0, T] into R” is said to be an admissible
control if u(¢r) € U for almostall ¢t € [0, T]. Let % be the class of all such admissible
controls.

For each u € %, let x(-|u) be the corresponding solution of the system (2.1). The
inequality terminal state constraints and the inequality continuous state constraints are
defined, respectively, as follows:

¢i(x(T\w)) >0, i=1,...,Nr, 2.2)
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where ¢;,i = 1, ..., Ny, are real valued functions defined on R”, and,
gi(t, x(tlw)) =0, Vvte[0,T), i=1,...,N, (23)

where g;, i = 1,..., N, are real valued functions defined on [0, T] x R". Let & be
the set that consists of all those elements from % such that the constraints (2.2) and
(2.3) are satisfied. Elements from & are called the feasible controls and % is called
the class of feasible controls.

PROBLEM P. Given the system (2.1), find a control u € & such that the cost functional

T
J(u) = / a(go(t,x(t]u),u(t)))dt, 2.4)
0

is minimized over .%, where

g, if g >0,
a(g)={ S 2.5)
—cC,8, otherwise,

is similar to the absolute value function but with different slope magnitudes either side
of the origin. The function gy is real valued and ¢, and c, are positive constants.

We assume that the following conditions are satisfied:

(A1) f:[0,T] x R" x R" — R" is piecewise continuous on [0, T'] for each (x, u) €
R" x R" and is continuously differentiable with respect to each of the com-
ponents of x and u for each ¢ € [0, T]; furthermore, there exists a constant
K > 0 such that

U, x, w)|l < K1+ |x]),

where | - | denotes the Euclidean norm;

(A2) foreachi =1,..., Nr, ¢;: R" — R is continuously differentiable;

(A3) foreachi =1,...,N,g:[0,T] x R" — R is continuously differentiable;

(Ad) go:[0,T] x R" x R” — R is piecewise continuous on [0, T'] for each (x, u) €
R" x R" and is continuously differentiable with respect to each of the com-
ponents of x and u ateach ¢ € [0, T].

These assumptions are standard for the solution of optimal control problems using the
control parametrization method (see [9]). They guarantee the existence of solutions
to (2.1), and the existence of co-state variables.

REMARK 2.1. From the theory of differential equations, we recall that (2.1) admits a
unique solution x(-|u), corresponding to each u € L] and hence for each u € %.
There exists a bounded subset 2~ of R” such thatx(t|u) € 2 forall: € [0, T]and for
alue . If {u“’}‘!‘;"=l is any sequence of functions in % that converges to a function
uae. on [0, T], then lim,_, o, [|x(-[#”) — x(-|u) |l = 0, and lim,_, o, J (u?) = J (u).
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3. Control parametrization

The control parametrization method summarized in {9] is used to solve problem P.
Each control is approximated by a piecewise constant control based on a partition of
the interval [0, T']. Let {1,,};"= , be a sequence of partitions of the interval [0, 7] such
that /, has n, + 1 points, I,., is a refinement of /, and that the maximum length of
a subinterval tends to zero as p — co. Let %7 be the subset of admissible controls
which are piecewise constant and consistent with partition /,. Hence every control
u”? € % ” can be uniquely identified with a set of rn, parameters o” and vice versa.
Let &P be the subset of %7 which are feasible, that is, satisfy (2.2) and (2.3). Let
©” be the set of parameters o” which correspond to those piecewise constant controls
from /7. Similarly, let E? be the set of parameters o” corresponding to those controls
from #7. Restricting the control parameters to E”, the system (2.1) becomes

x(t) = fa, x(t),07), x(0)=x", (3.1

wherefis obtained from f in the obvious way. For each o” € =7, let x(-|o?) be the
corresponding solution of the system (3.1). Similarly the constraints (2.2) and (2.3)

become
¢:(x(T|o?)) >0, i=1,...,Nrp, 3.2
and
gi(t,x(tle?) =0, Vvtel0,T), i=1,...,N (3.3)
respectively.

We define an approximate problem P(p) as:

PROBLEM P(p). Find a control ” € E” such that the cost functional

R T
J?) = / a(go(t,x(tlor”),a”)) dt (G4
0

is minimized over E”, where g, is obtained from g, in the obvious way. This is an
optimization problem over R"".

