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Abstract

Salem and Zygmund (1947, 1948), Baker (1972) and Dudley (1975) have shown that certain
lacunary sets P of characters of a compact abelian group have the property that sequences of the

form {X%_ . a, 9}, where g, € P converge to the normal distribution if suitably normalized. In
k=1 n=1

this paper, a theorem of probability due to McLeish (1974) is applied to clarify and extend the
previous results.

Subject classification (Amer. Math. Soc. (MOS) 1970): 42 A 36, 42 A 44, 60 F 05.

1. Introduction

Throughout this paper, unless otherwise stated, the symbol G is used to denote
an arbitrary, infinite, compact, abelian group with Haar measure m, normalized
so that m(G) = 1. The character group of G is denoted by I and the unit character
is denoted by 1. For A<T, we write 47! for the set A=! ={p~': pc A} and we
say that A4 is symmetric if A = A='. A complex-valued function f defined on a
symmetric subset 4 of T is said to be symmertric if flo~') =f(_(p) for all pe A.
Note that this implies that f(¢p) is real if ¢ = ¢! or ¢? = 1. The cardinality of a
set A is denoted by | 4| while the symbol A is used to denote symmetric difference.
The symbols N, Z, R and C are used to denote the usual sets of numbers. All other
notation not explained appears in Rudin (1960).

We use the symbol P to denote an infinite subset of I" and the symbol u to denote
a complex-valued function defined on PUP~!. The symbol &, possibly with sub-
scripts attached, is used to denote a sequence & = {X(n)};=, of pair wise-disjoint,
finite, nonempty symmetric subsets of I'. We set :

P(n) = (PUP~ YN X(n),

o) = ku Pk,
91
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Smy= 3 ul@e,

veQ(n)
and
4
B(n) = (j S(n)? dm)
G
(1.1) =( Y, |u@»*
ec(n)

The last calculation is a consequence of the orthogonality relations for characters
(that is, o @y~'dm is zero if ¢ and y are distinct characters). Note that P(n),
Q(n), S(n) and B(n) depend on P, u and &. However, for simplicity we do not
indicate this dependence explicitly except where confusion may arise. We have the
following definition.

DEFINITION 1.1. We say that a pair (P, &) is compatible if

@) Q)] as n->o,
and

(b) {|P(»)|} is bounded.

We say that a triple (P, u, &%) is compatible if

(c) (P, %) is compatible,

(d) B(n)— 0 as n— o,
and

(e) lim,,, 4 B(n)_lmax(peQ(n) lu((P)l =0.

Observe that (P, %) is compatible if and only if (P, i, &) is compatible where i
is the function mapping each p € PUP~! onto 1. In the central limit theorem, the
limiting behaviour of the sequence {B(n)~!S(n)} is characterized. Conditions (d)
and (e) of the above definition are typical conditions needed for the law to hold while
condition (a) is necessary for (d) to hold. The central limit problem is more compli-
cated if we do not have condition (b).

DEerINITION 1.2. A compatible triple (P, u, &) is said to be Gaussian if

lim B(n)~!S(n) = N(0,1) in distribution;

n—x

that is,
lim m{te G: B(n)~'S(n)(t)<y} = 2n)~* va exp (—3¢2) dt

n—w

for all ye R.

The general problem we tackle is to characterize Gaussian triples. In particular,
we investigate lacunary properties of the set P which ensure that a wide class of
compatible triples (P,u, &) are Gaussian. In Section 2, we examine invariance
properties of compatible triples with respect to the Gaussian property, while in
Section 3 we prove our main theorem. We apply our results to the classical case of
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the circle group in Section 4, and in Section 5 we consider applications in the general
case of an arbitrary compact Abelian group.

2. Invariance properties

In this section, we make the convention that if u; is a function defined on
P;UP;! for j=1 and 2, and the u,’s are the restrictions of a function « defined on
P, UP;'UP,UP; !, then the function u; is denoted by the symbol u where the
domain of the function is clearly understood.

DeriNiTION 2.1. Let (P, %,) and (P,, ¥ ,) be compatible pairs. For j =1 or 2,
denote by P;(n) and Q(n), the terms in (1.1) defined with respect to (P;, ;). For
{j,k} ={1,2}, set

a(n) =min{meN: |Q;(n) A Qi(m)| = min{|Q;(n) A Q.(r)|: reN}

and A4; = sup{|Q,(n) A Qi(a;(m))|: ne N}. We say that (P, ¥,) and (P,,¥,) are
Gaussian equivalent if both A, and A, are finite. (Clearly Gaussian equivalence is an
equivalence relation.)

