
J. Fluid Mech. (2025), vol. 1020, A6, doi:10.1017/jfm.2025.10578

Asymptotic scaling laws for periodic turbulent
boundary layers and their numerical simulation
up to Reθ = 8300

Andrew Wynn
1

, Saeed Parvar
1
, Joseph O’Connor

2
,

Ricardo A.S. Frantz
3

and Sylvain Laizet
1

1Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ,
UK
2EPCC, Bayes Centre, University of Edinburgh, 47 Potterrow, Edinburgh EH8 9BT, UK
3Arts et Métiers Institute of Technology, CNAM, DynFluid, HESAM Université, F-75013, Paris, France
Corresponding author: Andrew Wynn, a.wynn@imperial.ac.uk

(Received 17 June 2024; revised 25 June 2025; accepted 26 June 2025)

We provide a rigorous analysis of the self-similar solution of the temporal turbulent
boundary layer, recently proposed by Biau (2023 Comput. Fluids 254, 105795), in which
a body force is used to maintain a statistically steady turbulent boundary layer with
periodic boundary conditions in the streamwise direction. We derive explicit expressions
for the forcing amplitudes which can maintain such flows, and identify those which can
hold either the displacement thickness or the momentum thickness equal to unity. This
opens the door to the first main result of the paper, which is to prove upper bounds
on skin friction for the temporal turbulent boundary layer. We use the Constantin–
Doering–Hopf bounding method to show, rigorously, that the skin-friction coefficient
for periodic turbulent boundary layer flows is bounded above by a uniform constant
which decreases asymptotically with Reynolds number. This asymptotic behaviour is
within a logarithmic correction of well-known empirical scaling laws for skin friction.
This gives the first evidence, applicable at asymptotically high Reynolds numbers, to
suggest that Biau’s self-similar solution of the temporal turbulent boundary layer exhibits
statistical similarities with canonical, spatially evolving, boundary layers. Furthermore,
we show how the identified forcing formula implies an alternative, and simpler, numerical
implementation of periodic boundary layer flows. We give a detailed numerical study
of this scheme presenting direct numerical simulations up to a momentum Reynolds
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number of Reθ = 2000 and implicit large-eddy simulations up to Reθ = 8300, and show
that these results compare well with data from canonical spatially evolving boundary layers
at equivalent Reynolds numbers.

Key words: turbulent boundary layers, Navier-Stokes equations

1. Introduction
Spatially evolving boundary layers are one of the canonical flows in fluid mechanics. Their
behaviour governs the aerodynamic efficiency of aircraft, road vehicles, ships and even
wind turbines via the behaviour of the atmospheric boundary layer. For this reason, there is
significant interest in understanding and predicting key performance statistics, such as skin
friction, of boundary layer flows. Resolved numerical simulations are a powerful tool with
which to make such predictions. However, boundary layer flows of practical importance
are typically at high Reynolds number, the boundary layer is itself turbulent, and the
streamwise growth of its thickness necessitates a large computational domain in order to
obtain converged and accurate time-averaged statistics. This places a severe restriction on
the complexity of turbulent boundary layers that can be accurately simulated numerically.
Indeed, Sillero, Jiménez & Moser (2013) have performed direct numerical simulations
(DNS) of a turbulent boundary layer at the highest momentum Reynolds number to date,
at Reθ ≈ 6500, and this is at least an order of magnitude below that of the boundary layer
on the fuselage of a commercial airliner flying at cruise velocity.

Owing to the computational demands of simulating spatially developing turbulent
flows, there has been a growing interest in temporal-based solutions. This involves,
where possible, reframing a spatially developing problem into a temporally developing
one, thus enabling a homogeneous solution in the streamwise direction. This simplifies
the streamwise boundary conditions, which now become periodic, and also permits a
shorter domain in the streamwise direction, thus reducing the computational cost. Such
an approach has been adopted for a variety of flow problems, including mixing layers
(Rogers & Moser 1994) and planar jets (Reeuwijk & Holzner 2014). For the case of the
spatially developing boundary layer, the temporal reformulation becomes equivalent to the
Rayleigh problem, where an infinitely long plate is impulsively started at constant velocity.

Kozul, Chung & Monty (2016) were the first to provide a detailed analysis, using DNS,
of the temporal turbulent boundary layer as a counterpart to the spatially developing
version. Their analysis showed that the temporal approach is a good model for the spatially
developing solution and is therefore a useful tool in the study of such flows. Furthermore,
they argued via an analysis of similarity solutions that the two approaches should become
asymptotically equivalent at high Reynolds numbers. However, one of the challenges with
their approach is that the final boundary layer thickness for a given Reynolds number is
not known a priori. Therefore, both the domain and mesh are over-sized/resolved for the
majority of the simulation, thus increasing the computational cost. Another disadvantage
is the limited time window where statistics can be collected for a given Reynolds number.
This imposes the requirement of having to run an ensemble of simulations to obtain
converged statistics, which further increases computational demand. Topalian et al. (2017)
solved these issues by adapting the pioneering slow-growth formulation of Spalart (1986)
from the original spatial-homogenisation approach to a temporal homogenisation more
suited to the temporally developing turbulent boundary layer. However, the lack of a clearly
defined temporal thickness growth rate introduced ambiguities with regards to extension
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towards general boundary layers with a non-zero pressure gradient. More recently, Biau
(2023) extended the work of Topalian et al. (2017) by combining the temporal slow-
growth formulation with the assumption of self-similarity. In addition to this, the solution
was also non-dimensionalised with respect to the momentum thickness, so that the
temporal thickness growth can be calculated to ensure the momentum thickness remains
equal to unity throughout the simulation. This temporal-homogenisation reformulation is
especially efficient from a numerical perspective, since, in addition to permitting a shorter
streamwise domain via periodicity, it is statistically stationary in time and homogeneous in
the streamwise and spanwise directions. This allows efficient mesh design for the duration
of the simulation a priori, as well as accelerated statistical convergence through temporal
averaging and spatial averaging in both the streamwise and spanwise directions.

