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Abstract

We are concerned with existence results for nonlinear scalar Neumann boundary value problems
u" + g(x, u) = 0, w'(0) = u'(n) = 0 where g(x, u) satisfies Carath6odory conditions and is
(possibly) unbounded. On the one hand we only assume that the function (sgn u)g(x, u) is bounded
either from above or from below in some function space, and we impose conditions which relate
the asymptotic behavior of the function f£ G(x,u)dx (for | u | large) with the first two eigenvalues
of the corresponding linear problem (here G(x, u) = /0" g(x, s)ds is the potential generated by
g). On the other hand we consider cases where the function (sgn u)g(x, u) is unbounded. The
potential G(x, u) is not necessarily required to satisfy a convexity condition. Our method of proof
is variational, we make use of the Saddle Point Theorem.

1991 Mathematics subject classification (Amer. Math. Soc): 34 B 15, 34 B 25.

1. Introduction

This paper is devoted to the study of existence results for nonlinear scalar
Neumann boundary value problems

u"(x) + g(x,u(x)) = 0 a.e. in /,
K'(0) = u'(n) = 0

where / = [0, it], g : I x M. —>• R satisfies the Caratheodory conditions (see
Section 2) and is (possibly) unbounded.
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[2] Neumann boundary value problems 387

Let G(x, u) be the potential generated by the function g, that is

(1.2) G(x,u)= [ g(x,s)ds.
Jo

We impose conditions that relate the asymptotic behavior of the function
f,G(x, u)dx (for \u | large) with the first two eigenvalues of the linear problem

u"(x) + ku(x) = 0 in /, keR,
K'(0) = u'(7t) = 0.

In Section 2, we consider a coercivity condition of Ahmad, Lazer, and Paul's
type ([2, 11, 12]) below the first eigenvalue, say zero. In Theorem 2.1 we
do not assume that the nonlinearity g(x, u) grows at most linearly. We only
assume that the function (sgn u)g(x, u) is bounded from above in some function
space. Theorem 2.2 is devoted to the case when no boundedness condition
is imposed on the function (sgn u)g(x, u). In that case we impose a growth
condition on the potential G(x,u). In Theorem 2.3 we consider the case when
nonresonance occurs below the first eigenvalue. In all our results the potential
G(x, u) is not necessarily required to satisfy a convexity condition. The main
results of Section 2 are valid for periodic boundary value problem as well. To
conclude Section 2 we provide a counterexample which throws more light on
the relevance of our results.

Section 3 is devoted to existence conditions at the first two eigenvalues of
the problem (1.3). We consider a coercivity condition of Ahmad, Lazer, and
Paul's type with respect to the first eigenvalue, complemented by a nonuniform
condition with respect to the second eigenvalue of (1.3). In Theorem 3.1 we
assume that the function g(x, u) grows at most linearly and that the function
(sgn u)g(x, u) is only bounded from below in some function space.

Besides the classical real Lebesgue spaces LP(I) and the spaces C(I) of
p-times continuously differentiable real valued functions, we shall make use of
Sobolev spaces / / ' ( / ) and W2l(I) (see for example, Brezis [3] for definitions
and properties).

For each u e / / ' ( / ) , we shall write

u(x) = u + u(x)

where
r

u(x)dx and u(x) = u(x) —~u.
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388 M. N. Nkashama [3]

So, with obvious notations,

(1.4) Hx(I)=H\l)®Hx(I).

For u e LX{I), we define

u+(x) = max(w(x), 0) and u~(x) = max(—u{x), 0).

Hence,
u(x) — u+(x) — u~(x).

2. Existence conditions below the first eigenvalue

In this section we study the solvability of the Neumann boundary value
problem (1.1) where g is a Carath6odory function, that is, g(-, u) is measurable
for all « e l , g(x, •) is continuous for a.e. x e I, and for each constant r > 0
there exists a function fr e L1 (/) such that

(2.1) \g(x,u)\<fr(x)

for a.e. x e / , and all u e R with \u\ <r.
Let G{x,u) be the potential generated by the function g as defined in (1.2).

The following result deals with the case when the function (sgn u)g(x, u) is
bounded from above.