DEerINITION 2.2. Given pairs, (P, ¥,) and (P, &,), we say that &, is P-finer than
&, or &, is P-coarser than &, if there exists a nondecreasing sequence {n};%, of
positive integers such that Q,(n;) = Q,(k) for all ke N. A sequence & is said to be
a P-basic sequence if for each ne N, P(n) is empty or P(n) = {¢, ¢~} for some peT".

In the following lemma, some consequences of the previous definitions are given.
The proof is easy and is omitted.

LemMa 2.3
(a) If (P, &) is compatible, then & is P-coarser than some P-basic sequence.
(b) If &, is P-finer than & ,, then it follows that
() a triple (P,u,¥,) is compatible if and only if (P,u, %) is compatible and
{|P,(n)|} is bounded,;
and
(ii) if (P, &,) is compatible, then (P, ,) and (P, ,) are Gaussian equivalent.
The following is the key theorem in this section.

THEOREM 2.4. Suppose that (Py,%,) and (P,,¥,) are Gaussian equivalent and
that (P,u,&,) and (P,,u,%,) are compatible. Then if (P,u,%,) is Gaussian,
(Py,u, &,) is also Gaussian.

PRrOOF. Let Py(n), Q(n), S;(n) and B;(n) be the terms in (1.1) defined with respect
to (P;, u, &;). We use the notation introduced in Definition 2.1. Note that a;(n)—
since otherwise there exists m such that |Q,(n) A Qy(m)| < 4; for infinitely many n,
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contradicting the fact that | Q,(n)| — oo (see Definition 1.1(a)). From the definition
of B(n), we have

| B3(n)— Bi(ax(n))| < A, max |u(p)|?,
where the max is taken over all g € Q,(a.(n)) A @,(n). We conclude that
min{|1— B; > (n)B}(a.(m)}, |1 — B5(n)By * (a;(m))|}
< A, max{B; *(mymax{|u(p)|: p € Q,(n)}, Bi(a(m)) max{|u(p)|*: p Q1 (a.(m)}}-
The right side of the above inequality tends to O as n approaches co by Definition
1.1(e) and it follows that B; '(n) B,(a,(n))—1. Since (Py,u,¥,) is Gaussian, the
sequence {B; '(a,(n)) S;(a.(n))} is tight in the probabilistic sense and it follows that
By '(ay(n)) Sy(a(n))| By(ax(n)) B '(n)— 1] -0
in measure. Hence, in order to show that (P,,u,&,) is Gaussian, it suffices to
show that
| S1(@zx(m)) — Sa(m)|[By(ax(n))]~ ! -0
in measure. This is an immediate consequence of Definition 1.1(¢), the fact that
B3 Y(n) B,(ay(n))—1 as n— o and the inequalities

[S1(ax(n))—Sx(m)| < Z [u(p)|

@€T(n)

<4 max |u(p)
eeT(n)

where T(n) = Q1(ax(m) A Qx(n).

3. The main theorem

We begin by defining the key concepts needed.

DEerINITION 3.1. Suppose that (P, &) is compatible. Let

[

R() = |{fe IT PGV [ JD# D] =, ﬁf(i)= 1}

i=1

We say that (P, &) is weakly dissociate if there exists B>0 such that R(n) < B" for
all n. In particular, if R(n) =0 for all n>1, then we say that (P, %) is strongly
dissociate.