The approach taken by Biau (2023), which we study in this paper, is simple in that it
only involves adding a single forcing term of the form

f (t)y
∂u
∂y
, (1.1)

to the governing Navier–Stokes equations, where y is the wall-normal co-ordinate, u is
the fluid velocity and f (t) is the amplitude of the forcing. One way to view this extra
term is that it redirects streamwise momentum towards the boundary at y = 0, adding
energy to the flow. This is necessary if one wants to use periodic boundary conditions
in the streamwise direction since, for a boundary layer geometry, the assumption of
periodicity causes artificial energy dissipation to the extent that the resulting flow would
not be representative of any finite streamwise section of a canonical, spatially evolving,
boundary layer. To achieve a non-trivial statistically stationary flow the forcing amplitude
f (t)must therefore be chosen carefully. In the numerical scheme proposed by Biau (2023),
at each time step the forcing amplitude is defined implicitly via solution of an optimisation
problem in order to control the value of an integral measure of the boundary layer thickness
(either the displacement thickness, or momentum thickness) to be equal to a chosen fixed
value, typically unity.

Given this method of creating ‘boundary-layer-like’ flows on a periodic domains, it is
of interest to determine the extent to which the resulting flow resembles a finite section of
a canonical, spatially evolving, boundary layer. In this paper, we make two contributions
towards resolving this question, addressing both theoretical and numerical comparisons of
periodic and spatially evolving boundary layer flows.

From the theoretical perspective, we derive rigorous bounds on the turbulent statistics of
periodic boundary layer flows. Our main result is to show that an upper bound on the time-
averaged skin-friction coefficient of the form Cf � υ(Re) holds, where (Re) is a Reynolds
number based on the boundary layer thickness. The upper bound υ(Re) is shown to be
monotonically decreasing in Re and converges to a constant

lim
Re→∞ υ(Re)= 1

2
√

2
. (1.2)

While the particular value of this constant is not important, we show that it is consistent
with (i.e. higher than) the skin-friction values observed in numerical simulations. Of
greater interest is that a uniform bound on skin friction is within a logarithmic correction
of the well-known empirical frictions laws (Schlichting & Gersten 2017, p. 577) of the
form

Cf ∼ 1
(log Re)2

, (1.3)
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which are observed to hold for spatially evolving boundary layers for Re � 1. We show
further that a logarithmic improvement to the uniform bound Cf �O(1) must hold if a
weak assumption is made that the flow’s turbulent kinetic energy grows logarithmically
with Re. These are the first known bounds of this type proven to-date for boundary layer
flows, with perhaps the most similar result in the literature being the bound on drag
coefficient for a finite-length flat plate given by Kumar & Garaud (2020).

A key step towards proving the above theoretical bound is to alter Biau’s numerical
scheme for periodic turbulent boundary layers to remove the implicit definition of the
forcing amplitude f (t). We will show that an explicit formula for the forcing amplitude
can be derived which enforces, asymptotically, a constant boundary layer thickness, and
we show that this explicit formula agrees very accurately with the asymptotic forcing
values arising from a numerical implementation of Biau’s scheme. From the perspective of
analysis, this gives a partial differential equation (PDE) which is amenable to applying the
Constantin–Doering–Hopf upper bounding theory. However, from a numerical perspective
it also opens the door to implementing an alternative numerical scheme to that presented
in Biau (2023).

In the second main contribution of the paper, we show how the introduced numerical
approach can be used in both DNS and implicit large-eddy simulation (ILES) to simulate
turbulent boundary layers on periodic domains, at a much lower cost than spatially
evolving boundary layers. We present a detailed analysis of the turbulent statistics of
these flows for DNS up to Reθ = 2000 and ILES up to Reθ = 8300, first validating the
new numerical scheme against the results of Biau (2023) for periodic turbulent boundary
layers, and then comparing our results with the existing DNS of Schlatter & Orlu (2010)
and Sillero et al. (2013), and with the ILES of Eitel-Amor, Orlu & Schlatter (2014), for
canonical, spatially evolving, boundary layers.

1.1. Problem set-up
Suppose that a fluid with velocity u = uex + vey +wez occupies a semi-infinite rectan-
gular domain Ω = [0, Lx ] × [0,∞)× [0, Lz] ⊂R

3, and is confined by an impermeable
wall at y = 0 where no-slip boundary conditions are imposed. The flow is driven by a
free-stream velocity U∞ex infinitely far from the wall, and periodic boundary conditions
are assumed in the streamwise ex and spanwise ez directions. Using U∞ as a velocity scale
and unity as a length scale, the non-dimensional Navier–Stokes equations for the flow are

∂u
∂t

+ (u · ∇)u + ∇p = 1
Re
�u + f ,

∇ · u = 0,
(1.4)

and, following Biau (2023), use the boundary conditions

lim
y→∞ u(x, y, z, t)= 1 · ex ,

u(x, 0, z, t)= 0,
u ∼ periodic in the ex and ez directions.

