
ART ICLE

Social Learning in Neural Agent-Based Models

Igor Douven

Paris 1 Université Panthéon-Sorbonne, Paris, France
Email: igor.douven@gmail.com

(Received 08 February 2024; revised 12 June 2024; accepted 24 June 2024; first published online 29 October 2024)

Abstract

Agent-based models (ABMs) are widely used to study how individual interactions shape
collective behaviors. Critics argue that ABMs are often too simplistic to capture real-world
complexities. We address this by integrating artificial neural networks into ABMs, focusing
on enhancing the Hegselmann–Krause (HK) model. By using multilayer perceptrons as
agents, we create more realistic ABMs that better reflect actual agents. This approach yields
multiple models, as core elements of the HK model can be defined in various ways. We
conduct two computational studies to compare these models with each other and with
traditional individual-learning paradigms.

1 Introduction
Agent-based models (ABMs) have become a popular tool for studying macro-
properties of social systems that, although typically arising from simple, micro-level
interactions, cannot be fully understood by strictly analytical means. They are used
across a range of domains, from economics and political science to epidemiology and
urban planning (Crosscombe and Lawry 2016; Deffuant et al. 2000; Dittmer 2001;
Douven and Hegselmann 2021; Lorig, Johansson, and Davidsson 2021; O’Connor and
Weatherall 2019; Schelling 1971), and philosophers of science have recruited ABMs to
argue that social learning is key to producing and acquiring scientific knowledge
(Douven 2010; Glass and Glass 2021; Hegselmann et al. 2015; Huang, forthcoming;
Kummerfeld and Zollman 2016; Olsson 2013; Olsson and Vallinder 2013; Rosenstock,
O’Connor, and Bruner 2017; Zollman 2007, 2010).1

Although popular, agent-based modeling has recently come under a cloud.
According to various authors, ABMs tend to oversimplify agent behavior, decision-
making processes, and environments, which—these authors argue—undermines

© The Author(s), 2024. Published by Cambridge University Press on behalf of the Philosophy of Science Association. This
is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided
the original article is properly cited.

1 The article has supplementary materials consisting of an online-only appendix and the data and code
used for the simulations. The Jupyter notebook containing the code also includes extra analyses of the
simulation outcomes and a short tutorial on defining neural networks using the Flux.jl package for the
Julia language (Bezanson et al. 2017). All materials can be downloaded from the repository at https://osf.
io/fs29h/.

Philosophy of Science (2025), 92, 141–161
doi:10.1017/psa.2024.33

mailto:igor.douven@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://osf.io/fs29h/
https://osf.io/fs29h/
https://doi.org/10.1017/psa.2024.33

their ability to adequately capture the complexity and variability of real-world
behavior and thus to yield accurate predictions when applied to actual social
processes (see, e.g., Borg et al. 2019; Cristelli 2014; Frey and Šešelja 2018, 2020;
Rosenstock, O’Connor, and Bruner 2017; Šešelja 2019; Thicke 2020).

An obvious response to this critique is to make ABMs more realistic, which can be
done, for instance, by letting interactions among agents be governed by more
complex rules and by making the agents’ environment more like the real world in
relevant respects. Several agent-based COVID-19 models were successful because of
this approach. Not only did these models capture relevant population differences (in
terms of age, health status, social behavior, mobility patterns, etc.), as well as the
resulting heterogeneity of the interactions among agents, but they were also able to
incorporate data about the evolving pandemic almost in real time—features that
made them valuable tools for policymakers in managing the pandemic (see, e.g., Adam
2020; Douven 2024). A different approach, taken in this article, is to make the agents
intrinsically more humanlike by endowing them with some artificial form of
intelligence. We aim to accomplish this by integrating ABMs with artificial neural
networks (ANNs). The resulting neural agent-based models (NABMs) allow agents to
learn from and adapt to their environment and interactions in a manner more akin to
how humans learn and adapt.

This is still a very broad proposal, given the number of different ANN architectures
on the market as well as the number of different ABMs with which they could be
combined. As for ABMs, our focus will be on the Hegselmann–Krause (HK) model
(Hegselmann and Krause 2002, 2006, 2015, 2019), a well-established framework for
studying opinion dynamics that enjoys considerable popularity in philosophy and
beyond. We will combine this model with multilayer perceptrons (MLPs), which are
among the oldest types of ANN. The HK model captures the process of opinion
formation and evolution within a society of agents, where the agents’ opinions are
influenced both by evidence obtained directly from the world and by the opinions of
their peers, which are the agents whose opinions are close to the agents’ own
opinions. By populating the HK model with MLPs, we aim to simulate the behavior of
agents that form their opinions, or more generally update their doxastic states, not on
the basis of simple arithmetic operations (as the agents in the HK model do) but
rather by leveraging an ability to process complex information in a humanlike way.
Nevertheless, the dual updating mechanism characteristic of the HK model remains
intact in our NABMs in that updating will still be one part data driven, one part based
on social interactions, where the latter are achieved through either parameter
averaging or prediction alignment, or both (in ways to be explained).

Our primary goal is to present what we believe to be a promising approach to
making ABMs more realistic, thereby also addressing the recent critique of such
models. A secondary goal is to assess what remains of the seeming support from ABMs
for the efficacy of social learning when this issue is considered in more realistic
settings. We provide some theoretical background on the two main components of
our NABMs (the HK model and MLPs) in section 2. The HK-based NABMs are then
presented in section 3. Sections 4 and 5 report computational studies conducted using
these models, the first study centering on a classification task, the second involving
probabilistic updating in the context of medical diagnostics. Both studies address the

142 Igor Douven

question of the significance of social learning by comparing forms of such learning
with each other and with individual learning.

As a preliminary note, we emphasize that the framework to be presented is meant
as a blueprint for combining ABMs and ANNs generally and that our methodology can
be adapted to integrate ABMs with ANNs more sophisticated and state of the art than
MLPs, including the large language models (LLMs) that have been much in the
limelight lately. At present, the requisite adaptations of the framework would
encounter practical obstacles, for instance, due to the limited accessibility of cutting-
edge LLMs—the most impressive ones being proprietary software—and the
substantial computational resources required for training extensive numbers of
larger networks. But anyone who has been following developments in the field of
artificial intelligence will find it reasonable to expect that such challenges will be
overcome sooner rather than later.

2 Theoretical background
2.1 The Hegselmann–Krause model
The HK model is among the most popular frameworks in the domain of agent-based
computational modeling. While the model admits of a variety of interpretations (see,
e.g., Hegselmann 2023), it is most commonly interpreted to encapsulate the interplay
between two key aspects of human epistemic behavior: the assimilation of
information from social peers and the direct acquisition of knowledge from empirical
evidence. On this interpretation, it serves as a mathematical abstraction of opinion
dynamics, where agents iteratively adjust their beliefs about the value of some
parameter τ 2 0; 1� �, whose meaning remains unspecified.

Formally, each agent i starts at time 0 with an estimate xi 0� � of τ and revises this
estimate over discrete time steps, where at each time t the revision process is
influenced by two primary factors: evidence about τ the agent receives directly from
the world at t and the opinions of its peers at t, which are formally defined to be the
agents within its bounded confidence interval (BCI) at t, that is, whose estimates of τ
at t differ by no more than some small value ε from the agent’s own estimate at t.
Then agent i’s opinion concerning τ after the n� 1� �st update (i.e., at time n� 1) is
defined to be

xi n� 1� � � 1 � α

Xi n� �j j
X

j2Xi n� �
xj n� � � ατ;

with xj n� � being the opinion of agent j after update n and

Xi n� � :� j : xi n� � � xj n� �
�� �� ≤ ɛ

� �

the set of agents within agent i’s BCI after update n. The parameter α 2 0; 1� � balances
the weight given to social versus evidential information. (For illustrations, see the
supplementary materials.)

A key virtue of the HK model is that it can be easily extended or adapted for the
purpose of addressing specific research questions. For instance, researchers have
explored scenarios with “noisy” evidence, where agents receive imperfect signals
from the world (Douven 2010), and have considered agents with interval-valued
beliefs to account for vagueness (Crosscombe and Lawry 2016) as well as agents that

Philosophy of Science 143

can simultaneously hold beliefs about multiple issues (Jacobmeier 2004; Lorenz 2008;
Pluchino, Latora, and Rapisarda 2006).