DEFINITION 3.2. Suppose that (P, %) is compatible. For €T, let

o

Flp) = kUI {reP(k): yp~teP(k)} = :yx @P(k)nP(k).
We say that (P, &) is stable if there exists C >0 such that

|F(p)| <C for all peI'—{1}.
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REMARKS 3.3
(a) Clearly, a compatible pair (P, &) is strongly dissociate if and only if whenever
n,<n,<..<ncand {g;}*_, is a sequence such that g, € P(n;), then [[¥_, ¢; #1.
(b) The term dissociate as applied to lacunary sets of characters is firmly estab-
lished in the literature (see Lopez and Ross (1975), 2.5). We generalize and slightly
modify Lopez and Ross’s definition by saying that a set of characters P is k-
dissociate if whenever F is a finite subset of P which is asymmetric (that is, p, ¢~ '€ F
implies that ¢ = ¢~!) and misa function from Finto{—k, —k+1,...,0,1,...,k—1,
k}, then the implication
I1 ¢m“ =1 implies that p™® =1 for all peF
weF
holds. We can readily establish that an infinite subset P of I is 1-dissociate if and
only if (P, %) is strongly dissociate for each compatible pair (P, &). Similarly, we
can easily show that an infinite set P is a Rider set (see Lopez and Ross (1975),
2.13) if and only if (P, %) is weakly dissociate for each compatible pair (P, &).
(¢c) From a probabilistic viewpoint, weak dissociativity (or stability) ensures
that the sequence

{ 2 u@ehz, (or{l Y u@elhi)),

peP(n) peP(n)
when suitably normalized, is weakly stochastically dependent. The two conditions
together ensure that (P, u, &) is Gaussian.
We now state the basic probability theorem on which our results depend. The
theorem is due to McLeish (1974) but his methods derive from Salem and Zygmund
(1947).

THEOREM 3.4. Let {X, ;: j=1,2,...,k,} be an array of random variables on a
probability triple (Q, F ,u). For neN, te R and i* = —1, let

Ky
T,, = l—[ (l +l'tX,,'j)
j=1
and

Ky
S,, = Z Xn,j'
i=1
Suppose that
@) lim,_  § Tpdu=1;
(b) the sequence {T,} is uniformly integrable;
(c) lim,, Y%, X2, =1 in measure; and
(d) lim,_ max;_, 5, . |Xai| =0 in measure.
It then follpws that lim,_, ., S, = N(0, 1) in distribution.
The following generalization of the above theorem is not essential to our key

results but is needed in Theorem 5.8 where we compute the limiting distribution of
non-Gaussian sequences. The proof follows closely that of McLeish (1974).
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THEOREM 3.5. If in the previous theorem, conditions (b) and (d) hold while, for some
random variable X, we have for t>0

(@) lim,_, , § T,exp(—tX)du = fexp(—tX)du, and

(c") lim,, Y52, X2, = X in measure,
Jthen lim,,_, . S, = F in distribution where the distribution F has characteristic function

fexp (=32 X)du.
We apply Theorem 3.4 to obtain sufficient conditions for a compatible triple
(P,u, &) to be Gaussian.

THEOREM 3.6. Suppose that (P,u, %) is compatible. For 1 <k <n, we set
T(n, k) = B~ (n) (S(k)— S(k—1))

and T(n): t—>[ ;- 1 +itT(n,j)) for teR.
Suppose that the following are satisfied:
(a) lim,_,, {6 T(n)(t)dm = 1 for each t€ R, and
(b) lim,—, o, f k=1 T*(n, k))* dm = 1.
Then the triple (P,u, &) is Gaussian.
The proof of Theorem 3.6 is accomplished via the following lemmas.

LEMMA 3.7. Suppose that (P,u,¥) is compatible and p is an upper bound for |
{{P(n)|} (see Definition 1.1(b)). Then we have the estimate:

17(m) () <exp Gpt?)
for each te R.

ProoF. Noting (1.1) and using Hoélder’s inequality, we have

k_i] T*(n,k) = B~*(n) Z (Y u(p)p)?

k=1 ¢ePk)

<PBm) Y Y |uo)’

k=1 g¢eP(k)
=p.

Hence we have

[T(n) (1), = k]jl (1+12T*n, k)

Sexp( Y t2T%an, k))
K=

= exp(pt?).
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LeMMA 3.8. Suppose that (P,u, &) is compatible and r is a positive real number.
Then the following are equivalent ;

@) lim,. 7., T*n,k) = r in measure,

(b) lim, , fc Qo T?(n, k) > dm = 2r—r2.

PRrOOF. As shown in the previous proof, we have

n

Y. T?(n,k)

k=1

<p

®
and so the sequence Y 7_, T?(n, k) is uniformly bounded. For such a sequence of
random variables and for any s>0, convergence in measure to another variable
is equivalent to convergence in L®. Since [ Y %, T*(n,k) dm = 1, condition (b) of
the lemma is equivalent to the condition:

lim f ( zn: Tz(n,k)—r)zdm =0
G

n—o k=1

which is simply convergence in L2.