(1.5)

Here, Re = (U∞/ν) is the Reynolds number, f is a non-dimensional body force, and ν is
the kinematic viscosity. The unusual choice of using unity as a length scale is motivated
by the fact that the body force will be subsequently chosen to control the boundary layer
thickness to unity, thus making this an appropriate spatial length scale for the problem.

To describe the boundary layer thickness on the periodic domainΩ , let the streamwise-
and spanwise-averaged ex velocity be given by
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f (t) (1.1) δ∗, θ

(1.2)

F
U, 〈uv〉

Σ Σ
+

+

+

−

Figure 1. A schematic overview of the proposed boundary layer thickness control scheme. The idea is to force
either δ∗ or θ to converge to a reference value of 1, by choice of the nonlinear control laws K and F . The
symbol Σ denotes the summation of two signals in the feedback loop.

U (y, t) := 〈u〉 := 1
Lx Lz

∫ Lx

0

∫ Lz

0
u(x, y, z, t) dxdz, y, t � 0, (1.6)

and define the instantaneous displacement thickness, δ∗(t), and momentum thickness,
θ(t), by

δ∗(t)=
∫ ∞

0
(1 − U (y, t)) dy and θ(t) :=

∫ ∞

0
U (y, t)(1 − U (y, t)) dy. (1.7)

In order to control either δ∗ or θ to be unity, throughout this paper we use the approach of
Biau (2023) and let the body force be given by

f (t)= f (t)y
∂u
∂y
, (1.8)

where f (t) ∈R is the forcing amplitude.

2. Boundary layer thickness control
The aim of this section is to derive explicit expressions for the forcing amplitude f (t)
in (1.8) under which either of the boundary layer thicknesses δ∗(t)≡ 1 or θ(t)≡ 1 can
be maintained for solutions to (1.4) which satisfy the periodic boundary conditions (1.5).
Figure 1 shows a schematic overview of how such a forcing f (t) is defined. It consists of
two components

f = K (e)+ F(U, 〈uv〉), (2.1)

where K and F are nonlinear functionals, both of which will be defined subsequently.
The first term, K , is an error feedback controller that uses the deviation e = eδ = 1 − δ∗

(or e = eθ = 1 − θ ) from the desired unity value of boundary layer thickness. The second
term, F , which depends only on the mean streamwise velocity U and the stresses 〈uv〉,
is a feed-forward control term that will be constructed from analysis of the governing
equations. Importantly, this will allow us to identify an explicit formula for the forcing f
once the flow is in a statistically steady state.

2.1. Displacement thickness control
To determine appropriate choices of the controllers K and F , first let eδ(t)= 1 − δ∗(t). It
is shown in Appendix A that

deδ
dt

= f (t)δ∗(t)− 1
2

Cf (t), (2.2)

1020 A6-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
57

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10578


A. Wynn, S. Parvar, J. O’Connor, R.A.S. Frantz and S. Laizet

where we define the instantaneous streamwise- and spanwise-averaged skin friction by

Cf (t) := 2
Re
∂U

∂y
(0, t), t � 0. (2.3)

Given (2.2), it is not difficult to see that asymptotic decay, i.e. eδ(t)→ 0, of the error can
be ensured by defining the feedback and feed-forward components of the forcing amplitude
f (t) by

K (e)= − ke

1 − e
= −keδ

δ∗
, (2.4)

and

F(U )=
∂U
∂y (0, t)

Re
∫∞

0 (1 − U ) dy
= Cf

2δ∗
, (2.5)

respectively, where k > 0 is a constant gain parameter. This observation gives the following
result.

LEMMA 1. Let eδ = 1 − δ∗. Suppose that the forcing amplitude (1.8) is chosen such
that

f (t) := −keδ(t)+ 1
2Cf (t)

δ∗(t)
, (2.6)

for some k > 0. Then, for any solution to (1.4) with boundary conditions (1.5) the
displacement thickness satisfies δ∗(t)→ 1 as t → ∞.

An important corollary of Lemma 1 is that

lim
t→∞

∣∣∣∣ f (t)− 1
2

Cf (t)

∣∣∣∣= 0, (2.7)

which implies that once the flow has reached a statistically steady state it must satisfy the
PDE

∂u
∂t

+ (u · ∇)u + ∇ p = 1
Re

(
�u + y

∂u
∂y

∂U

∂y
(0, t)

)
,

∇ · u = 0,
(2.8)

subject to the boundary conditions (1.5).
The fact that (2.8) is an explicit form of the governing equations for a periodic

boundary layer flow and will be useful later in § 3.2 when discussing the dependence
of the resulting flow on the forcing trajectory f (t). In contrast, the numerical scheme
first proposed in Biau (2023) defines the forcing f (t) implicitly, via the solution to an
optimisation problem, and this makes a theoretical analysis of the governing equations
more challenging. Nonetheless, we will show in § 5 that a numerical implementation
of (1.4) with f (t) defined by either (2.6), or by using Biau’s implicit method, give rise
to the same flows.

2.2. Momentum thickness control
Momentum thickness can be controlled in an analogous manner to the displacement
thickness. Letting eθ (t)= 1 − θ(t), it is shown in Appendix A that
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deθ
dt

= f (t)θ(t)+ 1
2

Cf (t)− 2
Re

∫ ∞

0

(
∂U

∂y

)2

dy + 2
∫ ∞

0
〈uv〉∂U

∂y
dy. (2.9)

In this case, the error feedback is defined by

K (eθ )= −keθ
1 − eθ

= −keθ
θ

, (2.10)

and the feed-forward term given by

F(U, 〈uv〉)=
1

Re
∂U
∂y (0)− 2

Re

∫∞
0

(
∂U
∂y

)2
dy + 2

∫∞
0 〈uv〉 ∂U

∂y dy∫∞
0 U (1 − U )dy

. (2.11)

Letting f (t)= K (e)+ F(U, 〈uv〉) and substituting into (2.9) then gives the following
result.