THEOREM 2.1. Suppose there exist functions A, B € L'(/) and a constant
R e R with R > 0 such that

(2.2) g(x, u) < A(x)

for a.e. x e I and all u e R with u > R,

(2.3) g(x, u) > B(x)

for a.e. x € / and all u G M vv/tfz u < -R.
Moreover, assume

lim I ((2.4) lim / G(x, a)afx = - c » .
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[4] Neumann boundary value problems 389

Then equation (1.1) has at least one solution u e W2l(I) that minimizes the
functional

(2.5) 4>{u) = j\l-\u'\2-G{x,u)\dx

on//'(/)•

Conditions (2.2) and (2.3) are used in the literature in connection with the
so called Landesman-Lazer condition (see for example, [8, 1]), here they are
used along with the more general condition (2.4) of Ahmad, Lazer and Paul's
type [2]. On the other hand, regarding (2.4), we do not assume that g is
(necessarily) bounded as is usually required in the literature (see for example,
[2, 11]). Also, notice that no convexity assumption is imposed on the potential
G. The reader is referred to Theorem 3.1 for similar conditions above the first
eigenvalue.

PROOF. By (2.1)-(2.3), it follows that there exists a function b G Ll(I) such
that
(2.6) G(x,u) <b(x)\u\

for a.e. x e I and all u e l .
It is easy to verify that the functional 4>, defined by (2.5), is a C1-functional

on / / ' ( / ) since H\l) is compactly imbedded into C(I) (see for example, [11,
pp. 90-94]).

We shall show that (f> is coercive on Hl(I), that is,

<p(u) —>• oo as \u\H\ —> oo

which would imply that the Palais-Smale condition is satisfied (see for example,
[11, p. 94]).

Assuming that this is the case, we deduce, by [11, Theorem 2.7], that 0
has a minimum at some point u e / / ' ( / ) (see also [11, p. 25]). Since (f> is
a C'-functional on H\I), necessarily <p'(u) = 0, and u is a weak solution to
equation (1.1). Therefore, condition (2.1) and a standard regularity result imply
that u G W2A(I) (see for example, [3, p. 182]).

Now we are going to prove that the functional 0 is coercive on / / ' ( / ) .
We assume by contradiction that there exists a sequence («„) c Hl(I) with

\un\Hi -> oo as n ->• oo such that

(2.7) 4>{un) < cx
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for some constant C\ and all « e N .
Set vn = un/\un\H<- Then, one can find a subsequence relabeled (vn) and a

point v e HX{I) such that

(2.8) |uBU. = 1, uB -+ u inC(/) , u, - - v in / / ' ( / ) .

By (2.7), one has

/* 1, , ,2 , [G{x,u
/ - I ^ J V X - / ——2

Ji 2 y, |MJ^,

which implies, by (2.6), that

(2.10) !\\v'n\
2dx-

Ji2 Ji «

By going to the limit as n ->• oo, one obtains

«; - • 0 in L2(/).

Therefore, by (2.8), one has vn —>• f in Hl(I), v'(x) = 0 for a.e. x e / which
implies that v ^ 0, since v = 0 would lead to a contradiction with \vn\H\ = 1.

On the other hand, since v'(x) — 0 for a.e. x G / , we deduce that

(2.11) v(x) = c

on / for some constant c ^ 0. By (2.8), it follows that either un —> oo or
«„ ->• —oo uniformly on / as « ->• oo.

Let us assume that «„ —> oo uniformly on / (the proof for the other case is
similar). Setting
(2.12) un(xn) =minun(x),

we obtain un(xn) ->• oo. Therefore, by writing <f>(un) as

<t>(un) = l\\Wn\
2 - G(x, un(xn)) - (G(x, un(x)) - G(x, un(xn)))]dx

and using (2.2), it follows that, for sufficiently large n,

<t>(un)> f\\\<\2 ~ G(x,un(xn))]dx - f A(x)(un(x) - un(xn))dx

> 2 l"«li2 — G(x, un(xn))dx- IA(x)[(un(x)-un) - (un(xn)-un)]dx;
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[6] Neumann boundary value problems 391

that is,

<£(«„)> \\u%-2\A\L>\un\c- /G(x,un(xn))dx.
2 Ji

So, by the Sobolev inequality (see for example, [3, p. 129]) one has

(2.13) 4>{un) >
 X-\u'n\

2
L2 -2c2\u'n\L2 - I G(x,un(xn))dx

for some constant c2 > 0.