LeEMMA 3.9. If (P,u, &) is compatible, then we have
lim max |T(nk)|,=0.

n—>o I<sk<n

ProoF. Note that
1T, k)| =|1B=*(m) Y. u(@)ol,

9eP(k)

<pB~'(n) max |u(p)|.
geP(k)
The lemma now follows from Definition 1.1(e).

PrROOF OF THEOREM 3.6. We apply Theorem 3.4. Let Q = G, & = the Borel
o-field of G, 4 = m (Haar measure) and X, , = T(n, k) for k = 1,2, ...,n. Condition
(b) of Theorem 3.4 is satisfied by Lemma 3.7, condition (c) of Theorem 3.4 is
equivalent to (b) of Lemma 3.8 with r = 1, while Lemma 3.9 ensures that condition
(d) automatically holds. It follows that if (a) and (b) of Theorem 3.6 hold then
Bn)~' S(n) =37, T(n,k) converges to N(0,1) in distribution, that is, (P,u, &)
is Gaussian.

The principal theorem in this section follows.

THEOREM 3.10. Suppose that (P,u, &) is compatible. It follows that

(a) if (P, %) is weakly dissociate, then condition (a) of Theorem 3.6 is satisfied,
and

(b) if (P,%) is stable, then condition (b) of Theorem 3.6 is satisfied. Hence if
(P, &) is weakly dissociate and stable, then (P,u, %) is Gaussian.
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PRrROOF OF (a). Expanding we obtain

T(n) (¢) = Hl (1 +itT(n, )

n k k
= IZ,OZ(it)k l;ll u(p)) I;[l 9; B(n)~*,

where the inner summation is taken over all subsets {¢,, ¢, ..., ¢} of O(n) having
the property that each set P(j) contains at most one element of {¢,,9,,..., 0.}
For R(k) as in Definition 3.1. we obtain, using the orthogonality relations,

f T(n) (¢) dm—1
G

< ki_l |t} B~*(n) max |u(p)|* R(k).

?eQ(n)

Let a, = B~(n) max, .qm|u(p)| and R = sup, R**(k). Noting that a,—0 as n—co
(see Definition 1.1(e)), we have for all n such that |f[a, R <} the estimate:

H T(n) () dm— 1
G

<|tlan R Y, (|t|os RY*
k=0

<2|t|x, R.
It follows that lim,, , {c T(n) (¢) dm = 1 as desired.

Proor oF (b). Recalling the expression for F(y), w €I’ given in Definition 3.2,
we have

Yy ulp)u(y)ey

k=1 g,yeP(k)

I

T B(m)T*(n, k)
k=1

n

=Y Y Y u@uyyHy

k=1 yel' @eF(w)NnPk)

=y Y u@u(ye~"w

vell  geF(w)N0(n)

Y luelP+ X Y u@ulye~YHy.

veQ(n) vel —{1} eeF(w)NQ(m)

il

Since BX(n) = Y ,com|u(9)|?, we conclude that

L(imn,k)) dm=1+8"m T | T u@yuveH

k=1 vel —{1} eF(y)NQ(n)

We note that if peF(y)nQ(n), then yo~'eF(y)nQ(n). Using Definition 3.2,
Holder’s inequality and the estimate |u(p) u(ye~1)| < |u(p)|® + |u(weo~")|2, we obtain

J ( i Tz(n,k)>2 dm—1
G\ k=1

<B*m) Y Q@ Y lue)?)

wel—{1}  ¢eFly)NO(m)

<4.CB*(n) Y, Y lule)t

wel ~{1} @eF(y)NQ(n)
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Now if g € P(k)n F(y) for some k, then ¢ € wP(k) and hence w € pP(k). It follows that
for each g € Q(n), the term |u(g)|* appears at most p times in the double summation
above where P = max |P(k)|. We deduce that

J ( i Tz(n,k))zdm—l
G \ k=1

The convergence of the right side of the above inequality follows from Definition
1.1(e).