LEMMA 2. Let eθ (t)= 1 − θ(t). Suppose that the forcing amplitude (1.8) is chosen
such that

f (t) :=
−keθ (t)− 1

2Cf (t)+ 2
Re

∫∞
0

(
∂U
∂y

)2
dy − 2

∫∞
0 〈uv〉 ∂U

∂y dy

θ(t)
, (2.12)

for some constant k > 0. Then for any solution to (1.4) satisfying the boundary
conditions (1.5), the momentum thickness satisfies θ(t)→ 1 as t → ∞.

A consequence of Lemma 2 is that an explicit formula can be found for the asymptotic
forcing

lim
t→∞

∣∣∣∣∣ f (t)−
[

1
2

Cf (t)− 2
∫ ∞

0

1
Re

(
∂U

∂y

)2

− ∂U

∂y
〈uv〉 dy

]∣∣∣∣∣= 0. (2.13)

This result will be supported by numerical evidence presented in § 5, that confirms the
asymptotic limit if f (t) is given either by (2.12), or computed implicitly using the method
of Biau (2023).

3. Rigorous bounds on skin friction
We now address the question of whether solutions to (1.4), (1.5) on the periodic domainΩ
have comparable statistical properties to those of a canonical, spatially evolving, boundary
layer. In particular, our aim is to prove rigorous upper bounds on the time-averaged value
of skin friction

Cf := lim sup
t→∞

1
T

∫ T

0
Cf (t) dt, (3.1)

and to understand how these bounds scale with (Re). It is important to note that, even
though the results of § 2 ensure that the boundary layer thickness is kept constant, there
is no a priori guarantee that the underlying fluid velocity field itself, or its statistics such
as Cf , are well behaved. In other words, it is not clear that controlling a property of the
flow’s outer layer will necessarily give inner layer behaviour that resembles a section of
a canonical, spatially evolving, boundary layer. We now investigate this question from a
theoretical perspective, before presenting numerical evidence in § 5.
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In this section, we consider solutions to (1.4), (1.5) with the forcing f (t) given
by (2.6). This ensures that the displacement thickness satisfies δ∗(t)→ 1 as t → ∞.
Consequently, the Reynolds number should be interpreted as

Re = Reδ∗ = U∞δ∗

ν
= U∞

ν
. (3.2)

Throughout this section, we also only consider solutions to (1.4) that satisfy both
Cf (t)� 0, t � 0, and the decay condition

lim
y→∞ y(ex − u(x, y, z))= 0, 0 � x � Lx , 0 � z � Lz, (3.3)

which places only a weak constraint on the following analysis. A similar assumption was
made in Kumar & Garaud (2020) when bounding the drag coefficient for flow past a
finite-length flat plate.

We begin by taking the dot product of (1.4) with u − ex , integrating by parts, using the
boundary conditions (1.5), and the assumption (3.3) to obtain the energy equation

1
2

d
dt

‖u − ex‖2 + 1
Re

‖∇u‖2 = 1
2

Cf (t)− 1
2

f (t)‖u − ex‖2, (3.4)

a proof of which is given in Appendix A. For clarity, in the above equation, we have used
the notation

‖u‖2 =
∫
Ω

u · u dx. (3.5)

Next, consider a decomposition of the velocity field

u(x, t)= (1 −ψ(y))ex + v(x, t), (3.6)

where ψ : [0,∞)→R is any function satisfying

ψ(0)= 1 and lim
y→∞ yψ(y)= 0. (3.7)

The perturbation v = vx ex + vy ey + vzez then inherits the periodic boundary conditions
in the ex , ez directions, is incompressible, and also satisfies

v(x, 0, z, t)= 0 and lim
y→∞ yv(x, y, z, t)= 0, (3.8)

for any fixed x, z and t .
Employing a flow decomposition of the form (3.6) is the base step of applying

the ‘background method’ (Doering & Constantin 1992) for rigorous flow analysis.
This decomposition is in terms of a ‘background profile’ (1 −ψ(y))ex about which
perturbations v are considered. The profile ψ can be arbitrarily chosen, so long as the
boundary conditions (3.7) are satisfied, and its selection is a key part of the analysis.

To explain how to select ψ in more detail, we begin with the energy equation

1
2

d
dt

‖v‖2 = − 1
Re

‖∇v‖2 +
∫
vxvyψ

′dx + 1
Re

∫
∂vx

∂y
ψ ′dx + f (t)

∫
yv · ∂u

∂y
dx, (3.9)

which is satisfied by the perturbations v. The meaning of each term in (3.9) can be made
more transparent if it is simplified by using two identities. The first

‖∇u‖2 = ‖∇v‖2 + ‖ψ ′‖2 − 2
∫
∂vx

∂y
ψ ′dx, (3.10)
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follows directly from (3.6); while the second∫
yv · ∂u