In line with the general critique of ABMs cited in the introduction, one could argue
that the HK model, and even the aforementioned extensions of the model, features
agents whose intellectual capacities are, for all we know, unrealistically impov-
erished. Proponents of the HK model could respond that this does not mean their
model cannot be descriptively adequate at the macro-level, for instance, in predicting
when a community of agents will reach a consensus and when it will not. While that is
true, we believe that a more productive, and independently interesting, response is to
consider ways to make the HK model more realistic. One way is to endow the agents in
the model with something like a brain that is capable of learning much in the manner
in which we humans learn. This is the approach to be taken here.

2.2 Multilayer perceptrons
The “brains” with which we are going to equip the agents are going to be ANNs,
specifically MLPs. Or rather, our agents are going to be MLPs, where these MLPs form
communities and attend both to worldly evidence and to their peers.

ANNs not only have a brain-inspired architecture (Goodfellow, Bengio, and
Courville 2016, chap. 1); they also reflect, to some extent, how the human brain
operates (Caucheteux and King 2022; Glorot, Bordes, and Bengio 2011; Goldstein et al.
2021). More important for present purposes, ANNs have been shown to be an
adequate tool for simulating various higher-level cognitive processes, such as
categorization, language learning, and reasoning (Battleday, Peterson, and Griffiths
2021; Buckner 2018, 2023; Douven, forthcoming; Hoffman, McClelland, and Lambon
Ralph 2018; Hosseini et al. 2024).

MLPs are a specific type of ANN, belonging to the family of feed-forward ANNs,
which are characterized by the unidirectional flow of data through the network. The
MLP architecture dates back to the late 1950s and early 1960s, but it was not until the
1980s, with the introduction of the back-propagation algorithm (Rumelhart, Hinton,
and Williams 1986), that MLPs became able to learn from complex data patterns.

An MLP consists of several densely connected layers: an input layer, one or more
hidden layers, and an output layer. Each layer is made up of nodes or neurons, with all
neurons in the hidden and output layers being characterized by their weights (one for
each neuron in the previous layer) and biases as well as by their activation function.
The weights and biases are the adjustable parameters of the network, governing the
strength of connections and the threshold for neuron activation, respectively, and the
activation function is typically a nonlinear function, such as a sigmoid function or
rectified linear unit (ReLU) function (this was used in the studies to be reported),
which calculates the neuron’s output on the basis of its inputs and the weights and
bias associated with it.

MLPs are trained using a supervised learning technique (i.e., on the basis of labeled
data) and learn through the aforementioned back-propagation algorithm.
Specifically, the learning process in an MLP involves two phases, namely, propagation
and weight updating. During propagation, unlabeled input data are passed through
the network, and each neuron processes the incoming data to produce an output
based on its associated weights, bias, and activation function. This output is then

144 Igor Douven

passed on to the next layer until it reaches the output layer, producing the network’s
prediction. Next, this prediction is compared to what the output should have been (i.e.,
the label that was not provided as input). The discrepancy between prediction and
label is the “error” or “loss” from the output layer, which serves as input for the back-
propagation algorithm. In back-propagation, the network adjusts its weights and
biases to minimize the error between its predictions and the actual outcomes. This
involves calculating the gradient of the loss function with respect to each parameter
(weights and biases). The network then updates its weights and biases, using gradient
descent or a similar optimization algorithm, to improve its performance.

MLPs have been used for a variety of tasks (e.g., image and speech recognition,
natural language processing, and time series prediction), and they have found
application in a great number of areas, including financial forecasting and medical
prognosis, where they aid in uncovering patterns and relationships in data that are
not readily apparent to the human eye. In one of our studies, the agents (i.e., MLPs)
engage in a multiclass classification task; in the other study, they are employed in the
context of medical diagnostics.

3 HK updating for neural networks
The key elements of the HK model are the notion of peerhood, regulated by the ε

parameter, and the operation of mixing worldly and social information, where the
exact mixture depends on the value of the α parameter. We want to retain both
elements in our new model, but, given that our agents are going to be MLPs, these
elements need to be adapted.

In the original HK model, every agent is, at every point in time, fully characterized
by its estimate of τ, making a definition of peerhood in terms of similarity of opinion
the only plausible option. Accordingly, the model lets agents i and j be each other’s
peers at t precisely if xi t� � � xj t� �

�� �� ≤ ε. But with MLPs as agents, one agent can be
similar to another agent in more than one respect. Most notably, while in the original
HK model, there is no meaningful distinction between an agent’s state at a given point
in time and its output (i.e., its estimate of τ) at that point in time, in the new model,
there is. At any point in time, an agent is in a certain state, fully characterized by its
parameters (its weights and biases) at that time (architecture, including activation
functions, will always be the same for all agents in a community), but it can also be
characterized by its output (i.e., the predictions it would then make, if prompted). As a
result, we can distinguish between state-based similarity and output-based similarity—
and of course, agents can be similar to each other in both respects at the same time,
which would make them state- and output-based similar.

Because MLPs can be used for various purposes, the output of an MLP can be many
things: a single number, as in the HK model, or a grouping of items of interest into
different classes (if the MLP is a classifier), or an assignment of probabilities to a set of
competing hypotheses (e.g., if the MLP is used for a multinomial regression task), and
so on. How to make the notion of output-based similarity precise will depend on the
type of output we are dealing with. If, for instance, it is a single number, output-based
similarity could again be defined in terms of absolute difference, as in the HK model. If
the MLP is a classifier, one can consider a number of different metrics of classification
similarity, such as the mutual information index, which we will use in the first study

Philosophy of Science 145

to be reported in this article; if the output is a probability distribution, then again, a
number of options are available, such as the Kullback–Leibler (KL) divergence or the
Jensen–Shannon (JS) divergence, the latter of which we will use in the second study;
and so on. Two agents will then be said to be each other’s output-based peer precisely if
they are close enough to each other in terms of the appropriate criterion.

The notion of state-based similarity requires more explanation. Given that, in our
models, all agents (i.e., MLPs) will have the same architecture—the same number of
layers, corresponding layers having the same number of nodes, corresponding nodes
having the same activation function—we can measure their similarity by comparing
their parameters, node per node. A common metric for this purpose is the cosine
similarity, which requires that we vectorize the parameters first.2 Gathering, in some
order, the weights and biases of agent i in a vector paramsi and proceeding
analogously for the weights and biases of agent j, obtaining paramsj, their cosine
similarity is calculated as

cossim i; j
� � � paramsi 	 paramsj

paramsi
�� �� × paramsj

�� �� ;

which will be a value between –1 and 1, with 1 indicating maximum similarity and –1
maximum dissimilarity.

To illustrate, consider the MLPs shown in figure 1. We lay out sequentially the
parameters of each network from top to bottom and from left to right, and we
calculate the dot product of the resulting vectors:

0:11 	 0:87� 1:26 	 0:64� 0:43 	 1:22� 	 	 	 � 0:94 	 0:81
 7:35:

We further calculate that the norm of the first vector equals
���
0:112 � 1:262 � 0:432 � 	 	 	 � 0:942

p

 2:94

and that the norm of the second vector equals
���
0:872 � 0:642 � 1:222 � 	 	 	 � 0:812

p

 3:09:

Thus the cosine similarity for the aforementioned MLPs equals (approxi-
mately) 7:35= 2:94 × 3:09� �
 0:81.

0.11

1.26
0.43

0.
98

1.25

0.63

0.18

0.80

0.4
4

0.89

1.12

0.37

0.94

0.87

0.64
1.22

0.
84

0.12

0.68

0.58

1.08

0.9
3

0.77

1.37

0.45

0.81

Figure 1. Multilayer perceptrons sharing the same architecture but with different weights and biases.
(Weights are annotated on the edges connecting the neurons; biases appear inside the neurons).

2 To compare networks with different architectures, other metrics than the cosine similarity are
recommended (see Chen et al. 2021).

146 Igor Douven

We will say that agents i and j are state-based peers precisely if cossim i; j
� � ≥ 1� ε,

for the chosen ε 2 0; 1� �; so, for instance, if ε � 0:2, then the agents in the preceding
illustration are each other’s peer. Note that, as in the original HK model, a larger value
of ε means a more liberal or inclusive notion of peerhood, which does not require
agents to be as similar with respect to their parameters to qualify as peers;
conversely, the smaller the value of ε is, the more similar the agents have to be, with
the limiting case of ε � 0 meaning that the agents must be maximally similar, also
analogous to the original HK model.