It immediately follows from (2.4) and (2.13) that (p(un) -> oo as n —• oo,
thus contradicting (2.7). The proof is complete.

In the next result we are concerned with the case when no boundedness condition
is imposed on the function (sgn u)g(x, u). In that case we impose a growth
condition on the potential G(x, u). This condition includes the case when the
potential G(x, u) is Lipschitz, that is, when the nonlinearity g(x, u) is bounded
(see [2, 11]).

THEOREM 2.2. Suppose there exist functions a, y, F € Ll(I) such that

(2.14) \G(x, u) - G(x, v)\ < T(x)\u - v\2 + y(x)\u -v\+ a(x)

for a.e. x e / and all u,v e l , where

(2.15) T{x) < 1/2

for a.e. x e / with strict inequality on a subset of positive measure. Moreover,
assume condition (2.4) is fulfilled. Then the conclusion of Theorem 2.1 holds.

PROOF. Under conditions of Theorem 2.2, we will show that the functional (p
is coercive on / / ' ( / ) .

As in the proof of Theorem 2.1 we assume to the contrary that there exists a
sequence («„) c / / ' (/) with |«n |//i ->• ooasn ->• oo such that (2.7) is satisfied.
By writing <p(un) as

</>(«„)= [\^\u'n\
2-G(x,un)\dx- f[G(x,un(x))-G(x,un)]dx

and using (2.14), we have

4>(uH) > jy-\un\
2-T(x)\un\

2\dx-jy(x)\un\dx-ja{x)dx-JG{x,un)dx.
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By Sobolev inequality and Lemma 1 in [9, p. 339], one gets

(2.16) <t>(un) > 8\un\
2

Hl -c3\un\Hi - \a\o- f G{x,un)dx

for some constants 8 > 0 and c3 > 0.

Since \un\Hi —>• oo as n —> oo, it follows that \un\ —>• oo or |«n|//i —>• oo as
« ->• oo. Therefore, condition (2.4) and inequality (2.16) imply that (/>(un) -> oo
as « —>• oo. This contradicts (2.7), and the proof is complete.

The final main result of this section provides for nonresonance conditions
below the first eigenvalue (see [4,7, 11]). The reader is referred to Theorem 3.1
herein for similar nonresonance conditions at the second eigenvalue.

THEOREM 2.3. Suppose

(2.17) limsup G(<X\M) < p+(x), limsup 2 < p_(x)

uniformly for a.e. x e I, where fi+, fi- G Ll(I) are such that

(2.18) /?+(*)< 0 and /3_(JC) < 0

/or a.e. x 6 / with strict inequalities on subsets of I of positive measure. Then
the conclusion of Theorem 2.1 holds.

PROOF. Under conditions of Theorem 2.3, we shall show that the functional
4> is coercive on / / ' ( / ) .

An easy adaptation of the argument used in the proof of [9, Lemma 1, pp. 339-
340] and condition (2.18) imply that there exists a constant 8 = 8{fi+, /L) > 0
such that, for any u e HX{1),

(2.19) x/f(u) = J\\W\2 ~ 0 6 + « ( K + ) 2 + P-{x){u-f)\dx > 8\u\2
Hl.

On the other hand, conditions (2.1) and (2.17) imply the existence of a function
P e Ll(I) such that

(2.20) G(x, u) < 08+00 + ^)«2 + 000

https://doi.org/10.1017/S144678870003411X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003411X


[8] Neumann boundary value problems 393

for a.e. x e / and all u e R with u > 0,

(2.21) G ( X , H ) < 0 S _ ( X ) + ^ ) « 2

for a.e. x e I and all M € R with u < 0.
Therefore, for M e / / ' ( / ) ,

(n) = j-\u'\2dx - / G(x,u)dx- I G(x,u)dx
Ji 2 J J

Hence, by (2.19),

0(M) > Vr(n) - j j «2<** - 2|/8|t. > - |

which implies that (p is coercive on / / ' ( / ) • The proof is complete.