∂y
dx = −1

2
‖v‖2 −

∫
yvxψ

′dx, (3.11)

can be proven using (3.6) and the fact that
∫

yv · (∂v/∂y)dx = −(1/2)‖v‖2 which follows
from integration by parts. Upon substituting (3.10) and (3.11) into (3.9), the energy
equation for the perturbations v to the background profile (1 −ψ(y))ex is equivalent to

1
2

d
dt

‖v‖2 + 1
2Re

(‖∇v‖2 + ‖∇u‖2)+ 1
2

f (t)‖v‖2

= 1
2Re

‖ψ ′‖2 +
∫
vxvyψ

′dx − f (t)

(∫
yvxψ

′dx
)
. (3.12)

The final two terms on the left-hand side of (3.12) are dissipative (since f (t) will be
chosen to be positive), while the three terms on the right-hand side provide forcing to the
energy equation. The aim of the background method is to select ψ so that the forcing
terms can be appropriately dominated by the dissipative terms. If this is possible then,
after time averaging (3.12), one can conclude both that the perturbation energy is bounded
and, furthermore, obtain quantitative bounds on the time average of the dissipative terms.
Importantly, since Lemma 1 implies that f (t)→ (1/2)Cf (t), this opens the door to
obtaining bounds on the skin-friction coefficient of the flow.

A key challenge in applying the background method is that the magnitude of the
dissipative terms in (3.12) decreases with increasing Reynolds number. Consequently, ψ
must be chosen to be Re-dependent in such a way as to also make the forcing terms on
the right-hand side of (3.12) decrease with increasing Reynolds number. The fact that
the perturbations v are constructed to have homogeneous boundary conditions (3.8) is
useful to achieve this. Since v is small near the boundaries, if ψ ′ is constructed to be
non-zero only near the boundaries, then the magnitude of the final two forcing terms
in (3.12) can be controlled. Ideally, one would like to pick ψ ′ ≡ 0 to eliminate all the
forcing terms. However, this choice cannot be made since ψ must satisfy the boundary
conditions (3.7). These state that ψ is unity at the wall and must decrease to zero far from
it, which necessitates ψ ′ �= 0. Instead, the selection of a good background profile ψ must
balance the competing aims of minimising (2Re)−1‖ψ ′‖2 (which creates energy in (3.12)),
while simultaneously concentrating ψ close to the wall (which necessarily increases ψ ′).
Optimal choices of ψ , as will be constructed subsequently, then exhibit a natural Re-
dependent boundary layer structure near the wall. It is important to note that the best choice
of ψ for proving bounds will not necessarily correspond to any physical flow profile, such
as the mean streamwise velocity.

We now proceed with the technical details for constructing a background profile ψ
which achieves the aims of the previous heuristic discussion. To begin, we combine the
energy equations (3.12) and (3.4) to obtain

d
dt

[
2‖v‖2 − ‖u − ex‖2]+ (Cf (t)− 2 f (t))

+ 2 f (t)

(
1 − 1

2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′dy

)
+ 2Qψ(v)= 2

Re
‖ψ ′‖2, (3.13)

where

Qψ(v) := 1
Re

‖∇v‖2 − 2
∫
vxvyψ

′dx, (3.14)
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is a balance between dissipation and production of perturbation energy. As discussed
above, the plan is to construct ψ so that the final two terms on the left-hand side of (3.13)
are dissipative, i.e. such that Qψ � 0 and such that the bracketed terms multiplying the
positive function f are themselves positive. After making such a choice of ψ , taking
a time average of (3.13) will then facilitate a quantitative upper bound on the skin-
friction coefficient since, by Lemma 1, we have 2 f (t)= Cf . To explain precisely how
time averaging the identity (3.13) leads to such an upper bound, we now discuss each of
the four terms on the left-hand side of (3.13) in turn.

(i) The time average of the derivative term (d/dt)[2‖v‖2 − ‖u − ex‖2] is zero. This
follows because it is generally true that

lim
T →∞

1
T

∫ T

0

dg

dt
dt = lim

T →∞
g(T )− g(0)

T
= 0, (3.15)

for any bounded function g and, using the assumption that Cf (t)� 0, it follows from (3.4)
that both ‖u − ex‖2 and ‖v‖2 are uniformly bounded in time.

(ii) For the second term Cf (t)− 2 f (t), we use Lemma 1 to infer that f (t)→
(1/2)Cf (t) as t → ∞. Hence, taking the time average of the third term in (3.13)
gives

Cf (t)− 2 f (t)= 0. (3.16)

(iii) The importance of the third term

2 f (t)

(
1 − 1

2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′dy

)
, (3.17)

is that its time average will produce a term proportional to the skin-friction coefficient
since, again by Lemma 1, we have 2 f (t)→ Cf (t) as t → ∞. However, a difficulty in
analysing this expression is that it involves products of time-varying quantities. This
difficulty can be avoided if the bracketed, flow-dependent, term multiplying f (t) in (3.17)
can be appropriately estimated. The aim is to show that ψ can be picked such that this
term is always positive, for any velocity field u and its corresponding perturbation v. Once
achieved, this will imply that time averaging the term involving f (t) will give a quantity
proportional to the skin-friction coefficient.