It merits emphasis that being able to differentiate types of peerhood—based on state,
outcome, or a combination of the two—is already an enrichment compared to the
original HK model. For, as social scientists have shown (e.g., Eysenbach et al. 2004;
Laninga-Wijnen and Veenstra 2023), in real life, peer selection is influenced by a
multitude of criteria: we may want to team up with people who share our views but also
with people who look like us or have the same educational background or socioeconomic
status. State-based peers could be regarded as corresponding somewhat to peers who
“look like us,” output-based peers as corresponding to peers who “have views like ours.”

The averaging operation can take different forms as well, again because, with MLPs
as agents, we can make a state–output distinction. Supposing we have determined an
agent’s peers at a given point in time (be these state-based, output-based, or state- and
output-based peers), one plausible option is to average the parameters of those peers
and calculate the output of the network with the resulting averages as parameters,
given the input at the point in time; another, equally plausible option is to calculate the
outputs of all peers at the point in time and average those outputs. In general, the
results will be different. Suppose, for instance, that the two MLPs depicted in figure 1
are both given as input the vector 2=3; 1=3

� �
. Then it is an easy (if somewhat tedious)

exercise to calculate that the left MLP will give as output (approximately) 3.70 and the
right one will give as output (approximately) 5.33, yielding an average of
(approximately) 4.52. But applying the procedure of the first option to the same
MLPs results in the network shown in figure 2, and this network yields (approximately)
4.46 when given 2=3; 1=3

� �
as input.3

The different definitions of peerhood and averaging can be combined in a variety of
ways to obtain NABMs whose agents update in a HK-like fashion. We will make no
attempt to be exhaustive here and confine ourselves to studying three models that

0.49

0.95
0.825

0.
91

0.685

0.655

0.38

0.94

0.6
85

0.83

1.245

0.41

0.875

Figure 2. Multilayer perceptron with
weights and biases resulting from
averaging the corresponding weights
and biases from the multilayer percep-
trons shown in figure 1.

3 We are assuming ReLU activation functions here.

Philosophy of Science 147

could all be plausibly regarded as extensions of the HK model, the main difference in all
three cases being that the traditional HK agents have been replaced by MLPs. Roughly,
the first model assumes a state-based notion of peerhood and also averages agent
parameters instead of outputs. The second model assumes an output-based notion of
peerhood and averages outputs. And the third model combines the first and second,
which means that it proceeds by averaging parameters of state-based peers but also by
averaging outputs of output-based peers. In the remainder of this section, we describe
each of the models in more detail, and in the next two sections, we use computer
simulations to compare their performance on standard machine learning benchmarks.

All three models require as input a community of agents, which will be MLPs but
could also be different types of networks; input data, split into a training and a test
set; and values for parameters regulating peerhood and the mixing of worldly and
social factors in updating. There is no restriction on the exact architecture of the
MLPs, except that (1) it must be the same for all MLPs in a given community, meaning
that they must have the same number of layers and that corresponding layers must
have the same number of nodes as well as the same activation function, and (2) the
input and output layers must (of course) fit the data and task, respectively. In the first
two models to be considered, the parameter ε regulates the criterion for peerhood
(which, however, means different things in the two models), and the parameter α

regulates the weighting of the worldly versus the social factor in updating (the
weighing operation also means different things in the two models). The third model,
which, as said, combines the first two, has two parameters regulating peerhood—one
regulating state-based peerhood (ε1), the other output-based peerhood (ε2)—as well
as two weight parameters, one pertaining to the weighing of states (α1), the other
pertaining to the weighing of outputs (α2).

The first model consists of three main parts. The first part calculates a cosine
similarity matrix for all agents in the community and, on that basis, selects peers for
each agent (i.e., the agents that are ε-similar to it). It then calculates the averages of
those parameters, in the way illustrated previously, and it stores these parameter
averages. The second part, which can be thought of as the worldly part of the updating
process, trains for one training round every agent (i.e., MLP) on the data it received,
where it is left open at this point whether all agents receive the same data or receive
different (possibly partly overlapping) subsets of the data. The third part, finally, takes a
weighted average of the parameters of the agent that resulted from the training process
in the second part and the parameter averages of the agent’s peers that were calculated
in the first part, the weighing depending on the value of α. The parameters that result
from this weighted averaging are then set as the new parameters of the agent.
Algorithm A.1 in appendix A.2 presents pseudo-code for the updating method defined
by this model. In that presentation, the procedure outputs both the updated agents and
the results from evaluating the updated agents on the relevant data (the training set, or
the test set, or both, whichever is most useful for one’s purposes).4

The building blocks of the second model are basically the same as those of the first
model, but they appear in a different order. First, all agents are trained on whatever

4 For a still better understanding of the computational details, readers are invited to consult the
Jupyter notebook in the supplementary materials, which contains the Julia code of the simulations
reported in the following sections.

148 Igor Douven

the relevant data are (where it is again left open whether all agents are trained on the
same data or whether each agent receives its own data set); then they make
predictions, whether for their training data, their test data, or both (e.g., if the task at
hand is one of classification, they predict, after being trained, how each data point will
be classified); in a next step, the peers of each agent are determined on the basis of
how similar their predictions are (the similarity cutoff depending on ε); and finally,
some α-weighted average of the agent’s predictions after the worldly update and the
averaged predictions of its peers is calculated and then evaluated. Algorithm A.2
presents the pseudo-code for the second model. As presented there, the procedure
gives the result of the final step (i.e., of the weighted averaging) as output, together
with the updated agents.

The notion of averaging, as it is used in the second model, requires a comment.
Parameters are always numbers, and we know what it means to average numbers. So,
in the first model, averaging always means taking the arithmetic average of whatever
the relevant numbers are. But as already explained, given the many kinds of tasks
MLPs can fulfill, the outputs in the case of the second model need not be numeric. As a
result, the operations of averaging and weighted averaging, as carried out in the
model, may differ, depending on the nature of the data or the task at hand. For
instance, in the first study, averaging consists in determining the modal responses for
the various data points, in a way to be detailed. Nevertheless, the intended meaning of
averaging in this algorithm should be clear: the average is always some kind of best
compromise of whatever different responses are under consideration.

The third model combines the previous two. Specifically, it proceeds as follows: (1)
for each agent, select its state-based peers (depending on ε1) and take the averages of
their parameters; (2) train all agents on their training data; (3) for each agent, set its
parameters equal to a weighted average of its parameters after the training and the
averaged parameters of their state-based peers (before training; the weighting of the
average is determined by α1); (4) let all agents make predictions on the relevant data;
(5) for each agent, select its output-based peers (based on ε2), in light of the
predictions obtained in the previous step; and finally, (6) for each agent, take an α2-
weighted average of its own predictions and the averaged predictions of its output-
based peers.

While in the description of the models we have not explicitly referred to an
equivalent of the parameter τ in the HK model, the references to agents making
predictions and being evaluated all refer implicitly to such an equivalent, that is, a
target that the agents are aiming at and can get right to differing degrees; also, the
data will, ideally, be informative of that equivalent, meaning that they will help the
agent approximate the target, or even hit it. But precisely because MLPs can be used
for a variety of purposes, it is impossible to characterize the target generally. If the
MLPs are trained on a classification task, the aim is to classify correctly whatever data
they are given as input; their predictions concern the classification of those data—
they are their best guess of how the data are classified in reality—and they are
evaluated in light of how closely their predictions match the correct classification,
and similarly if the MLPs are trained to assign probabilities to a set of rival theories,
or to predict time series, or to encrypt data. In all those cases, there is a target to
which they are trying to come as close as possible and with respect to which they can

Philosophy of Science 149

be evaluated, but the nature of the target is different each time, unlike in the HK
model, where it is always a number (or a set of numbers, in some extensions).

