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Abstract

This paper develops a simple model for the containment of oil behind a boom in water.
The flow of water beneath the oil is assumed two dimensional (horizontal and vertical) and
perpendicular to the boom. We look for steady solutions and assume the oil is so viscous
that the fluid velocity within the oil is zero. We are able to calculate what shape the oilslick
will form and under which circumstances the boom will be successful (that is, no oil escapes
under the boom) based on the predicted depth of the slick at the boom.

1. Introduction

The use of boom structures to contain oil spills has been an area of much study in the
engineering community in the last quarter of a century. This is not surprising when one
considers the damage that occurs when oil spills from an oil tanker, especially in areas
regarded as environmentally sensitive. Work on modelling the containment of low
viscosity oils is far enough advanced to be used as a prediction tool for recovery teams,
see for example Wilkinson [7]. In this work, equilibrium oilslick thicknesses were
calculated for both finite and infinite depth fluids under the assumption of uniform
flow beneath the oilslick. It was found in finite depth fluids that oil could be contained
if the fluid flow beneath the slick did not have a Froude number (see below) too great
and that slick thicknesses would not exceed more than about one tenth the depth of
the free stream.

Johnston, Fitzmaurice and Watt [4] report that predictive tools for the containment
of highly viscous oils are not so well advanced. These authors propose that high
viscosity oil contained by a boom may be assumed to act as a Bingham plastic. Their
model for high viscosity oil then proceeds by calculating flow quantities in the water
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on the oil-water interface so that stresses on the oil may be calculated. The oil is
then allowed to “deform” as a plastic, thus redefining the oil-water interface. Flow
quantities are again calculated and the procedure iterates until the fluid violates a
failure criterion, that is, its depth at the boom is greater than the boom depth itself.

In this paper we propose a very simple model for the containment of highly viscous
oils by boom structures. We look for steady (that is, time independent) solutions
and assume that there is no movement of particles within the oil. Clearly this is an
approximation, and a more accurate model would have to allow for movement within
the oil, such as in Johnston, Fitzmaurice and Watt [4] or King and Tuck [5]. Note
the latter paper deals with upward airflow supporting liquids on sloped plane surfaces
(such as may occur on the windscreen of a car at high speed in rain), but that some
aspects of the modelling are similar.

The remainder of the paper is as follows. Section 2 contains the formulation of our
model. A key part of this formulation is that it allows the investigation of the need for
surface tension effects in the model. In Section 3, we discuss the model’s predictions
under zero surface tension. Section 4 looks at non-zero surface tension solutions while
in Section 5, we analyse the predictions of our model and briefly mention areas for
further work.

2. Formulation

We consider containing an oilspill in shallow water such as may be required if a
tanker hits a reef. The oil is to be contained using a floating barrier and we take the
flow of water beneath the oil to be two dimensional and perpendicular to the boom.
The water is assumed to be inviscid, incompressible and to flow without rotation; far
upstream of the slick the water flows uniformly with speed U and has a constant depth
H. The oil is assumed to be so viscous that there is no flow within the slick which has
a constant cross-sectional area, A.

We suppose that the oil and water are in contact with the atmosphere on y = 0, so
that P(y = 0) = 0. Let the interface between the oil and water be given by

y=—h(x) for —L<x<0

so that the slick is contained in an (initially) unknown length L with the boom at
x = 0. Only a fluid interface that is stationary with respect to the boom is considered,
so partial derivatives with respect to time are identically zero.

We assume that surface tension acts to coalesce the oil, so that on the oil-water
interface

Po=pu+ T/R M
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boom

FIGURE 1. A sketch of the fluid system. Note we have exaggerated the vertical scale.

where p, and p,, are the pressure in the oil and water respectively, T is the surface
tension and R is the radius of curvature of the interface. The density of the water is
denoted by p,, and that of the oil by p,. Figure 1 shows the fluid system schematically.