Note that convergence of general discrete approximations for constrained minim-
ization is the subject matter of {2].
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4. Smoothing the cost functional

Because the integrand in (3.4) is not differentiable we need to smooth the corner
of the ‘lopsided absolute value’ function a(g). Of the many ways of doing this we
choose the following because it has a minimum at the same place as the original
function. The smooth approximation is

g, ifcig > 6,
(8% + (c18)?)/28, if0O<cig <8,
(8% + (c28)?) /28, if —8 <c8 <0,

—C28, if g < —4.

a’(g) =

In view of (A4) and Remark 2.1, it is clear that the function a® (2, (7, x, ) possesses
the following properties:

(i) it is piecewise continuous on [0, T'] for each (x,0) € R" x R and is
continuously differentiable with respect to each of the components of x and
o foreacht € [0, T],

(i) foreach (¢t,x,0) [0, T] x R" x R™

0 < a®(§o(t, x,0)) — a(go(t, x,0)) <38,

(iii) foreacht € [0, T], 0* minimizes a(go(t, x(tlo), ar)) if and only if it minim-
izes a®(2(t, x(t|0), 0)).
By virtue of these properties, a’(gy)) is an ideal approximation of the nonsmooth
function a(gy). We define an approximate problem to P(p).

PROBLEM P?(p). Find a control 6” € E” such that the cost functional
R T
Ji(oP) =/ a“(go(t,x(tlo"),o")) dt, 4.1
0

is minimized over E%.

THEOREM 4.1. Let 67 and 6P be optimal controls to problems P*(p) and P(p)
respectively. Then

0 < J@P®) — J(@?) < 8T. (4.2)
PROOF. By virtue of property (ii) of the function a®(gy(t, x, o)) we have

Ji6") < J(o?) + 8T.
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Since o7 is an optimal control of the problem P?(p) and o7 is a feasible control of
the problem P?(p), we have

J??) < J*(o”) < J(oP) + 8T. 4.3)
Using property (ii) again and (4.3) we have
J(@"%) < J*6"®) < J(6?) + 8T.

The fact that o7 is an optimal control of problem P(p) and 67 is a feasible control
of problem P(p) implies that

0< J(©"® — Jo?) < 8T.

THEOREM 4.2. Let {07} be a sequence in 8 of optimal controls of approximate prob-
lems P?(p). Then there exists an accumulation point of the sequence {o?*} for § — 0.
Furthermore any accumulation point is an optimal control to the problem P(p).

PROOF. From the definition of @7, it is clear that the sequence {o”%} is bounded
in the Euclidean norm of R’”. Thus there exists an accumulation point 67, and a
subsequence which is again denoted by the original sequence, such that

iyl — 671 = @)
Using Remark 2.1 and (4.4), we have
lim J@P®) = J@"). (4.5)

Using Remark 2.1, (A2) and (A3), it is clear that 67 is a feasible control of the problem
P(p). Thus if o is an optimal control of the problem P(p) we have

J(@") > J(@”). (4.6)
Now in view of (4.2), we have
. 2 p.é _ o _
lim [J(or )y — F(e?) 3T] <o. @.7)
From (4.5) and (4.7) we get
J(67) < J(oP). (4.8)

We conclude from (4.7) and (4.8) that 7 is also an optimal control of the problem
P(p).
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5. Continuous state constraint approximation

For completeness of this paper we outline the results of [10] on the method for
solving problems with continuous state constraints, as it affects our convergence
results. There are some further assumptions about the constraints which are given in
[10]. The method is to replace constraints (2.3) with the integral constraints

T
Gi(o?) =/ min(0, g; (¢, x(tlo?)))dt =0, i=1,...,N,
0
which in turn are replaced by
T
Gi(o?) =/ s€(gi(t, x(tlo?)))dt + 1() >0, ,i=1,...,N. (5.1
0

The function s¢(g) smooths the function min(0, g) as follows,

8 if g < —e,
() =3 —(g—€)?/de, if —e <g <, (5.2)
0, if g >e.

The parameter 7, dependent on €, is used to keep the control parameter vector within
Z”. To this end, we introduce another approximate problem, dependent on € with the
view to letting ¢ — 0. Let &7 be the subset of @7 which satisfies (3.2) and (5.1).