To achieve this aim, first use the definition (3.6) of the perturbation v to obtain

‖v‖2 − 1
2
‖u − ex‖2 = 1

2
‖v‖2 +

∫
ψvx dx − 1

2
‖ψ ′‖2. (3.18)

Hence, the bracketed term multiplying f (t) in (3.17) becomes

1 − 1
2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′ dx

= 1 + 1
2
‖v‖2 − 1

2
‖ψ‖2 +

∫
vx (ψ + 2yψ ′) dx. (3.19)

The final term in (3.19) can be estimated using the Cauchy–Schwarz inequality and the
identity 2ab � a2 + b2 by∣∣∣∣

∫
vx (φ + 2yψ ′)dx

∣∣∣∣� ‖vx‖‖ψ + 2yφ′‖� 1
2
‖vx‖2 + 1

2
‖ψ + 2yψ ′‖2. (3.20)
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Using this estimate and (3.19) implies that, for any velocity field u and its corresponding
perturbation v,

1 − 1
2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′ dx

� 1 + 1
2
‖v‖2 − 1

2
‖ψ‖2 −

∣∣∣∣
∫
vx (φ + 2yψ ′) dx

∣∣∣∣
� 1 + 1

2
‖v‖2 − 1

2
‖ψ‖2 − 1

2
‖vx‖2 − 1

2
‖ψ + 2yψ ′‖2

= 1 + 1
2

(‖vy‖2 + ‖vz‖2)− 1
2

(‖ψ‖2 + ‖ψ + 2yψ ′‖2)
� 1 − 1

2

(‖ψ‖2 + ‖ψ + 2yψ ′‖2), (3.21)

where the last inequality follows since ‖vy‖, ‖vz‖� 0. For a final simplification, expand
the final term in (3.21) to obtain

‖ψ + 2yψ ′‖2 = ‖ψ‖2 + 4
∫

yψψ ′dx + 4‖yψ ′‖2. (3.22)

Now, using integration by parts and the boundary conditions (3.7) on ψ∫ ∞

0
yψψ ′dy = [

yψ(y)
]∞

y=0 − ‖ψ‖2 −
∫ ∞

0
yψψ ′dy ⇒

∫ ∞

0
yψψ ′dy = −1

2
‖ψ ′‖2.

(3.23)
Hence, using (3.21), (3.22) and (3.23) implies that the lower bound(

1 − 1
2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′ dx
)
� 1 − 2‖yψ ′‖2, (3.24)

holds for any velocity field u and its corresponding perturbation v.
The importance of this lower bound is that if the profile ψ is chosen such that

1 − 2‖yψ ′‖2 > 0, we can use the fact that f (t)� 0 to infer that

2 f (t)

(
1 − 1

2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ

′ dx
)
� 2 f (t)(1 − 2‖yψ ′‖2), (3.25)

for any velocity field u and its corresponding perturbation v. Time averaging the above
equation, and using the fact that | f (t)− (1/2)Cf (t)| → 0 from Lemma 1, then gives

2 f (t)

(
1 − 1

2
‖u − ex‖2 + ‖v‖2 + 2

∫
yvxψ ′ dx

)
� Cf (1 − 2‖yψ ′‖2), (3.26)

where Cf = Cf (t) is the time-averaged skin-friction coefficient.
To summarise the manipulations performed so far, we have shown that time

averaging (3.13) removes the first two terms on the left-hand side and, by (3.26), then
gives

2Qψ(v)+ Cf (1 − 2‖yψ ′‖2)� 2
Re

‖ψ ′‖2. (3.27)

(iv) For the fourth term, suppose that it is possible to choose ψ such that Qψ(v) is
positive, that is,

Qψ(v)= 1
Re

‖∇v‖2 − 2
∫
vxvyψ

′dx � 0, (3.28)
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holds for any vector field v satisfying the boundary conditions (3.8). Since any solution to
the PDE (1.4) gives rise to such a field v, it would then follow from (3.27) that

Cf (1 − 2‖yψ ′‖2)� 2
Re

‖ψ ′‖2. (3.29)

The previous four steps analysing the effect of time averaging of (3.13) imply that if ψ
can be picked to satisfy the three conditions:

(C1) Qψ(v)� 0 for any field v satisfying the boundary conditions (3.8);
(C2) 1 − 2‖yψ ′‖2 > 0; and
(C3) ψ satisfies the boundary conditions (3.7);

then the skin-friction coefficient must satisfy the upper bound

Cf �
2‖ψ ′‖2

Re(1 − 2‖yψ ′‖2)
. (3.30)

Given this observation, the challenge is to determine whether any profile ψ exists
which satisfies the three conditions (C1)–(C3) and, if so, to find the profile which implies
the tightest possible (i.e. smallest upper) bound on Cf via (3.30). Heuristically, one can
observe from the definition (3.28) that if ψ ′ is sufficiently small then (C1) should hold.
The same observation applies trivially to condition (C2) and, in addition, smaller choices
of ψ ′ give better upper bounds via (3.30). However, as previously discussed, all of these
three observations must work against the boundary conditions (C3) that ψ must satisfy.

Theorem 1, which is the main result of the paper, shows that it is possible to choose ψ
to satisfy the competing constraints (C1)–(C3) and, consequently, that an upper bound on
skin friction for solutions to the governing (1.4) can be proven.