<4p.CB~%(n) Y |u(p)|*
0eQ(n)

<4p.CB~%(n) max |u(p)|?.
veQ(n)

4. Applications to the circle group

In this section, we consider the circle group G = T which we represent as the
interval [0,2r) with addition modulo 2x. Haar measure is (2r)~! times Lebesgue
measure while the character group I' is Z, the additive group of integers, where for
each neZ we associate the character e,: t—exp (int). The lacunary sets we consider
are defined as follows.

DEerINITION 4.1. Let P = {n,: ke N} be an infinite subset of N such that . ; > n,
for each k and let ¢ =inf{n,,  n;': ke N}. We say that P is a g-set. If P is a
g-set for g>1, then P is called a Hadamard set.

Salem and Zygmund (1947, 1948) proved the following theorem.

THEOREM 4.2. Let P be a Hadamard set and let & ={{—n,n}}>.,. If (P,u, &) is
compatible, then it is Gaussian.
We not only derive this theorem from our results but prove a stronger version. As
a preliminary, we formulate:

DerINITION 4.3. We say that a sequence {r,} of positive integers increases rapidly if,
foralln,r,.,>Y%_, r.. Wesay that a sequence & = {X(n)}< , (of finite, symmetric,
pairwise disjoint subsets of Z) is dissociate if there exists a sequence {r,}, of
positive integers and an injection 8: N— N such that {r,} increases rapidly and

8(n)— 1
Y rn<|m|<rym forall meX(n).
k=1

The relationship between the concept of dissociativity given above and that
which appears in Definition 3.1 is described in the following theorem.

THEOREM 4.4. If & is dissociate and (P, %) is compatible, then (P, %) is strongly
dissociate.
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PRrROOF. Suppose that & is defined with respect to a rapidly increasing sequence
{ri}i . It is readily seen that a sum of the form

g;n; where re<n;<ry, ¢&€{-1,0,1} and ¢,=1

m ji-1
=1 k=1

J
is greater than or equal to n,,— y— ' r, and hence is nonzero. It follows that (P, #)
is strongly dis$ociate.

In considering Hadamard sets, it will prove useful to consider dissociate sequences
& of a certain form. By way of notation, we write I[n, m] where 1 <n< m for the set

IIn,ml={reZ: n<|r|<m}.

We call I[n, m] an interval, n the lower end point of the interval and m the upper end
point.

THEOREM 4.5. Suppose that & = {X(n)}X., is a sequence such that each X(n)
is contained in an interval I, and I,nI,, = @ for n#m. Let {0}, be the sequence
of lower end points of I, arranged in increasing order and {§,}7- , the corresponding
sequence of upper end points. Suppose that

a=infoy, Bt >1 and infBeyy Bt Zala—1)"1

Then & is a dissociate sequence.
(Hereafter such sequences will be described as sequences of type a.)

PROOF. Let = a(a—1)"!. An easy argument shows that 8, <p’~* B, for j<k
and a further computation shows that Z’f= Bi<oafi <oy <Py It follows that
{B;}7= increases rapidly and hence & is dissociate.

We need one more concept before the connection between Hadamard sets and
dissociate sequences can be described.

DEFINITION 4.6. A segment of a sequence {n,};°, is a finite subsequence of the
form ng,m .y, ...,n; for some 1<k<j. For te N, we say that a rearrangement
{m;} of {n,} is t-related to {n,} if each n, belongs to a sequence of ¢ elements which
is a segment of {m;} and of {n;}.

COMMENTS 4.7

(a) Except when ¢ = 1, the #-relation is not an equivalence relation since transi-
tivity fails to hold.

(b) Every rearrangement of {n,} is l-related to {n,}.

(c) If a rearrangement {m,} is ¢+ 1-related to {n,}, then it is also t-related to {n,}.

We have the following theorem.

THEOREM 4.8. Let P = {n.: ke N} be a g-set for q>1 and let t be the smallest
positive integer such that ¢'~' = (q—1)~1. Let {m;} be a rearrangement of {n;} which
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is t-related to {n;}. If & is any sequence such that P(j) = {m;, —my;} for all j, then there
exists a sequence & of type o for some a>q such that (P,%) and (P,%,) are
Gaussian equivalent (see Definition 2.1).