PROBLEM P*(p). Find a control 0” € %” such that the cost functional (4.1) is
minimized over ¥°.

Lemma 3.3 of [10] shows that by choosing T small enough ¥? C E”, and we restate
this result.

LEMMA 5.1. There exists t(€) > 0 such that for all t, 0 < t < 1(€), any feasible
control oP*< of the problem P*¢(p) is also a feasible control of the problem P’(p).
That is, for all positive T < t(€) if

Gi(oP*)> -1, i=1,...,N,
then
Gi(@?*)=0, i=1,...,N.

REMARK 5.1. Algorithm A2 of [10] can be modified to generate a sequence {075}
of control parameters in € so that each element is in the feasible region of P*(p). The
next theorem is a direct consequence of Theorem 4.1 of [10].

https://doi.org/10.1017/50334270000000576 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000576

[8] Optimal control for eccentric movement 189

THEOREM 5.1. Let {07} be a sequence in € of the suboptimal control vectors pro-
duced by Algorithm A2 of [10]. Then

lim J Pty = J¥(oP?),

where o7 is an optimal control vector of the problem P*(p). Furthermore, any
accumulation point of {oP*<} is a solution of the problem P*(p).

6. Convergence results as p — oo

We consider the convergence properties of the sequence in p of approximate
optimal controls of the problem P(p) to the true optimal control of the problem P. The
following theorems are direct consequences of Theorem 4.2 and 4.3 of [10].

THEOREM 6.1. Let 07* be the optimal parameter of the approximate problem P(p),
and let uP* be the corresponding piecewise constant control. Suppose that u* is an
optimal control of the problem P. Then

lim J(u”*) = J(u*).
p—oo
THEOREM 6.2. Let u?* be as defined in Theorem 6.1. Suppose that

lim w”* =u, a.e. on[0,T)].
p—>oo

Then @ is an optimal control of the problem P.

This completes the convergence results, covering the cases ¢ — 0, § — 0 and
p — o0, and shows that in these limits the control function converges to an optimal
control of the original problem. In practice, computational limitations mean that the
smallest values of § and € are about 10~* and that n,, the number of control parameters
representing a single control, is large at 40. Most optimal control problems become
more ill-conditioned if 7, is allowed to become larger.

7. Eccentric movement

We chose an example of a four-segment leg (as of the extinct moa of New Zealand)
executing a swing through movement. The data is supplied by Dr R.N. Marshall
and represents a guess of the bio-data. The state equations of motion are as in
(6], relating the angular acceleration of segments to the torque generated between
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segments by muscle, and the states are the angular positions (¢;) and velocities (w;)
of the segments. Here, we consider the case involving 4 planar segments, leading to
a system of 8 ordinary differential equations. These differential equations are similar
to those describing the dynamics of a planar 4-link robotic system. They are highly
nonlinear. The relevant data of segment length, centre of mass, mass and moment of
inertia are given in Table 1, as are the initial values of the states at time t = 0, (6°, @°),
and the final values of the states att = T = 0.36 seconds, (87, »7).

TABLE 1. Bio-data.

segment | length cofm. mass mofl. 67 o 67 o]

1 0.100 0.050 0.70 0069 524 -03 574 -05
2 0.215 0.108 140 0.148 471 -05 550 -03
3 0470 0204 425 0258 419 -03 524 -0.1
4

0290 0.126 840 0.157 532 04 567 00

We are not in this paper defending the data in Table 1, or the differential equation
model in [6], but rather wish to concentrate on algorithm performance. The objective
function chosen for this study is the integral over time of muscle power transferred
into segments taking into account eccentric work:

J = 036 & T;w;, if Tiw; > 0 d
o 4 |-—3mes, otherwise
where 1; is the torque generated by segment i and is a control variable. The constraints

of reaching the final state values are treated using a terminal time equality constraint,
namely,

4 4
$10(T), (T)) =3 (6:(T) =67 + > _(@i(T) — ])* = 0.
i=1 i=1

Because this is a sum of squares of quantities required to be zero, the optimization
software must be able to reduce ¢, to a very small value. No constraints of the type
(2.3) are required in this computation, but sometimes they are necessary to stop the
first segment rotating through more than 180°. The initial guess of the torque values
over time is zero for all time, and the minimum and maximum allowable values for
the torques are given by a = (-9, —20, —60, —60) and 8 = (9, 25, 60, 90).