EXAMPLE 2.1. (A counterexample)
For c € R with |c| > 1 the equation

COS JC
(2.22) u"(x) + M(X) = 0, H'(0) = u'{n) = 0

C + COS X

has nontrivial solutions of the form

(2.23) u(x) = A[c +cos x]

for any A e R with A ^ 0. Therefore, by the Fredholm alternative, the equation

COS X
(2.24) u"{x) + u{x) = cosx, «'(0) = M'(TT) = 0

c + cosx

(with \c\ > 1), has no solution. (Note that /0"(c + cosx)cosxdx ^ 0.)
Moreover, by easy computations and change of variables, one has

r cosx fn/2 cos2x
(2.25) / dx = - 2 / — dx < 0

Jo c + cos x Jo c c o s *
since |c| > 1. We deduce two facts:
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394 M. N. Nkashama [9]

(l)The coercivity condition (2.4) alone does not guarantee the existence of
solution to equation (1.1).

(2) In the nonresonance case, conditions (2.17)—(2.18) cannot be replaced by a
weaker assumption of the type

(2.26) ^

uniformly for a.e. x € I, where F € Ll(I) is such that

(2.27) / T{x)dx < 0.
Jo

(Also, clearly condition (2.14) of Theorem 2.2 is not satisfied.)

3. Existence conditions at the first two eigenvalues

We shall be concerned with existence results for equation (1.1) under reson-
ance and nonresonance conditions between the first two eigenvalues of (1.3).
Throughout this section, we shall assume that the function g satisfies Caratheo-
dory's conditions (see Section 2), and grows at most linearly, that is, there exist
a constant d > 0 and a function e e Ll(I) such that

(3.1) \g(x,u)\<d\u\+e(x)

for a.e. x e / and all u e R.

THEOREM 3.1. Suppose

(3.2) l imsup g ( * ' M ) < r+Ot) and l imsup g ( X ' M ) < T_{x)

for a.e. x e / where

(3.3) 0 < r+(x) < 1, 0 < T_(x) < 1

for a.e. x e I with

(3.4) f (1 - r+)w2dx + I (1 - F_)w2dx > 0
Jw>0 Jw<0
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for all w e Spanfcosx} with w ^ 0. Moreover, assume there exist functions
A, B € L1 (/) and a constant R € R with R > 0 such that

(3.5) g(x, u) > A(x)

for a.e. x e / a«d allu GR with u > R,

(3.6) g(x, M) < B(x)

for a.e. x e / and all « e i w/f/z u < —R. Finally, suppose

(3.7) lim / G(x, M)^X = oo

G « the potential defined in (1.2). Then equation (1.1) has at least one
solution u e W2l(l).

PROOF. Under conditions of Theorem 3.1 we shall prove that the conditions
of the Rabinowitz Saddle Point Theorem [11, pp. 24-25] are fulfilled where the
Banach space is / / ' ( / ) as given in (1.4) and the functional </> on / / ' ( / ) is defined
in (2.5). Let

(3.8) V = / / ' ( / ) , X = H\1) and D = {u e V : |M| < p).

We will prove that there exists a constant p > 0 such that

(3.9) sup</> < inf$.
3D x

where 3D is the boundary of D.
On the one hand an elementary adaptation of the argument used in the proof

of Lemma 1 of [9, pp. 339-340] and conditions (3.3)-(3.4) imply that there
exists a constant <$ = < $ ( r + , r _ ) > 0 such that, for any u e X,

(3.10) if{u) = l- f[\u'\2 - (F+(x)(u+)2 + r.(x)(u-)2)]dx > 8\U\2
H1.

On the other hand conditions (3.1)—(3.2) imply the existence of a function
r € / . ' ( / ) such that

-(r+w + -)

https://doi.org/10.1017/S144678870003411X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003411X


396 M. N. Nkashama [11]

for a.e. x e / and all u e E with u > 0,

~ 2 ~ 2

for a.e. x e / and all w e E with M < 0.
Therefore, for u e X,

<j)(u) = - \u\2dx - I G(x, u)dx - / G(x, u)dx
2 JI Ju>0 Jii<0
1 f 2 ~+ 2 ~— 2 " f 7

> - / [ w — (r+(Jc)(M ) + I_(X)(M ) )]ax I K M — 2 r /, i.
2 J, 2J,

Hence, by (3.10),

0(5)>^(«)-2l"l^-2lr l^''

that is,

(3.13) <f>(u)>-\u\2
H1-2\r\o,

which implies that 0 is bounded below on X by — 21F | L i. Moreover, for M € V,

(3.14) 0(M) = - [ G(x,u)dx.