Proor. For each je N, let y(j) be the largest integer not exceeding 2¢ such that
my,my,y,..,My, -1 is a segment of {n}. We define inductively a sequence
{r(j)}7=, asfollows. Let (1) = 0. Having defined r(j), we put

r(j)+t if y(r(+1)=2t,
r(j+1) =

r(N+yr(N+1) i pr(H)+1D <2

It is clear that r(j+1)—r(j)<2t. We now show that y(r(j)+1)=¢ for all j. Ob-
serve that since m, belongs to a sequence of length ¢ which is a segment of {n;} and
of {m;}, we have y(r(1)+1)>¢. It is clear that if p(r(j)+1) = 2¢, then p(r(j+ 1)+ 1)
= (r(j)+t+1)=¢. On the other hand, if y(r(j)+1) <2¢, thensince r(j+ 1) = r(j)+
wr(j)+1) it follows that m,;, ;, and m,; + ;)41 are not consecutive elements of the
sequence {n,}. Since m,;, 1)+, belongs to a sequence of length 7 which is a segment
of {n,} and {m,}, we conclude that yp(r(j+1)+1)>¢. We have thus shown that
(r(j)+1)=¢ for all ¢ and it follows that r(j+1)—r(j)>1¢.

Summarizing, we have a sequence {r(j)} of nonnegative integers such that

@ r(1)=0;
(i) t<r(j+1)—r(j) <2t for each j,
and

(i) MeGys 1My 425 s M4 1y 18 @ segment of {n,} for each j.

We define &, ={X,(m)}>, by setting X(n) = I[M,y+1, My 1p] for each n.
Since &, is P-coarser than & (see Definition 2.2), the pairs (P, &) and (P, %)
are Gaussian equivalent by Lemma 2.3(b)(ii). (Clearly (P, &,) is compatible.)

We conclude the proof by showing that &, is a dissociate sequence of type «
for some a>gq. Let {a;} be the sequence of lower end points of the X,(n)’s arranged
in increasing order and let {8,} be the corresponding sequence of upper end points.
Each a;, f;€ P and hence

a=infay,, ' =infn; 0yt =q.

On the other hand, if B, = n; for some j, then since r(j+1)—r(j)=t we have
{niy 1,040,050 S 1oy, o, Biy 1] Hence we have B, , >n;,, and it follows that

ﬂk+1ﬁk—l>nj+tnj_l ’
= (”1+xnj_+lx— Dy nj—+lr—2) N (T n; D)
=q
>q(g—-1~*
Zala—1)"1.

The theorem is proved.
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To complete the preliminary theorems dealing with Hadamard sets, we show that
a compatible pair (P, &) is necessarily stable (see Definition 3.2) if P is a Hadamard
set.

THEOREM 4.9. Let P be a Hadamard set and suppose that (P, &) is compatible.
Then (P, ) is stable.

PRrROOF. Suppose that P = {n,: ke N} is a g-set and let m be the smallest integer
such that g™ >2(1 —-g~')~!. Given ne N, we examine theset D = {keN: n,+n; =n
or n,—n; = n for some j<k}. Note that if n,+n; = n for some j<k, then we have

.1 - in<m<n.

On the other hand, if n, —n; = nfor some j <k, then we have n<n, and n,—n,_, <n.
Since n,_; n; ' <g~*, we have

4.2) n<m<(l—qg~H 'n
Combining (4.1) and (4.2), we conclude that if k€ D, then
In<m<(1—g~")"'n.

Thus we see that if k,k+jeD, then n,,;n; ' <2(1—g~')~'. However, since P
is a g-set, we have n; ., n; ' >¢’ and consequently we have ¢/ <2(1—¢~')~* which
implies that j < m. We conclude that D has at most m elements. Noting the definition
of F(n) given in Definition 3.2, we have for neN,

F(n)<s{n,: n,+n; = n or ny,—n; = n for some j}
U{—n,: nj—n, = n for some j}.

It follows that |F(n)| <2|D| <2m. Similarly we have |F(—n)| <2m. The pair (P, ¥)
is therefore stable.
We now state and prove our major theorem in this section.

THEOREM 4.10. Let P = {n,: ke N} be a g-set for some q>1 and let t be the least
positive integer such that ¢¢=1>(q—1)"'. Let (P,u, &) be a compatible triple such
that for each j, P(j) = {—mj;,m;} where {m;,je N} is a t-related rearrangement of
{ni, k€ N}. Then the triple (P,u, %) is Gaussian.