It is again to be noted that we are not aiming at exploring all possibilities of
integrating the HK model with ANNs. We do believe, however, that the three models
defined in the foregoing paragraphs are all natural extensions of that model as
originally conceived, the new characteristic element being that the communities of
agents are constituted by neural networks. While it has been shown that, depending
on an agent’s environment and its goals (epistemic or otherwise) in that environment,
social updating in the manner of the HK model can have notable epistemic advantages
(Crosscombe and Lawry 2016; Douven 2010, 2019; Douven and Hegselmann 2021, 2022;
Glass and Glass 2021), it remains to be seen whether there is any merit to HK updating
for agents conceived as neural networks. To find out, the next two sections test the
three models on tasks for which neural networks have been commonly used, and we
compare the performance of networks in the models with that of neural networks
carrying out the same tasks in a strictly individual fashion.

4 Study 1: Classifying colors
The first study considers communities of agents (i.e., MLPs) that are trained to classify
colors on the basis of their coordinates in color similarity space, specifically CIELUV
space (see figure A.1 [left] in appendix A.3; also see, for theoretical background,
Fairchild 2013). Both the training and the testing materials come from the 320
chromatic Munsell chips that served as the materials for the World Color Survey
(WCS; Cook, Kay, and Regier 2005), a large catalog of color-naming systems from
across the globe; the 320 chips are highlighted figure A.1 (right) and shown in a chart
in the way they were presented in the WCS in figure A.2.

Because a significant number of participants in color-naming studies for both
English and French used only ten of the eleven basic color terms (“green,” “blue,” etc.)
in describing the colors of the WCS chips, leaving out “gray” (Berlin and Kay 1969;
Claidière, Jraissati, and Chevallier 2008), we take as the target classification that the
agents should try to learn—our τ , so to speak—a clustering of the WCS chips into
ten categories. Also, because in the same color-naming studies, there was
considerable interpersonal variability in how these chips were named, we use the
k-means clustering algorithm to provide a kind of objective approximation of the
natural color concepts.5 The result, which is the classification the agents should try to
learn, is shown in figure A.3 (top).

The MLPs that populate the models are not much more complicated than the ones
used in our earlier illustration. They also have only one hidden layer, now consisting
of nine nodes and integrating the ReLU activation function for each node.6 Given that
the task at hand is to categorize colors as belonging to one of ten classes on the basis
of their CIELUV coordinates, the input layers of the MLPs have three nodes—one for

5 See Douven (2017, 2023) for more on this; how close the approximation is is unimportant for present
purposes.

6 In light of recent work on ANNs, this is an exceedingly simple and shallow architecture that, by
today’s standards, does not even qualify as deep (see, e.g., Buckner 2023, 50; Buckner and Garson 2018).
But everything written in this article generalizes to MLPs with any number of hidden layers and even,
with some qualifications, to more recent architectures (see section 6).

150 Igor Douven

each coordinate—and the output layers ten, each representing one of the basic colors
minus gray.

We ran three sets of simulations, one for each of the models defined in the
previous section, in which the communities always consisted of fifty MLPs with the
architecture described earlier. Each simulation involved training the agents over one
hundred epochs, where an epoch is a single application of the given model, with the
agents being returned after epoch n serving as input for the model in epoch n� 1, for
n 2 1; . . . ; 99f g.7 The training used the Adam optimization algorithm (with a learning
rate set to 0.001) and the multiclass cross-entropy loss, which computes the loss by
measuring the difference between the predicted classification probabilities (i.e., the
probability that a chip should be classified as green, the probability that it should be
classified as blue, etc.) and the true class labels.

Per epoch, the agents received a fresh batch of training data, each time sampled
randomly and for each agent individually from the WCS chips in such a way that the
number of chips from each category according to the target classification was greater
than 0 but otherwise random. Thus every agent was assigned at the beginning of each
epoch a set fhhL�c ; u�c ; v�c i; Ccigc 2 8 of pairs as training data, with each pair comprising
the CIELUV coordinates of some WCS chip c in sample s as well as its label Cc
indicating the color it has according to the target classification.8 The test data on
which the agents were evaluated after each epoch were always the same for all agents
and consisted of the coordinates of all 320 color chips together with their labeling
according to the target classification.

The evaluation used the mutual information index, which measures the similarity
of different classifications (see, for why this measure is preferable to alternative
measures, such as the Rand index, Pfitzer, Leibbrandt, and Powers 2009).9 To be more
precise, after each epoch, we measured the accuracy of each agent by calculating the
mutual information between how it classified the 320 chips in our materials and how
these chips ought to be classified according to the target classification.

For the first two models, which have only one ε and one α parameter, we used a
grid search strategy to approximate optimal combinations of parameters. For each
combination resulting from letting ε and α range independently over the unit interval
in steps of 0.025, we ran one hundred simulations as described earlier. For state-based
social updating, the parameter setting α � ε � 0:9 yielded, on average, the highest
mutual information at the end of the training process. For output-based social
updating, the combination of α � 0:1 and ε � 0:3 did best. For the combined social
updating method, which has four parameters, a grid search would have been
computationally too costly, and therefore we ran a random search procedure to
approximate the best setting (or a best setting; uniqueness is not guaranteed).

7 At start time (i.e., epoch 1), the layers of the agents were initialized using the Xavier method
introduced by Glorot and Bengio (2010).

8 For a more detailed description of the procedure, see Douven (2023). As noted in that paper, there is
no fixed sample size in this procedure, given that a random number of chips is sampled from each color
category. The average sample size was empirically determined to be 165.02 (± 31:98).

9 We used the normalized version of this measure so that mutual information values were always
between 0 and 1, with 0 indicating that the classifications are maximally dissimilar and 1 indicating that
the classifications are maximally similar (i.e., identical). For a formal definition of this measure, and for
formal definitions of all other technical notions to be used in the following discussion, see appendix A.1.

Philosophy of Science 151

Specifically, we ran one hundred simulations for five hundred combinations of
random choices (all uniformly sampled from the unit interval) for the two α and the
two ε parameters, finding that the best score (i.e., the highest average mutual
information) after one hundred epochs was obtained for the setting α1 � 0:81,
ε1 � 0:9, α2 � 0:14, and ε2 � 0:07.10

To get a first impression of the accuracy that can be achieved using the different
updating mechanisms with their optimal parameter setting, we trained a community
of fifty agents for one thousand epochs for each of these mechanisms and compared
the resulting modal classifications with the target classification. (A modal
classification is the classification that gives, for each chip in our materials, the
modal—that is, the most frequent—response for that chip in the given community.)
For completeness, we included in the comparison the modal classification obtained
from a community of fifty agents (MLPs) that do not engage in any social updating but
are individually trained in the exact same way as the agents in the communities of
social updaters are. It turned out that, first, the different updating methods led to
modal classifications that looked almost the same and, second, that those
classifications were almost identical with the target classification (see figure A.3).
Indeed, a comparison with the target classification yielded the same high mutual
information of 0.97 for each modal classification.

Should we conclude that the various forms of social updating are equally good but
also that social updating, in whichever form, is not worth the extra effort of averaging
(whether parameters or predictions, let alone both)? That would be rash, because the
modal classifications tell a very incomplete story, for two reasons. First, note that
modal responses can be the same even if, for one algorithm, only a small fraction of
agents got the label right at the end (but wrong responses were all over the place),
while for another, all, or almost all, agents got it right. Second, we will want to look at
more than the end state of the training process and will also be interested in how fast
the agents were able to learn. Perhaps all updating methods led to an excellent
classification eventually, but if one already got the classification more or less right
quite early on in the training process, while the other updating methods did not, then
for many practical purposes, that will make the former preferable.

On these issues, figure 3 offers some helpful insights. For each of the four
communities of agents under consideration (i.e., the community of nonsocial
updaters and the three communities of social updaters, each using a different
updating method with their optimal setting) and for each epoch, figure 3 shows the
mean mutual information obtained by the agents, together with 95 percent
confidence bands. We see that the combined state-based and output-based procedure
swiftly surpasses the others, maintaining its lead throughout the training process.

We conducted one-way analyses of variance (ANOVAs) for the mutual information
scores of the four groups after each epoch. The ω2-values for each ANOVA are plotted
on the alternative y-axis of figure 3, a green marker indicating that the ANOVA
showed group means to be significantly different, a red marker that they were not
significantly different. An ω2-value greater than 0.14 is conventionally taken to
indicate a large effect size, meaning in our case that, although themodal classifications
of all communities were equally good at the end, even at the end, there were large

10 See the supplementary materials for details and additional analyses.

152 Igor Douven

differences among the communities in terms of average mutual information scores
(i.e., how well, on average, members of the communities did with respect to
approximating the target classification).