Therefore, by using condition (3.7) and inequality (3.13), we obtain the
assertion (3.9) for some constant p > 0.

It remains to prove that the functional <j> satisfies the Palais-Smale condition.
For this purpose, it suffices, as is easily seen from [11, pp. 94—95], to show that
for any sequence (un) c Hl(I) such that <p(un) is bounded and </>'(«„) ->• 0 as
n ->• oo, it follows that («„) is bounded.

Suppose there exist a sequence («„) c Hl(I) and a constant c > 0 such that

(3.15)
l«nl//' ^ oo as n —>• oo,
\ < t > ( u n ) \ < c f o r a l l M S N

^'(««) - ^ 0 as n -> oo.

Define the sequence (u j c H\I) by

(3.16) un = un/\un\Hi.
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[12] Neumann boundary value problems 397

The last assertion in (3.15) implies that

(3.17) /"[!!>' - g(x, un)w}dx -* 0 as n -* oo for all u; e Hl(I).

Therefore

(3.18) f[v'nw' - (g(x,un)/\un\H,)w]dx -+ 0 as « - • oo for all u; € / / ' ( ' ) •

Since |un|wi = 1, by the compact imbedding of H^I) into C(/) we deduce,
passing if necessary to a subsequence relabelled (vn), that there exists v e Hl(I)
such that

(3.19) uB - • i> in C(/), vn -^ u in / / ' ( / ) , as w - • oo.

On the other hand, by the growth condition (3.1), one has that the sequence
(g(x, un)/\un\Hi) is such that

(3.20) \g(x,uH)\/\un\Hi<c0 + e(x)

for a.e. x € / and all n e N with n sufficiently large, where c0 is some constant.
Hence, by the Dunford-Pettis Theorem (see [3]), the sequence (g(x,un)/\un\H>)

converges weakly in V{1). So, by (3.18), we get

(3.21) f[v'w'-K(.x)w]dx = 0 for all w e H\I)

where K is the weak limit (in Ll(I)) of the sequence (g(x, un)/\un\H^)-
We claim that v ^ 0. Indeed, by conditions (3.1)—(3.6), there exist functions

a,b,h e L'(/) such that

a(x)\u\ - b(x) < G(x, u) < 2\u\2 + h(x)

for a.e. x e I and all u e l . Hence,

, , , „ , aU) b(x) ^ G(x,un) 2

Now, if v = 0, then by the first assertion in (3.19), one deduces vn —> 0
uniformly. So, by (3.22),

G(x,un)
——-5—dx -*• 0 as n ->• oo,
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which would imply, by the second assertion in (3.15), that v'n —*• 0 in L2(I).
Thus, vn —>• 0 in Hl{I) as n —> oo. This contradicts the fact that \vn\H< = 1.
Therefore v # 0.

Let us define the function kv by

1 0 otherwise.

Then (3.21) becomes

[v'w'-kv(x)vw]dx=O forall w e //'(/),

that is, v is a weak solution to the problem

z'(0) = z'(;r) = 0.

By standard regularity results [3, pp. 139-140], it follows that v € W2J(I), and
that

u"(x) + ^(x)u(x) = 0 a.e. in /,
' i/(0) = U'(TT) = 0.

Define the functions k+ and &+ by

+ I ^v(jc) if v(x) > 0,
" J O otherwise,

and

u I 0 otherwise.

Equation (3.23) becomes

v" + k+(x)v+— k~(x)v~ = 0 a.e. in /,

= 0.

By using the definition of the functions k+, k~, inequalities (3.2), (3.5)-(3.6),
and properties of liminf and limsup, it follows that for a.e. x e / ,

o < *+(*)< r+(*),
0 < k;(x) < r_U).

https://doi.org/10.1017/S144678870003411X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003411X


[14] Neumann boundary value problems 399

By multiplying (3.23) with v — v, integrating over / , using inequalities
(3.25) and (3.10), and the property of the eigenfunction associated with the first
eigenvalue of equation (1.3), it follows that v(x) = C\ for some constant c\ ^ 0.
We shall assume cx > 0. (The proof for the case C\ < 0 is similar.)