PRrROOF. Theorem 4.8 guarantees the existence of a dissociate sequence %,
which is P-coarser than & and such that (P, &) and (P, &,) are Gaussian equivalent.
By Lemma 2.3(b)(i), the triple (P, u, &) is compatible. Applying Theorem 4.4 and
Theorem 4.9, we deduce that (P, %) is strongly dissociate and stable and hence
(P,u, &) is Gaussian by Theorem 3.10. Finally, we conclude that (P,u, %) is
Gaussian by Theorem 2.4.
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COMMENTsS 4.11

(a) Theorem 4.10 is an improvement on the classical result, Theorem 4.2. It
asserts that Hadamard sets are ‘Gaussian’ in relation to sequences which are
essentially different from the ‘natural’ sequence & = {—n, n}. This is not an obvious
result since the Hadamard condition is defined in terms of the order property of
N which is specified by the sequence &.

(b) We are unable to find an example of a Hadamard set P and a sequence &
such that (P,u, #) is compatible but not Gaussian for some function w.

(c) If Pis a g-set for some g>2, then ¢ = 1 in Theorem 4.10 and hence Theorem
4.10 and Comment 4.7(b) combine to show that (P,u, %) is Gaussian whenever
(P,u, &) is compatible. In the next section, we show that this result is a corollary
to a more general result.

5. Applications to an arbitrary compact abelian group

We return to the setting of an arbitrary compact abelian group G and begin
with the definition of some lacunary properties.

DEFINITION 5.1. We say that a subset P, of a set of characters P is asymmetric
if p,p~1eP, implies that ¢ = ¢~'. Given PcT, let P, be a maximal asymmetric
subset of P. For ne N, we let

R(n) = [{6: P,>{-1,0,1}: ; o) = n, T] ¢*® =1}].
€P,y

9Py
(Note that since a maximal asymmetric subset P, of P is any subset such that
exactly one of ¢ and ¢~ belongs to P, for each ¢ € P, the number R(n) is indepen-
dent of the particular maximal asymmetric subset P, chosen.) We say that P is a
Rider set if R(n)< B" for some B>0 and all n. In particular, we say that P is a
1-dissociate set if R(n) = 0 for all n. (See Remarks 3.3(b).)

REMARKS 5.2. Rider sets were studied firstly by Steckin (1956) and later by Rider
(1966) as well as by other authors. They are important in the study of Sidon sets.
Sets which are the finite unions of Rider sets are Sidon sets. The converse of this
last statement is so far as the authors are aware an open problem. See Lépez and
Ross (1975), p. 17 and p. 24 for further details.

The following theorem which is easily proved pinpoints the relevance of Rider
sets to the Gaussian property.

THEOREM 5.3. Let P<T. The following properties are equivalent:

(a) P is a Rider (1-dissociate) set;
(b) (P, &) is weakly (strongly) dissociate whenever (P, %) is compatible; and
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(c) (P, %) is weakly (strongly) dissociate whenever & is a P-basic sequence and
(P, %) is compatible.
In the following theorem we summarize some well-known results dealing with
the relationship between Hadamard sets and dissociate sets.

THEOREM 54. Let G=T,T =Z.

(a) For q>2, each g-set is a 1-dissociate set.

(b) Each Hadamard set is the finite union of 1-dissociate sets.

(c) There exists a 1-dissociate subset of Z which is not the finite union of Hadamard
sets.

PROOF
(a) Suppose that P ={n,: ke N} is a g-set for some ¢=>2. For j<k, we have
n<g’"*n, <2 *n,, For¢g;e{—1,0,1}, j=1,2,...,k, we have

k

k
My + Z EjN;Z Ny — z n;
i=1 ji=1

k
>Ny (1 _ Z 2—(k+l-—]))

j=1
>0.

We conclude that P is 1-dissociate.

(b) For meN, we write P =|J7-4 P; where P; = {n,_;: ke N}. We readily
check that each P; is an a;-set for some o; >¢™. Choose m such that g">2.

(c) An example of a 1-dissociate set which is not the finite union of Hadamard
sets is the set {2"+2"": n,me N and (m—1)><n<m?}. The example is due to
Hewitt and Zuckerman (1959) and is discussed in Lopez and Ross (1975),
p. 25.