Results of the per-epoch follow-up tests with pairwise comparisons, which are
contained in the supplementary materials, further reveal that not only does the
combined updating method top all of its rivals after virtually all epochs but at almost
every epoch, a choice of the former over any of the alternatives would largely impact
the achieved accuracy (where the effect size was measured using Cohen’s d). The only
method that at times comes close and sporadically even does better is the output-
based social updating method. The pairwise comparisons also confirm what could
already be guessed on the basis of figure 3, namely, that all social updating methods
outperform individual updating by far.

We can also measure the total accuracy achieved by the agents over the one
thousand epochs by using the area under the learning curve (AULC; see, e.g.,
Bouckaert 2006; Tsai, Ho, and Lin 2010), which plots the learning curve of a neural
network and measures the area under that curve. Networks that learn faster and
achieve greater accuracy sooner will have a larger area under the learning curve,
while models that learn more slowly or achieve a lower level of accuracy will have a
smaller area, assuming the same number of epochs. Thus the AULC can be interpreted
as a measure of the overall performance of the network throughout the training
process, with larger values for this metric indicating better average performance of a
network throughout the training process.

The AULC values obtained for the agents in the community using the combined
social updating method were significantly larger than those obtained for the agents in

Figure 3. Per-epoch average mutual information (with 95 percent bootstrap confidence intervals) for the
four communities of agents (social updating always with optimal settings; see the text). Effect sizes (ω2) for
the ANOVAs that were run for each epoch are shown on the alternative y-axis. SB, state based; OB, output
based. (Color online.)

Philosophy of Science 153

the other communities. Specifically, a one-way ANOVA showed that type of updating
had a significant and very large effect on AULC values over 1,000 epochs,
F 3; 196� � � 200:58, p < 0:0001, ω2� 0:75. Pairwise t-tests showed that the AULC
values for the agents using combined social updating significantly exceeded those for
the agents using any other method of updating (smallest t � 52:04, all ps < 0:0001),
with a mean AULC value for the combined method of 938.40 (± 0.56), for the output-
based method of 921.54 (± 2.22), for the state-based method of 897.00 (± 0.90), and
for the nonsocial method of 866.95 (± 31.44). A Cohen’s d test showed that using the
best method (combined updating) instead of its closest competitor (output-based
updating) still has a large impact on overall accuracy (d �10:41).

5 Study 2: Staging hypertension
The setup of the second study is broadly the same as that of the first. We look at
communities of agents that aim at a target and receive evidence relevant to that
target. In this study, too, the communities use different update methods, with one
community consisting of nonsocial updaters and three communities consisting of
social updaters, one for each of the three models from section 3.

The target is different in this study. For ease of interpretation, imagine the agents
to be medical interns tasked with predicting the stages of hypertension in patients
based on a variety of demographic and lifestyle data, intentionally excluding direct
blood pressure readings. For the training process, we use data sourced from the
National Health and Nutrition Examination Survey (NHANES), which is a yearly
survey conducted by the National Center for Health Statistics.11 From an initial cohort
of 613 patients, we focus on the 587 adults aged twenty years and older. As key
variables for analysis, we include age, gender, body mass index (BMI), diabetic status,
physical activity, alcohol consumption, and smoking behavior. These variables
present a mix of continuous (such as age, BMI, and physical activity), binary (gender),
and ordinal (diabetic status, alcohol use, smoking) types. On the basis of these
variables, the interns are to predict class probabilities for hypertension stages,
ranging from normotensive (i.e., normal blood pressure), via prehypertensive and
stages 1 and 2 hypertensive, to hypertensive crisis, thus encompassing five distinct
categories. Hypertension stages were determined using the systolic and diastolic
blood pressure readings included in the NHANES data set.

The agents are again modeled as MLPs, now comprising two hidden layers with
thirty-two and sixteen nodes, respectively, employing the ReLU activation function.
The input layer is designed to match the seven input variables (age, gender, etc.),
while the output layer consists of five nodes corresponding to the hypertension
stages. We use the softmax function in the output layer to model the output as a
probability distribution, ensuring that the nodes’ outputs all lie between 0 and 1
(inclusive) and that their sum equals 1.

In the training process, an agent processes data from one patient at a time and
assigns, on the basis of these data, probabilities to each of the relevant hypotheses
(i.e., that the patient is normotensive, that she is prehypertensive, etc.). As in the first

11 We used the presently most recent batch of data available on the NHANES website, namely, the data
collected from the beginning of 2017 until March 2020. The data can be downloaded from https://wwwn.
cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020.

154 Igor Douven

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020

study, the training uses multiclass cross-entropy loss and the Adam optimization
algorithm (with a learning rate of 0.005). This process represents the worldly part of
the update, which for one community of agents is all the updating in which they
engage. Three other communities of agents also participate in social updating, each
using a distinct update method introduced in section 3.

As noted in section 3, state-based peers are always selected on the basis of the
same criterion—namely, similarity of weights and biases—but the criterion on whose
basis output-based peers are selected depends on the type of output generated. In the
present case, the output consists of probability functions, and so we need a similarity
measure for such functions. A prominent one is the KL divergence, but here we use
the Jensen–Shannon (JS) divergence, DJS, which is based on the KL divergence but
which, unlike the latter, is symmetric, bounded, and normalized. Not only does that
make it easier to interpret (0 indicates that the probability functions are identical, 1
that they are maximally different) but it can also be bounded by an ε parameter
whose value lies in the unit interval. Thus, where one agent’s predicted probabilities
at a given point in time are represented by p and another’s by q, they will be said to be
each other’s peer at that time precisely if DJS p k q

� �
< ε, for some specified ε 2 0; 1� �.

Relatedly, and as also previously explained, averaging of outputs will mean
different things depending on the nature of the outputs. Here they are probability
functions, and we use the best-known method for averaging such functions, which is
linear pooling. Given probability functions ffigni�1, the weighted linear average of
these functions is defined to be

Pn
i�1 ωifi, with ωi ≥ 0 for all i and

Pn
i�1 ωi � 1 (see,

e.g., Dietrich and List 2016). In our model, peers are always weighted equally, meaning
that we always take the straight average of their probability functions.

After each update, the agents are evaluated on the patients in the test set. Because
they are making probabilistic predictions about these patients, and given that the
hypotheses to which the probabilities get assigned are ordered (e.g., stage 1
hypertension is closer to stage 2 hypertension than the prehypertensive stage is), we
evaluate the agents using the ranked probability score (RPS; see Epstein 1969). This
scoring rule is particularly suited for the kind of case at hand, given that it penalizes
predictions not only on the basis of how much they differ from the objective
probabilities but also on the basis of the “distance” between the hypotheses in terms
of their order. For example, if an agent incorrectly assigns a high probability to a
stage that is adjacent to the true stage (e.g., assigning a high probability to the
hypothesis that the patient has stage 1 hypertension when the patient actually has
stage 2 hypertension), this is considered a less severe error than assigning a high
probability to a more distant stage (e.g., assigning a high probability that the patient
is normotensive, in the same scenario). After each update, we calculate the RPS for
each agent and each patient, then average over all patients in the test set to obtain the
overall score for the given agent after the given update. Note that lower RPS values
indicate better predictive performance, with 0 being the ideal score, indicating
perfect predictions.

We are interested in ascertaining whether social learning enhances the predictive
accuracy of the agents and, if so, which of the social learning methods introduced in
section 3 proves most effective. To optimize the parameters for the social methods,
we proceed as in the previous study, performing grid searches for the state-based and
output-based methods and a random search for the combined method. This yields a

Philosophy of Science 155

best setting of α � 0:55 and ε � 0:98 for the state-based method, of α � 0:1 and
ε � 0:9 for the output-based method, and of α1 � 0:99, ε1 � 0:14, α2 � 0:05, and
ε2 � 0:74 for the combined method. (See the supplementary materials for details.)