The variables above are non-dimensionalised using H as a length scale, U as a
velocity scale and p,, as a density scale. The water then has an upstream uniform
speed of 1 and an upstream uniform height of 1 in this nondimensionalised coordinate
system. The following dimensionless parameters describing various properties of the
flow may now be defined:

1 - po/pw . . .
G?> = ———=, density-weighted inverse Froude number,
U?/(gH) &
A=L/H, dimensionless length of slick,
a=A/H? dimensionless area of slick, and
T
o= prUZ , dimensionless surface tension.

The Froude number mentioned in Section 1, defined as F? = U?/(gH), appears
frequently in problems of this sort, however in this work it is simpler to use the
density-weighted inverse Froude number. Note that g is the acceleration due to
gravity. The following work proceeds purely with dimensionless variables.

Since flow is irrotational we may introduce a velocity potential ¢, so that the
velocity is given by q = V¢. Continuity then yields

V¢ =0. 2
On the bottom surface the condition of no penetration is

¢

— =0, 3

™ 3)
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where n is the normal to the surface. We assume that there is no fluid exchange
between oil and water, that is, the oil-water interface is a streamline. Thus

d¢p/dn=0 ony=—h(x)for—A <x <0and (C))
d¢p/3n =0 ony = 0otherwise. (5)

If pressure is taken as zero on the upper surface of the oil, then the Bernoulli equation
in the water gives an interface condition

”n

1 y 1
§(u2+v2)+Gzy—oW =5 on y =—h(X), (6)

where (1) has been used to obtain the pressure in the water in terms of the pressure
in the oil. The y derivatives represent the radius of curvature and « and v are the
horizontal and vertical components of the fluid velocity. The remaining condition
is obtained from requiring that the oil has constant volume (or in two dimensions,
constant cross-sectional area) and is

0
/ h(e) dx = a. %)

A

Equations (2) to (7) represent the full nonlinear problem under the assumptions
made above. A solution to these equations could be found using a boundary integral
technique, such as in Belward and Forbes|[1, 2] since this solution will satisfy Laplace’s
equation with several nonlinear boundary conditions. However, our aim in this paper
is to present a method which will obtain a quick estimate of how the slick will behave
with the boom in place. Therefore we leave the solution of the full nonlinear problem
to a later publication. Instead we simplify the problem by using a shallow water
approximation.

In using shallow water theory, we assume that the variation of the vertical com-
ponent of velocity is negligible when compared with the variation of pressure with
height, see for example, Stoker [6, page 24]. The horizontal and vertical components
of the momentum equation integrate to give

1, B 1
Eu—Gh+UW=§ for  —A<x <0 (8)

and u = 1 otherwise.
Integrating the continuity equation and using the fact that the interface between oil
and water is a streamline gives

u(l —h(x)) =1. 9)

Thus, after using shallow water theory, the problem reduces to solving (8) and (9),
subject to the constraint given by (7). Notice that (8) and (9) cannot be treated using
a phase-plane analysis, since constraint (7) makes the system non-autonomous.
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3. Zero surface tension solution

Undoubtedly, the most difficult aspect of solving (8), (9) and (7) is the complicated
derivative term, which represents surface tension effects. In order to obtain quick
estimates of slick length, it would be to our advantage if we could ignore this term. In
this section we consider this possibility, that is, we look for solutions when o = 0. It
turns out that if this is the case then, if a solution exists, the slick has constant depth
so that A is constant.

Under the assumption of zero surface tension (8) becomes

1, ) 1

—u'—Gh=-. 10

2u G 3 (10
The problem is now to solve (9), (10) and (7). Using (9) we eliminate u from (10),
obtaining

h(1 — h/2 — G*(1 =2h + h*)) = 0. (11)

Thus 4 = O is one solution. Equation (7) then implies that this represents an
infinitely long slick, with A — 00, so as to conserve the mass of oil. We regard this
solution as physically unrealistic, at least for the circumstances we are trying to model
here.

Using the quadratic formula on the other factor in (11) gives

W1 1i1/2+1 (12)
- 4G22V G 4Gt

The problem then is to determine which of the signs (if any) we can take on the square
root. This is achieved by noting that physically realistic solutions will be obtained
only when 0 < h < 1. It can be shown that this requirement disallows the positive
square root, but if G? > 1 then ’

he ] 1/2+1 (3)
T 46 2V G 4G

is a valid solution. The length of the slick is then determined by the integral condi-
tion (7).