Theorem 3.10 and Theorem 5.3 combine to show that a compatible triple
(P,u, ) is Gaussian where P is a Rider set if the pair (P, &) is stable. If (P, %)
is compatible, then & is P-coarser than a P-basic sequence &, by Lemma 2.3(a).
Since (P, #) and (P,&,) are Gaussian equivalent by Lemma 2.3(b)(ii), (P,u, &)
will be Gaussian if (P,u, ¥,) is Gaussian by Theorem 2.4. On the other hand, by
reference to Definition 3.2, we note that (P,%,) is stable if (P, %) is stable. It
follows that we can restrict our attention to deriving a condition for a compatible
pair (P, &) to be stable given that & is a P-basic sequence.

For & a P-basic sequence and P(n)#@, we write P(n) = {p,}U{p, 1}. It will
be seen that characters of order two play a special role in our results. We write
A ={peTl: ¢? = 1}. For yeI'— {1}, we derive

-2

F(y) = {pu: 03 = 1}V{o; 't 0. 2 =}
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It is clear that F(y) is empty unless y =¢? for some @€TI. If eI’ and ¢?>#1, we
have
Fo?) ={pe: 9= 0"IV{o L 02 = 9%}
={p: g™ €AYU{p, P g o €A}

= U Pn)neA.
n=1
The above argument yields:

THEOREM 5.5. Let P be a Rider set and (P,u, &) a compatible triple. Then (P, u, &)
is Gaussian if there exists me N such that |J= , P(n)ngA has at most m elements
for each pe T — A,

We have the following slightly more general form of the above theorem.

THEOREM 5.6. Let P be a Rider set and suppose that there exists me N such that
[PrpA| <m for all peT — A. Then each compatible triple (P,u, &) is Gaussian.
As a corollary we deduce:

COROLLARY 5.7. If G is connected and P a Rider set, then each compatible triple
(P,u, %) is Gaussian.

We suspect that the converse to Theorem 5.6 is true. Such a converse states that
if P is a Rider set such that {|PnpA|: ¢ €T — A} is unbounded, then some compatible
triple (P, u, &) is not Gaussian. The following is a partial converse.

THEOREM 5.8. Let P be a Rider set and suppose that PrgA is infinite for some
gl — A. Then some compatible triple (P,u, #) is not Gaussian.

Proor. Note that at most one element of the form ¢* for ke N can belong to A,
Using the fact that ¢~ Pn A is infinite and an easy induction argument, we construct
a sequence {y;};>; of elements of p* Pn A such that for each k and each choice of
&; =0 or 1 we have that

k
o"[]7#=1 impliesthate, =g, =...=0 and ¢"=1.
i=1

Let u be the function mapping each element in PUP~! onto 1 and let & = {{py;,
' 7}}%,. We apply Theorem 3.5 for Q = G, # = the Borel g-algebra of G,
4 = m (Haar measure) and where forj = 1,2, ...,n,

Xn,j=T(n,j)
= B~'(m)(S(j)—S(—1))
=Q@2n) " tylp+oY).
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We note that

n
Y Xiy=Ho+e ) =X
~

in the notation of Theorem 3.5.
Observe that by choice of the sequence {y;}, we can write

T, Il a+irx, )
i=t

=1+R,

where R is a linear combination of characters distinct from ¢" for neZ. Hence we
have, in particular,

f T,X*dm =fX"dm for all ke N.
G
Since exp (—¢X) is the uniform limit of its power series, we deduce that

f T,exp(—tX)dm =I exp(—tX)dm.
G G

Condition (a’) of Theorem 3.5 is satisfied and hence (P, u, &) is not Gaussian.

COMMENTS 5.9

(a) Theorem 5.6 is a significant improvement on Theorem 3.1 of Dudley (1975).
As an example, consider G = [[%., G; where each G, is the multiplicative group
{1, —1,i, —i}. Let ¢; be the character mapping an element of G onto its jth com-
ponent. The set P = {g, ¢}+ 1»@;: je N} does not have property (R,) (see Definition
2.1 of Dudley (1975)) since (¢;¢7,,)* qoj'z = 1. However, P is a 1-dissociate set
and |PngA| <2 for all peT'—A.

(b) Theorem 5.4(a) and Corollary 5.7 combine to show that if P<Z is a g-set
for some ¢g>2, then each compatible triple (P, u, &) is Gaussian. (See Comments
4.11(c).)
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