We use computer simulations to compare the social methods with optimal
parameter settings both with each other and with individual updating. More
specifically, we run fifty simulations, each of which starts by randomly splitting the
selected NHANES data 70–30 into a training set of 410 patients and a test set of 177
patients. The 410 patients in the training set are further randomly partitioned into
ten equally sized parts of forty-one patients. Each of these parts then serves as the
training set of one of the interns in each of four communities of ten interns, where
each community uses a different one of the four update methods in which we are
interested (i.e., either individual updating or one of the three social methods).

Figure 4 shows, for the four types of communities and for each update, the average
(averaged over the fifty simulations) of the average (averaged over the ten agents in
the given community) RPS scored at the given update. As is already clear from the
graphs, the individual updaters do, on average, worst, even by a wide margin
(certainly when compared with the output-based and combined social updaters). It is
equally clear that the output-based and combined social methods do better than the
state-based social method. Although less clear, it seems that the output-based method
does, at least for most of the updates, slightly better than the combined method.

All of this is confirmed by the ANOVAs with post hoc t-tests that we conducted for
the simulation results per update. The outcomes are reported in the supplementary

Figure 4. Per-update average (with 95 percent bootstrap confidence intervals) over fifty simulations of
mean RPS achieved by agents, shown separately for the four communities of ten agents. (See the text for
further explanation).

156 Igor Douven

materials, which show, among other things, that the ANOVAs were all highly
significant and that they all had ω2-values well above 0.16. (As mentioned earlier,
values for this statistic above 0.14 indicate a large effect size.) These outcomes were to
be expected in light of figure 4, given the notable differences between, on one hand,
the nonsocial and, on the other, all of the social updating methods. The results from
the Cohen’s d-tests that were also part of the follow-up tests are more informative
and show that choosing a social method over nonsocial updating mostly has a large
(d > 0:8), and always at least a medium (d > 0:5), impact on accuracy. And choosing
the output-based method over either of the other social methods has at least,
ultimately, a medium impact on accuracy. (See, again, the supplementary materials
for further details.)

As we did in the first study, we end by looking at the total accuracy the agents
achieved during the training process, using again the AULC. The measure of accuracy
in the second study is a scoring rule that assigns penalties to agents. So, whereas in
the first study, we were interested in which updating method achieved the largest
AULC, in this study, better performance is indicated by a smaller area under the
learning curve. A one-way ANOVA reveals a significant and substantial effect of the
updating method on the accuracy of predictions; F 3; 1996� � � 189:73, p < 0:0001,
ω2 � 0:22. Follow-up t-tests confirm that all types of social updaters achieved
significantly greater accuracy than individual updaters, which achieved a mean AULC
of 11.61 (± 5:02; smallest t � 11:71, all ps < 0:0001, smallest d � 0:68). Furthermore,
the state-based method users, which achieved a mean AULC of 8.74 (± 2:14), did
significantly worse than both the output-based method users, with a mean AULC of
7.83 (± 1:09; t � 8:63, p < 0:0001, d � 0:96), and the combined method users, with a
mean AULC of 8.75 (± 2:14; t � 6:56, p < 0:0001, d � 0:39). Finally, the output-based
method users did significantly better than the combined method users, though the
size of the effect is small in this case (t � 3:28, p < 0:005, d � 0:18).

6 Conclusion
In this article, we introduced three NABMs that extend the traditional HK model by
integrating MLPs. Our models go beyond the scalar opinion representation in the HK
model, enabling agents to perform complex learning tasks. Not only do the agents of
the new type have enhanced learning capabilities individually but they are also
capable of richer social interactions, which were seen to further improve learning.

Our computational studies, focusing on the classification of Munsell color chips
and probabilistic predictions about hypertension stages, demonstrated the
effectiveness of these new extensions of the HK model. Agents employing social
updating consistently outperformed individual learners, underscoring the value of
social learning. The results also suggest task-specific nuances in the efficacy of
different updating strategies, highlighting the importance of context in social
learning.

The results from our computational studies not only validate our models but also
help to address the criticisms directed at agent-based modeling by, for instance,
Cristelli (2014), Frey and Šešelja (2018, 2020), and Borg et al. (2019). As these critics
allege, it may well be true that many ABMs are too simplistic and idealized for real-
world applications. We hope to have shown, however, that this need not be the case

Philosophy of Science 157

and that, by equipping ABMs with ANNs, we can model realistic forms of learning and
adaptation, far beyond the limitations imposed in using traditional models like the HK
model. Not only that but, using the new models, we obtained results showing the
efficacy of social learning, in line with previous studies, which, however, relied on
models whose validity had been called into question by the aforementioned critique.

We have limited our attention to extending one specific ABM by populating it with
one specific type of ANN. It would be wrong to state that our proposal generalizes
swiftly to any kind of ABM and any kind of ANN. However, many ABMs are close
enough to the HK model (e.g., Friedkin and Johnsen 1990; Deffuant et al. 2000; Olsson
2013) that combining them with ANNs in the manner of this article should be
straightforward. As for other network architectures, the key operations of the models
proposed in this article—judging similarity on the basis of state and on the basis of
output and averaging states and outputs—apply as readily to, for instance,
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) as
they do to MLPs. Thus an obvious avenue for future research would be to study the HK
model and similar ABMs with either CNNs or RNNs as agents and see how well they do
in solving tasks appropriate for the type of network used (e.g., image recognition if
the agents are CNNs or predicting time series data if the agents are RNNs).

More challenging follow-up research would focus on advancing the complexity of
ANNs integrated within ABMs beyond that of the ones just mentioned. Recent work
has shown how LLMs can be made to communicate in that one LLM’s output serves as
the prompt for one or more other LLMs, and so on, recursively (Du et al. 2023). That
could be the basis for developing NABMs structurally similar to, but much more
powerful than, the ones studied in this article. Naturally, comparing the internal
states of LLMs is not nearly as straightforward as comparing the internal states of
MLPs, and measuring the similarities between the outputs of LLMs may also be
harder. But there is some work on measuring the similarity of LLMs (Chen et al. 2021),
and how to compare outputs is something that will have to be decided on a case-by-
case basis anyhow, as we saw already for the simple MLPs we used. Supposing these
hurdles can be overcome, NABMs featuring LLMs as agents may hold the potential to
enhance our understanding of complex social behaviors by enabling the study of the
interplay between social learning and advanced forms of reasoning (on inductive and
abductive reasoning in LLMs, see, e.g., Liu, Neubig, and Andreas 2024) within agent-
based simulations.

Acknowledgments. I am greatly indebted to Rainer Hegselmann, Christopher von Bülow, and two
anonymous referees for valuable comments on previous versions of this article.

References
Adam, D. 2020. “The Simulations Driving the World’s Response to COVID-19.” Nature 580:316–18. https://

doi.org/10.1038/d41586-020-01003-6.
Battleday, R. M., J. C. Peterson, and T. L. Griffiths. 2021. “From Convolutional Neural Networks to Models

of Higher-Level Cognition (and Back Again).” Annals of the New York Academy of Sciences 1505 (1):55–78.
https://doi.org/10.1111/nyas.14666.

Berlin, B., and P. Kay. 1969. Basic Color Terms. Stanford, CA: CSLI.
Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. “Julia: A Fresh Approach to Numerical

Computing.” SIAM Review 59 (1):65–98. https://doi.org/10.1137/141000671.

158 Igor Douven

https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1111/nyas.14666
https://doi.org/10.1137/141000671

Borg, A., D. Frey, D. Šešelja, and C. Straser. 2019. “Theory-Choice, Transient Diversity and the Efficiency of
Scientific Inquiry.” European Journal for Philosophy of Science 9:26. https://doi.org/10.1007/s13194-019-
0249-5.

Bouckaert, R. R. 2006. “Efficient AUC Learning Curve Calculation.” In AI 2006: Advances in Artificial
Intelligence, edited by A. Sattar and B.-H. Kang, 181–91. Berlin: Springer. https://doi.org/10.1007/
11941439_20.

Buckner, C. 2018. “Empiricism without Magic: Transformational Abstraction in Deep Convolutional
Neural Networks.” Synthese 195:5339–72. https://doi.org/10.1007/s11229-017-1622-1.