If G* < 1 neither sign in (12) produces a sensible solution. It can be thought that
the water is flowing too quickly for the oil to coalesce. In these circumstances the oil
will spread into an infinitely long thin film on the top of the water. Perhaps our model
falls down here due to the lack of surface tension. If we retain this then recovery may
still be possible.
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4. Non-zero surface tension solution

In this section we develop the solution to a linearised form of (8), (9) and (7). This
is followed by a look at numerical solutions to these equations, generated using a
shooting method. The linear solution is obtained by assuming that the area (or in the
three dimensional case, volume) of the oilslick is small. That is, we require

oK 1. (14)

Substituting for u from (9) in (8) gives
1 h// 1
— — G°’h _— = . 15
2(1 - h)y ATy - 2 (1>

Now suppose h(x) = aY(x) + O(a?). Substituting this expression into the differ-
ential equation (15) and ignoring the contributions &'(a?) gives

2
Y”+(1 G)Y:O. (16)

g

Here o > 0 always, thus the form of the solution to this equation is largely determined
by the sign of 1 — G2. If G? > 1 we get exponential solutions,

Y = & exp (ﬂ GZG- ! x) + Bexp (-—‘/ Gzo_ ! x) . 17)

There is one boundary condition and one integral constraint,

Y=0 at x=-A and (18)

0
/ Y(x)dx = 1. (19)

A

Equation (19) expresses the integral constraint (7), accurate to first order in the expan-
sion parameter .

Recall that A, the oilslick length in nondimensional coordinates, is a quantity we
wish to determine. We may use (18) and (19) to eliminate two of the three unknowns,
&/, % and A. This implies that for each pair of the parameters G and o there is a
series of solutions, all represented by a hyperbolic sine function. Each solution has
a different contact angle on the boom, with the only contact angle not possible being
zero, since the hyperbolic sine function cannot satisfy such a condition.

If G* < 1, (16) and (18) yield a trigonometric solution,

Y = €sin (‘/I;G2 (x+k)). (20)
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The integral condition (19) determines € or A in terms of the remaining variable.
We note that solutions given by (20) must satisfy 0 < ¢Y(x) < 1 for -2 <x < 0.
Since 0 < a « 1 this leads to the requirement that

) 1-G?
sin x+A))]>0 for —XA<x<O. 21
o

This gives the following restriction on A for physically realistic solutions (and hence
determines a maximum length for the oilslick) for any choice of the parameters giving

sinusoidal solutions,
[T o
A< 1—_5 JT. (22)

Again for each set of the parameters, there is a series of solutions, each satisfying
(19). Each solution has a different contact angle on the boom. Note in this case a
contact angle of zero is possible, since the interface profile is sinusoidal.

A solution to the nonlinear equation (15) can be obtained using a shooting method.
In this casc the variable x is scaled using the unknown oilslick length, A, so that A
itself appears explicitly in the differential equation. The problem becomes

1 h” 1

- 1
2(1 — h)? G'h+do A2+ ()23~ 2 (23)
subject to
0 o
/_lh(é)d’s’ =3 o4
h(—-1)=0

For a shooting method to work, we must also specify the contact angle on the boom.
Thus we give h'(0) = k where k is chosen before computation commences. The
algorithm then consists of guessing A and A'(—1), and integrating the differential
equation, using a Runge-Kutta method. Newton’s method is now used to adjust the
guess at the two unknowns A and A’'(—1) so as to make the residuals given by (24) and
the condition A’(0) = k less than an acceptable numerical tolerance.

5. Results and discussion

The calculations performed using zero surface tension (o = Q) showed that esti-
mates of oilslick length could be obtained under this assumption only when G2 > 1.
It is also noted from (7) and (13) that as the Froude number increases, the depth of
the slick will decrease until G = 1 when the slick depth is zero, indicating perhaps
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FIGURE 2. Oilslick profiles for the case when G = 0.7454, o0 = 0.1667 and « = 0.1. The dashed line
represents the linear solution and the solid line the nonlinear solution.

that the slick is an infinite thin film of oil on top of the water and that recovery of oil
in these circumstances will be difficult. This is where the ¢ = 0 assumption fails.