We use the MISER3 optimal control software ([3],[4]) on three cases, two without
smoothing and one with smoothing of the objective integrand. MISER3 has the option
of stopping the optimization algorithm after a preset number of iterations so that the
user can decide whether to continue as if we did not stop (warm start), or to cold
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start, that is, to allow the optimization routine to reset itself and begin again from
the current point. If the optimization software runs into trouble we can cold start the
computation. One run without smoothing is allowed to do only warm starts every
50 iterations, which means that it executes as if no limit is placed on the number of
iterations. The other run without smoothing is cold started about every 200 iterations
in an attempt to improve the optimization performance. This technique is helpful in
ill-conditioned optimization problems. (The large number of iterations required is due
to ill-conditioning.) We report the progress of the three cases at every 50 iterations (or
fewer if the optimization failed) giving the objective value and the constraint value
and § in the third case (smoothing).

TABLE 2. Case 1. No smoothing, no operator intervention.

cold/warm | Iteration no. | Objective | Constraint
c 50 33.07 2.3x107!
w 100 37.56 1.1x1073
w 150 32.72 4.6x1077
w 200 31.11 3.8x1078
w 250 29.91 2.8x1077
w 300 28.73 2.2x1078
w 350 28.10 4.1x10°
w 400 27.72 1.8x107°
w 450 27.59 3.8x1071°
w 500 27.51 1.6x 10710

It is clear that Case 3 gives the better objective value even though the optimization
failed twice. The cold starts marked with an asterix indicate a cold start forced on the
iteration by the failure of the optimization routine. Such failure is usually because
of too many function values computed on a line search or because an uphill search
direction has been used. Without operator intervention the non-smoothed case stops
well short of the value achieved by the smooth case, and even much coaxing by the
operator still does not give as good a result as the smoothed case. In the non smoothed
case, even though the function value changes little after 450 iterations, the ‘solution’
is but a set of values giving a smaller objective function value than the starting values.
This can of course be said of all three solutions, in that a numerical procedure will
only attempt to find a local minimum. In ill-conditioned optimization small changes
in objective function values are not a measure of being close to the point giving the
minimum. Another feature of an ill-conditioned optimization problem is that large
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TABLE 3. Case 2. No smoothing, operator intervention.

cold/warm | Iteration no. | Objective | Constraint
c 50 33.07 2.3x107!
w 100 37.56 1.1x1073
w 150 32.72 4.6x1077
w 200 31.11 3.8x107®
c 205 30.84 7.7x1073
c* 255 28.38 3.6x1073
w 305 27.22 7.6x1077
w 355 26.41 8.3x1078
w 405 25.98 1.7x1078
c 409 25.98 9.0x1077
c* 421 24.87 3.5x1073
c* 471 23.13 7.5x1073
w 521 26.48 1.7x1077
w 571 26.19 1.5x1078
w 621 25.97 4.1x107°
w 671 2591 5.7x1071°
w 699 25.89 1.4x10710

[11]

changes in parameters with small changes in objective values is common, even within
the tangent plane of the constraints.

8. Conclusions

This paper reports on a smoothing technique for a non-differentiable objective
function. An algorithm has been developed for the successful computation of an op-
timal control problem. The method has been used to solve an optimal control problem
arising from a consideration of eccentric movement in biomechanics. Convergence
properties of the algorithm are given. The underlying problem of ill conditioning
which occurs in many optimal control problems of biomechanics has not been tackled
in this paper but will be the subject of further work. There are so-called regularization
techniques which can be used to tackle this problem.
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TABLE 4. Case 3. Smoothing.

cold/warm | Iteration no. 8 Objective | Constraint
c 50 1072 40.64 2.2x1072
w 100 1072 34.18 2.0x1073
w 126 1073 31.59 8.3x1076
c* 176 1073 29.72 3.1x10°°
w 195 1073 28.36 1.0x10°3
c* 245 1073 27.71 6.3x107¢
w 295 10~ 26.36 3.8x1077
w 345 10~ 25.93 1.6x1077
w 395 10~ 25.60 8.8x107°
w 445 1074 25.51 7.1x10710
w 495 104 25.46 4.7x10710
w 545 104 25.44 6.8x 1071
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