Buckner, C. 2023. From Deep Learning to Rational Machines. Oxford: Oxford University Press.
Buckner, C., and J. Garson. 2018. “Connectionism and Post-connectionist Models.” In The Routledge

Handbook of the Computational Mind, edited by M. Sprevak and M. Colombo, 76–91. London: Routledge.
Caucheteux, C., and J. R. King. 2022. “Brains and Algorithms Partially Converge in Natural Language

Processing.” Communications Biology 5:134. https://doi.org/10.1038/s42003-022-03036-1.
Chen, Z., Y. Lu, W. Yang, Q. Xuan, and X. Yang. 2021. “Graph-Based Similarity of Neural Network

Representations.” ArXiv. https://doi.org/10.48550/arXiv.2111.11165.
Claidière, N., Y. Jraissati, and C. Chevallier. 2008. “A Colour Sorting Task Reveals the Limits of the

Universalist/Relativist Dichotomy: Colour Categories Can Be Both Language Specific and Perceptual.”
Journal of Cognition and Culture 8 (3–4):211–33. https://doi.org/10.1163/156853708X358260.

Cook, R. S., P. Kay, and T. Regier. 2005. The World Color Survey Database: History and Use. Amsterdam:
Elsevier.

Cristelli, M. 2014. Complexity in Financial Markets. Cham, Switzerland: Springer.
Crosscombe, M., and J. Lawry. 2016. “A Model of Multi-agent Consensus for Vague and Uncertain Beliefs.”

Adaptive Behavior 24 (4):249–60. https://doi.org/10.1177/1059712316656890.
Deffuant, G., D. Neau, F. Amblard, and G. Weisbuch. 2000. “Mixing Beliefs among Interacting Agents.”

Advances in Complex Systems 3 (1):87–98. https://doi.org/10.1142/S0219525900000078.
Dietrich, F., and C. List. 2016. “Probabilistic Opinion Pooling.” In The Oxford Handbook of Probability and

Philosophy, edited by A. Hájek and C. Hitchcock, 519–41. Oxford: Oxford University Press. https://doi.
org/10.1093/oxfordhb/9780199607617.013.22.

Dittmer, J. C. 2001. “Consensus Formation under Bounded Confidence.” Nonlinear Analysis 47 (7):4615–21.
https://doi.org/10.1016/S0362-546X(00)00571-2.

Douven, I. 2010. “Simulating Peer Disagreements.” Studies in History and Philosophy of Science, Part A
41 (2):148–57. https://doi.org/10.1016/j.shpsa.2010.03.002.

Douven, I. 2017. “Clustering Colors.” Cognitive Systems Research 45:70–81. https://doi.org/10.1016/j.cogsys.
2017.01.001.

Douven, I. 2019. “Optimizing Group Learning: An Evolutionary Computing Approach.” Artificial Intelligence
275:235–51. https://doi.org/10.1016/j.artint.2019.06.005.

Douven, I. 2023. “The Role of Naturalness in Concept Learning: A Computational Study.” Minds and
Machines 33:695–714. https://doi.org/10.1007/s11023-023-09652-y.

Douven, I. 2024. “Pandemics and Flexible Lockdowns: In Praise of Agent-Based Modeling.” European
Journal for Philosophy of Science 13:35.

Douven, I. Forthcoming. “The Learnability of Natural Concepts.” Mind and Language.
Douven, I., and R. Hegselmann. 2021. “Mis- and Disinformation in a Bounded Confidence Model.” Artificial

Intelligence 291:103415. https://doi.org/10.1016/j.artint.2020.103415.
Douven, I., and R. Hegselmann. 2022. “Network Effects in a Bounded Confidence Model.” Studies in History

and Philosophy of Science, Part A 94:56–71. https://doi.org/10.1016/j.shpsa.2022.01.001.
Du, Y., S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch. 2023. “Improving Factuality and Reasoning in

Language Models through Multiagent Debate.” ArXiv. https://doi.org/10.48550/arXiv.2305.14325.
Epstein, E. S. 1969. “A Scoring System for Probability Forecasts of Ranked Categories.” Journal of Applied

Meteorology 8 (6):985–87. https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.
Eysenbach, G., J. Powell, M. F. Englesakis, C. Rizo, and A. Stern. 2004. “Health Related Virtual Communities

and Electronic Support Groups: Systematic Review of the Effects of Online Peer to Peer Interactions.”
British Medical Journal 328:1166. https://doi.org/10.1136/bmj.328.7449.1166.

Fairchild, M. D. 2013. Color Appearance Models. Hoboken, NJ: John Wiley.

Philosophy of Science 159

https://doi.org/10.1007/s13194-019-0249-5
https://doi.org/10.1007/s13194-019-0249-5
https://doi.org/10.1007/11941439_20
https://doi.org/10.1007/11941439_20
https://doi.org/10.1007/s11229-017-1622-1
https://doi.org/10.1038/s42003-022-03036-1
https://doi.org/10.48550/arXiv.2111.11165
https://doi.org/10.1163/156853708X358260
https://doi.org/10.1177/1059712316656890
https://doi.org/10.1142/S0219525900000078
https://doi.org/10.1093/oxfordhb/9780199607617.013.22
https://doi.org/10.1093/oxfordhb/9780199607617.013.22
https://doi.org/10.1016/S0362-546X(00)00571-2
https://doi.org/10.1016/j.shpsa.2010.03.002
https://doi.org/10.1016/j.cogsys.2017.01.001
https://doi.org/10.1016/j.cogsys.2017.01.001
https://doi.org/10.1016/j.artint.2019.06.005
https://doi.org/10.1007/s11023-023-09652-y
https://doi.org/10.1016/j.artint.2020.103415
https://doi.org/10.1016/j.shpsa.2022.01.001
https://doi.org/10.48550/arXiv.2305.14325
https://doi.org/10.1175/1520-0450(1969)008%3C0985:ASSFPF%3E2.0.CO;2
https://doi.org/10.1136/bmj.328.7449.1166

Frey, D., and D. Šešelja. 2018. “What Is the Epistemic Function of Highly Idealized Agent-Based Models of
Scientific Inquiry?” Philosophy of the Social Sciences 48 (4):407–33. https://doi.org/10.1177/
0048393118778564.

Frey, D., and D. Šešelja. 2020. “Robustness and Idealizations in Agent-Based Models of Scientific
Interaction.” British Journal for the Philosophy of Science 71 (4):1411–37. https://doi.org/10.1093/bjps/
axy073.

Friedkin, N. E., and E. C. Johnsen. 1990. “Social Influence and Opinions.” Journal of Mathematical Sociology
15 (3–4):193–206.

Glass, C., and D. H. Glass. 2021. “Opinion Dynamics of Social Learning with a Conflicting Source.” Physica A:
Statistical Mechanics and Its Applications 563:125480. https://doi.org/10.1016/j.physa.2020.125480.

Glorot, X., and Y. Bengio. 2010. “Understanding the Difficulty of Training Deep Feedforward Neural
Networks.” In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
249–56. N.p.: ML Research Press. http://proceedings.mlr.press/v9/glorot10a.html.

Glorot, X., A. Bordes, and Y. Bengio. 2011. “Deep Sparse Rectifier Neural Networks.” In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, 315–23. N.p.: ML Research Press.
http://proceedings.mlr.press/v15/glorot11a.html.

Goldstein, A., Z. Zada, E. Buchnik, M. Schain, A. Price, B. Aubrey, S. A. Nastase et al. 2021. “Thinking Ahead:
Spontaneous Prediction in Context as a Keystone of Language in Humans and Machines.” BioRxiv.
https://doi.org/10.1101/2020.12.02.403477.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA: MIT Press.
Hegselmann, R. 2023. “Bounded Confidence Revisited: What We Overlooked, Underestimated, and Got

Wrong.” Journal of Artificial Societies and Social Simulation 26 (4):11–15. https://doi.org/10.18564/jasss.
5257.

Hegselmann, R., S. König, S. Kurz, C. Niemann, and J. Rambau. 2015. “Optimal Opinion Control: The
Campaign Problem.” Journal of Artificial Societies and Social Simulation 18 (3):18. http://jasss.soc.surrey.
ac.uk/18/3/18.html.

Hegselmann, R., and U. Krause. 2002. “Opinion Dynamics and Bounded Confidence: Models, Analysis, and
Simulations.” Journal of Artificial Societies and Social Simulation 5 (3):2. http://jasss.soc.surrey.ac.uk/5/3/
2.html.