Since vn —> C\ uniformly on / as n —> oo, it immediately follows from (3.16)
that
(3.26) un ->• oo uniformly on / as n ->• oo,

which implies that there exists n0 e N such that, for n > n0,

(3.27) un(x)>R for all x e / .

So, by (3.5), g(x, un{x)) > A(x) for a.e. x e / when n > n0.
Therefore

(3.28) f g(x,un(x))dx>c2
Jg<0

for some constant c2.
On the other hand, by (3.17) with w = 1, one has

(3.29) / g(x,un (x))dx 0 as n -> oo.

Hence, by combining (3.28) and (3.29), one gets

(3.30) f\g(x,un(x))\dx<a

for some constant c3.

Since <p'(un) —> 0 as n —> oo, it follows that, for some constant c4 > 0,

(3.31) \4>'{un)w\<cA\w\w forall w e / / ' ( / ) .

By inequalities (3.3O)-(3.31), one has

- _ f -, 2

unun - J^ un g x,un x i

> / \un\
2dx -c3\un\c.

Using the continuous imbedding of H\I) into C(I), one gets

c4|"«lw > I«lli2 -cs\un\Hi
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for some constant c5 > 0. So, by the Poincare inequality, it follows that

(3.32) !«„!«.< c6

for some constant c6 > 0.
Set

(3.33) un{xn) = mm «„(*).

Then, by (3.26),
(3.34) un(xn) -> oo as n -> oo.

which also shows that (for n sufficiently large)

(3.35) un(xn) > R.

On the other hand,

f G(x, un(x))dx = j G{x, un{xn))dx + J[G(x, un(x)) - G(x, un(xn))]dx

= IG(x,un(xn))dx + f\f g(x,s)ds\dx.
JI Jl LJUnUn) J

So, by assumption (3.5), one has

I G(x,un(x))dx> I G(x,un(xn))dx+ J(un(x) - un{xn))A{x)dx.

By using the fact that un(x) — un{xn) = un(x) — un+un — un{xn), and the
imbedding of / / ' ( / ) into C(I), one deduces that

/ G(x,un(x))dx > / G{x,un(xn))dx - c1\un\tv\A\u

for some constant c7 > 0. This implies, by (3.32), that

(3.36) fG(x,un(x))dx> fG{x,un{xn))dx - c8

for some constant c8 > 0. Therefore, by (3.34), (3.36), and assumption (3.7), it
follows that

(3.37) I G(x, un(x))dx -> oo as n —> oo.
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Moreover, by (3.32),

<t>{Un) = l \ \ K t o \ 2 ~ G<*' « » U ) ) ] ^ < Cl ~ fG(X> Un{X))dx.

So, by (3.37),
(3.38) (p(un) ->• —oo as n ->• oo,

contradicting the second assertion in (3.15). The proof is complete.

EXAMPLE 3.1. Let

g(x, u) = p(x, u)u sin2 u + a COSH + h{x)

where a e R, h € L1 (/), and p : / x R -> R is defined by

f 1 for x € / and u G R with M > 0,
" I T_(x) for x e / and u € R with u < 0 .

We suppose that F_(x) is such that

0 < r _ ( x ) < - fora.e. x e /

with F_(x) > 0 on a subset of / of positive measure.
It is easily checked that the potential generated by g is given by

P(X,U) 2 p{X,u) . P(X,U) .

G(x, u) = —-—u —u sm2u — cos2M + asmu + h(x)u.

Therefore, by Theorem 3.1 herein, equation (1.1) has at least one solution for
every h e Ll{I).

REMARK 3.1. Theorem 3.1 may be related to a result in [6] where the periodic
problem is considered. Both results (as others in the literature [1, 6, 11, 12]
and references therein) rely upon the Saddle Point Theorem [11]. However, in
verifying the Palais-Smale condition, it is important to note that the approach
used in [6] does not seem to work for Neumann boundary value problems;
while the one developed herein does apply, in a natural way, to the periodic
boundary value problem and provides for a more general result as illustrated by
Example 3.1 above.
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