THEOREM 1. Let Re> 1/
√

2. For any solution of (1.4) satisfying the boundary
conditions (1.5) for which Cf (t)� 0 and (3.3) hold, the time-averaged skin friction
satisfies

Cf �
Re

2(
√

2Re − 1)
. (3.31)

Proof. Let ψ(y) be defined by

ψ(y)= e
− Re√

2
y
, y � 0. (3.32)

Then (C3) is satisfied since ψ(0)= 1 and yψ(y)→ 0 as y → ∞. To verify (C1), note
first that for any differentiable function f : [0,∞)→R satisfying f (0)= 0, the Cauchy–
Schwarz inequality can be used to show that

| f (y)| =
∣∣∣∣
∫ y

0
f ′(z) dz

∣∣∣∣�√
y

(∫ y

0
| f ′(y)|2dy

) 1
2
. (3.33)

Applying this pointwise estimate to each of the velocity components vx , vy and using the
definition of ‖∇v‖2 then gives∣∣∣∣

∫
vxvyψ

′dx

∣∣∣∣� 1

2
√

2
‖∇v‖2

∫
y|ψ ′(y)| dy = 1

2Re
‖∇v‖2, (3.34)
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for any v satisfying v(x, 0, z)= 0. Consequently, condition (C1) is satisfied for this choice
of ψ . Finally, It then follows from (3.30) that

Cf �
2‖ψ ′‖2

Re(1 − 2‖yψ ′‖2)
= Re/(2

√
2)

1 − 1/(
√

2Re)
= Re

2(
√

2Re − 1)
. (3.35)

An interesting corollary of Theorem 1 can be obtained by retaining the perturbation
energy term Ev(t) := (1/2)(‖vy‖2 + ‖vz‖2) in the estimate (3.21). In Theorem 1 these
terms are estimated from below by zero, but one would expect that their time average
satisfies Ev > 0 for any turbulent solution to the governing equations. To make use of this
observation, we introduce the notion of the covariance of two time series, a(t) and b(t),
letting

cov(a, b) := lim
T →∞

1
T

∫ T

0
(a(t)− ā)(b(t)− b̄) dt. (3.36)

It follows from this definition that the time average of the product a(t)b(t) can be
expressed as

ab = āb̄ + cov(a, b). (3.37)

Applying this formula when time averaging (3.13) then gives

Qψ(v)+ Cf
(
1 + Ev − 2‖yψ ′‖2)� 2‖ψ ′‖2

Re
− cov(Cf , Ev). (3.38)

We then have the following corollary, whose proof uses the same function ψ as in
Theorem 1.

COROLLARY 1. For any solution of (2.8) for which Cf (t)� 0 and (3.3) hold, the time-
averaged skin friction satisfies

Cf �
1

2
√

2(1 + Ev)
− cov(Cf , Ev)

1 + Ev

, Re � 1. (3.39)

3.1. Discussion of the theoretical results
One should not expect to match the value of the constant in the analytically provable bound
Cf � (2

√
2)−1 with the true value of Cf observed in numerical simulations, although

numerically optimising ψ in Constantin–Doering–Hopf bounding arguments can often
improve the absolute value of such constants by an order of magnitude (see, for example,
studies by Plasting & Kerswell (2003) and Fantuzzi & Wynn (2016)). However, one may
instead hope to capture the correct asymptotic scaling of Cf with Reynolds number. From
this perspective, the result Theorem 1 is more important. That Cf is provably bounded,
independent of the Reynolds number, is within a logarithmic correction of empirically
observed scaling expected for spatially evolving boundary layers.

Another view is provided if we define a friction Reynolds number based on the
displacement thickness by

Reτ = Uτ δ∗

ν
= Reδ∗

√
Cf

2
, (3.40)

where Uτ = (ν∂U/∂y(0, t))1/2 is the friction velocity. Theorem 1 then implies that

Reτ � 2− 5
4 Reδ∗ . (3.41)
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This is not dissimilar to the observation of Schlatter & Orlu (2010) that for canonical,
spatially evolving, boundary layers

Reτ ≈ cRe0.843
δ∗ , (3.42)

where c = 1.13(δ∗)0.157θ0.843δ−1 =O(1) is simply a constant accounting for the various
possible definitions of the boundary layer thickness, and δ is the boundary layer thickness
defined in terms of 99 % of the free-stream velocity.

The exponent 0.843 in this observation should be treated with caution, being based on
an empirical fit to data in a small (in the context of understanding asymptotic scalings)
range of Reynolds numbers. Indeed, the high Reynolds number scaling corresponding to
the logarithmic friction law would be of the form

Reτ ∼ Reδ∗
log Reδ∗

, Reδ∗ � 1. (3.43)

Whether an analytical proof can bridge this ‘logarithmic’ gap is an important open
question in theoretical fluid mechanics. It is therefore of interest that Corollary 1 provides
partial evidence that the origin of such a correction can now be understood, at least for
periodic boundary layers. Indeed, the improved bound

Cf �
1

2
√

2(1 + Ev)
− cov(Cf , Ev)

1 + Ev

, (3.44)

would imply such a logarithmic correction, if it could be proven that the

sup
Reδ∗>0

|cov(Cf , Ev)|<∞ and lim
Reδ∗→∞

(
Ev

log Reδ∗

)
> 0, (3.45)

that is, if the perturbations Ev (which, via (3.6), are defined in terms of perturbations from
the constructed flow field (1 −ψ)ex ) themselves exhibit a logarithmic growth of energy
and are only weakly correlated with the instantaneous skin friction.

3.2. Flow dependence on the forcing amplitude f (t)

Given the definitions of the forcing functions (2.6) and (2.12) for displacement and
momentum control, respectively, an interesting observation is that there are many forcing
amplitude trajectories ( f (t))t�0 that can achieve the desired asymptotic unity value of
displacement or momentum thickness. Indeed, both (2.6) and (2.12) are parameterised by
a gain k > 0 which gives, in each case, a whole family of forcing amplitudes which achieve
asymptotic control of the boundary layer thickness. This raises the natural question of to
what extent the resulting flow is dependent on the particular choice of forcing trajectory.