To obtain estimates of oilslick length when G? < 1 it is necessary to include surface
tension effects on the oil-water interface in our model. Under these circumstances, the
linear theory gives a solution represented by (20). If we make the further assumption
that the oil-water interface joins the vertical boom at a right-angle, then the slick length

is given by
| o = X [ o
lin — 2 1—62

Investigations of the effects of nonlinearity can be made, as the shooting method
mentioned above enables solutions to the nonlinear equations (23) to (25) to be found.
In Figure 2 a comparison is made between the linear and nonlinear solutions in a
case when G? < 1. Clearly the linear solution over-estimates the slick length and
under-estimates the depth at which the interface between oil and water contacts the
boom.

Figure 3 shows the variation of oilslick length with the density-based inverse Froude
number for the parameter values 0 = 0.1667 and o = 0.1. The linear solution tends
to an infinite length as G? increases to 1, indicating that recovery of oil may be difficult
in these cases. In the nonlinear case this happens at a slightly higher Froude number,
however qualitatively the results are the same. Also we note that as G decreases, the
slick length decreases substantially and thus that oil is likely to escape under the boom
in such circumstances.

Both the linear and nonlinear solutions can be used to study the effects of surface
tension on the oilslick. Figure 4 shows how the length of the oilslick varies with
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0.5

FIGURE 3. Diagram showing how oilslick length varies with Froude number in the case wheno = 0.1667.
The dashed line represents the linear theory and the solid line the nonlinear theory. The vertical dotted
line represents G = 1.

surface tension in the case when G = 0.7454 < 1. Both solution types show that the
length of the slick decreases as the surface tension decreases and again oil is likely to
escape under the boom. Note that this is in contrast to the case where o = 0 where the
theory presented above shows the slick length extending to infinity whenever G? < 1.

In summary, we have proposed a simple model for the containment of a very viscous
oil by a boom structure. It was assumed that a shallow water theory approximation was
appropriate within the water, while fluid motion within the oil was taken as zero. It
was found that the inclusion of surface tension effects was important in cases when the
water was flowing fast enough beneath the oil so that G? < 1. When G? > 1, surface
tension effects can be ignored, as the model predicts containment of oil in a finite
area of water. Note however that when G? ~ 1 the solutions should be interpreted as
suggesting that containment will be difficult, as the slick will be quite long in either
case.

The investigation of the behaviour of the fluid system for cases when G? = 1
needs to be performed with the more realistic fully nonlinear equations (2) to (7). We
comment that attempts were made at finding solutions to (23) to (25) for parameter
values satisfying G> > 1 and o > 0, however we could not find solutions for any
attachment angle arctan & of the interface with the boom arm. We therefore conclude
that the singular nature of the problem is such that, when ¢ = 0, only solutions
for G? > 1 are possible and that, for ¢ > 0, solutions can only be obtained with
G* < 1. For each parameter region, singular behaviour is encountered as a limiting
configuration, as the value G*> = 1 is approached. An analysis of the exact equations
(2) to (7), perhaps using a boundary integral approach, should shed more light on this
unexpected behaviour, and will allow a more comprehensive investigation of the fluid
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FIGURE 4. Diagram showing how oilslick length varies with surface tension in the case when G = 0.7454,
The dashed line represents the linear theory and the solid line the nonlinear theory.

system when G*> = 1. Solving using a boundary integral method will also allow us
to generalise the model so that we can study oil spills when the bottom surface of
the ocean is not flat or when a shear exists in the velocity profile of the water. Such
an approach has already been adopted by Forbes and Belward [3] where a shear was
assumed in the velocity profile of air flowing in the atmosphere and the surface of an
atmospheric solitary wave was obtained. In the oilslick problem the interface between
the oil and the water would be obtained. Studying the possible formation of waves
on this interface will be an important step in understanding when and why a boom
mechanism for containing oil may fail. We leave this work for a future publication.
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