Hegselmann, R., and U. Krause. 2006. “Truth and Cognitive Division of Labor: First Steps towards a
Computer Aided Social Epistemology.” Journal of Artificial Societies and Social Simulation 9 (3):10. http://
jasss.soc.surrey.ac.uk/9/3/10.html.

Hegselmann, R., and U. Krause. 2015. “Opinion Dynamics under the Influence of Radical Groups,
Charismatic Leaders, and Other Constant Signals: A Simple Unifying Model.” Networks and
Heterogeneous Media 10 (3):477–509. https://doi.org/10.3934/nhm.2015.10.477.

Hegselmann, R., and U. Krause. 2019. “Consensus and Fragmentation of Opinions with a Focus on
Bounded Confidence.” American Mathematical Monthly 126 (8):700–716. https://doi.org/10.1080/
00029890.2019.1608551.

Hoffman, P., J. L. McClelland, and M. A. Lambon Ralph. 2018. “Concepts, Control, and Context: A
Connectionist Account of Normal and Disordered Semantic Cognition.” Psychological Review
125 (3):293–328. https://doi.org/10.1037/rev0000094.

Hosseini, E. A., M. Schrimpf, Y. Zhang, S. Bowman, N. Zaslavsky, and E. Fedorenko. 2024. “Artificial Neural
Network Language Models Predict Human Brain Responses to Language Even after a Developmentally
Realistic Amount of Training.” Neurobiology of Language 5 (1):43–63. https://doi.org/10.1101/2022.10.
04.510681.

Huang, A. C. W. Forthcoming. “Track Records: A Cautionary Tale.” British Journal for the Philosophy of
Science. https://doi.org/10.1086/728459.

Jacobmeier, D. 2004. “Multidimensional Consensus Model on a Barabási–Albert Network.” International
Journal of Modern Physics, Part C 16 (4):633–46. https://doi.org/10.1142/S0129183104006750.

Kummerfeld, E., and K. J. S. Zollman. 2016. “Conservatism and the Scientific State of Nature.” British
Journal for the Philosophy of Science 67 (4):1057–76. https://doi.org/10.1093/bjps/axv039.

Laninga-Wijnen, L., and R. Veenstra. 2023. “Peer Similarity in Adolescent Social Networks: Types of
Selection and Influence, and Factors Contributing to Openness to Peer Influence.” In Encyclopedia of
Child and Adolescent Health, edited by B. Halpern-Felsher, 196–206. Oxford: Academic Press.

160 Igor Douven

https://doi.org/10.1177/0048393118778564
https://doi.org/10.1177/0048393118778564
https://doi.org/10.1093/bjps/axy073
https://doi.org/10.1093/bjps/axy073
https://doi.org/10.1016/j.physa.2020.125480
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1101/2020.12.02.403477
https://doi.org/10.18564/jasss.5257
https://doi.org/10.18564/jasss.5257
http://jasss.soc.surrey.ac.uk/18/3/18.html
http://jasss.soc.surrey.ac.uk/18/3/18.html
http://jasss.soc.surrey.ac.uk/5/3/2.html
http://jasss.soc.surrey.ac.uk/5/3/2.html
http://jasss.soc.surrey.ac.uk/9/3/10.html
http://jasss.soc.surrey.ac.uk/9/3/10.html
https://doi.org/10.3934/nhm.2015.10.477
https://doi.org/10.1080/00029890.2019.1608551
https://doi.org/10.1080/00029890.2019.1608551
https://doi.org/10.1037/rev0000094
https://doi.org/10.1101/2022.10.04.510681
https://doi.org/10.1101/2022.10.04.510681
https://doi.org/10.1086/728459
https://doi.org/10.1142/S0129183104006750
https://doi.org/10.1093/bjps/axv039

Liu, E., G. Neubig, and J. Andreas. 2024. “An Incomplete Loop: Deductive, Inductive, and Abductive
Learning in Large Language Models.” ArXiv. https://doi.org/10.48550/arXiv.2404.03028.

Lorenz, J. 2008. “Fostering Consensus in Multidimensional Continuous Opinion Dynamics under Bounded
Confidence.” InManaging Complexity: Insights, Concepts, Applications, edited by D. Helbing, 321–34. Berlin:
Springer. https://doi.org/10.1007/978-3-540-68421-5_17.

Lorig, F., E. Johansson, and P. Davidsson. 2021. “Agent-Based Social Simulation of the COVID-19 Pandemic:
A Systematic Review.” Journal of Artificial Societies and Social Simulation 24 (3):5. https://doi.org/10.
18564/jasss.4606.

O’Connor, C., and J. O. Weatherall. 2019. The Misinformation Age: How False Beliefs Spread. New Haven, CT:
Yale University Press.

Olsson, E. J. 2013. “A Bayesian Simulation Model of Group Deliberation and Polarization.” In Bayesian
Argumentation, edited by F. Zenker, 113–33. Dordrecht, Netherlands: Springer.

Olsson, E. J., and A. Vallinder. 2013. “Norms of Assertion and Communication in Social Networks.”
Synthese 190:2557–71. https://doi.org/10.1007/s11229-013-0262-2.

Pfitzer, D., R. Leibbrandt, and D. Powers. 2009. “Characterization and Evaluation of Similarity Measures of
Pairs of Clusterings.” Knowledge and Information Systems 19:361–94. https://doi.org/10.1007/s10115-
008-0145-2.

Pluchino, A., V. Latora, and A. Rapisarda. 2006. “Compromise and Synchronization in Opinion Dynamics.”
European Physical Journal B 50:169–76. https://doi.org/10.1140/epjb/e2006-00190-1.

Rosenstock, S., C. O’Connor, and J. Bruner. 2017. “In Epistemic Networks, Is Less Really More?” Philosophy
of Science 84 (2):234–52. https://doi.org/10.1086/690717.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning Representations by Back-Propagating
Errors.” Nature 323:533–36. https://doi.org/10.1038/323533a0.

Schelling, T. C. 1971. “Dynamic Models of Segregation.” Journal of Mathematical Sociology 1 (2):143–86.
Šešelja, D. 2019. “Some Lessons from Simulations of Scientific Disagreements.” Synthese 198:6143–58.

https://doi.org/10.1007/s11229-019-02342-6.
Thicke, M. 2020. “Evaluating Formal Models of Science.” Journal for General Philosophy of Science 51:315–35.

https://doi.org/10.1007/s10838-020-09496-6.
Tsai, M.-H., C.-H. Ho, and C.-J. Lin. 2010. “Active Learning Strategies Using SVMs.” The 2010 International

Joint Conference on Neural Networks, 1–8. New York: IEEE. https://doi.org/10.1109/IJCNN.2010.5596668.
Zollman, K. J. S. 2007. “The Communication Structure of Epistemic Communities.” Philosophy of Science

74 (5):574–87. https://doi.org/10.1086/525605.
Zollman, K. J. S. 2010. “The Epistemic Benefit of Transient Diversity.” Erkenntnis 72:17–35. https://doi.org/

10.1007/s10670-009-9194-6.

Cite this article: Douven, Igor. 2025. “Social Learning in Neural Agent-Based Models.” Philosophy of Science
92 (1):141–161. https://doi.org/10.1017/psa.2024.33

Philosophy of Science 161

https://doi.org/10.48550/arXiv.2404.03028
https://doi.org/10.1007/978-3-540-68421-5_17
https://doi.org/10.18564/jasss.4606
https://doi.org/10.18564/jasss.4606
https://doi.org/10.1007/s11229-013-0262-2
https://doi.org/10.1007/s10115-008-0145-2
https://doi.org/10.1007/s10115-008-0145-2
https://doi.org/10.1140/epjb/e2006-00190-1
https://doi.org/10.1086/690717
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11229-019-02342-6
https://doi.org/10.1007/s10838-020-09496-6
https://doi.org/10.1109/IJCNN.2010.5596668
https://doi.org/10.1086/525605
https://doi.org/10.1007/s10670-009-9194-6
https://doi.org/10.1007/s10670-009-9194-6
https://doi.org/10.1017/psa.2024.33

	Social Learning in Neural Agent-Based Models
	1. Introduction
	2. Theoretical background
	2.1. The Hegselmann-Krause model
	2.2. Multilayer perceptrons

	3. HK updating for neural networks
	4. Study 1: Classifying colors
	5. Study 2: Staging hypertension
	6. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