To begin to answer this question consider, for example, the case of displacement
thickness control. It follows from (2.2) that any forcing trajectory f (t) which achieves
δ∗(t)→ 1 must necessarily satisfy

lim
t→∞

∣∣∣∣ f (t)− 1
2

Cf (t)

∣∣∣∣= lim
t→∞

∣∣∣∣ f (t)− 1
Re
∂U

∂y
(0, t)

∣∣∣∣= 0. (3.46)

This implies that any forcing trajectory that achieves asymptotic convergence of the
displacement thickness must converge asymptotically to the same functional form (and
the formula (2.6) merely gives concrete examples of some trajectories achieving this). A
more subtle question to ask, therefore, is to what extent the resulting flow is dependent
on the different possible transient trajectories of f (t). In other words, asking whether the
nature of the journey can affect the final destination.
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This is a challenging question, but we already have some evidence that supports
the assertion that the eventual flow is not strongly dependent upon the transient
forcing trajectory. First, the theoretical scaling law for Cf proven in Theorem 1 applies
equivalently to any forcing trajectory that achieves δ∗(t)→ 1. More generally, suppose
that the forcing transient has converged in the sense that both | f (t)− (1/2)Cf (t)| and
|δ∗(t)− 1| are negligible. It then follows from the discussion following Lemma 1 that the
flow field must satisfy the PDE (2.8). Importantly, the form of this PDE is independent of
the choice of forcing trajectory, since it depends only on the asymptotic functional form
(Re)−1Uy(0, t). Consequently, the dependence of the solution of (1.4) upon the transient
forcing trajectory f (t) is equivalent to considering solutions to forcing-independent
PDE (2.8) initialised from different initial conditions satisfying δ∗(0)= 1.

It is in this subtle sense that solutions to the periodic boundary layer equations (1.4) are
independent of the forcing function f (t). Of course, one would hope that (2.8) is ergodic in
the sense that solutions initialised from an appropriate subset of initial conditions all have
the same time-averaged statistics. However, this is a deep question in pure mathematics,
which still remains open for the three-dimensional Navier–Stokes equations, and will
require significant future work to resolve.

4. Numerical implementation
To perform DNS and ILES of the periodic boundary layer equations (1.4) we use the
Xcompact3d framework, a suite of fluid flow solvers dedicated to the study of turbulent
flows on supercomputers (Bartholomew et al. 2020), which has been extensively validated
for wall-bounded turbulent flows (Diaz-Daniel, Laizet & Vassilicos 2017; Mahfoze &
Laizet 2021; O’Connor et al. 2023). The ILES are based on a strategy that introduces
targeted numerical dissipation at the small scales through the discretisation of the second
derivatives of the viscous terms (Lamballais, Fortuné & Laizet 2011; Dairay et al. 2017).
It was shown in these studies that it is possible to design a high-order finite-difference
scheme in order to mimic a subgrid-scale model for ILES based on the concept of spectral
vanishing viscosity, at no extra computational cost and with excellent performance for
wall-bounded turbulent flows (Mahfoze & Laizet 2021).

The incompressible flow solver within Xcompact3d is based on sixth-order compact
finite-difference schemes (Laizet & Lamballais 2009) for the spatial discretisation and a
fractional-step method using a semi-implicit approach that combines the Crank–Nicholson
and third-order Adams–Bashforth methods. Within the fractional-step method, the
incompressibility condition is dealt with by directly solving a Poisson equation in spectral
space using three-dimensional (3-D) fast Fourier transforms (FFTs) and the concept
of the modified wavenumber (Lele 1992). The velocity-pressure mesh arrangement is
half-staggered to avoid spurious pressure oscillations (Laizet & Lamballais 2009).

The simplicity of the mesh allows an easy implementation of a 2-D domain
decomposition based on pencils (Laizet & Ning 2011). The computational domain is split
into a number of sub-domains (pencils) which are each assigned to an MPI-process. The
derivatives and interpolations in the x-direction (y-direction, z-direction) are performed
in X-pencils (Y-pencils, Z-pencils), respectively. The 3-D FFTs required by the Poisson
solver are also broken down as a series of 1-D FFTs computed in one direction at a time.
Global transpositions to switch from one pencil to another are performed with the MPI
command MPI_ALLTOALL(V). The flow solvers within Xcompact3d can scale well with
up to hundreds of thousands of MPI-processes for simulations with several billion mesh
nodes (Laizet & Ning 2011; Bartholomew et al. 2020). All the simulations in this study
were carried out on ARCHER2, the UK supercomputing facility. It is equipped with nodes
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based on dual AMD EPYCTM 7742 processors running at 2.25 GHz, totalling 128 cores
per node.

In this numerical study, the following incompressible Navier–Stokes equations are
solved

∂u
∂t

+ 1
2
[∇ · (u ⊗ u)+ (u · ∇)u] = −∇ p + (I − Γ )D1 + ΓD2 + f (t),

∇ · u = 0.
(4.1)

With a slight abuse of notation, D1 indicates that the diffusion term ν�u is directly
implemented using a conventional sixth-order finite-difference scheme for its second-
order spatial derivatives; while D2 refers to a numerical implementation of ν�u which
adds targeted numerical dissipation at small scales via a customised sixth-order finite-
difference scheme. Full details can be found in Lamballais et al. (2011), Dairay et al.
(2017) and Mahfoze & Laizet (2021). The operator Γ is used to balance the weight of
the two diffusive terms and can depend on the both local geometry and flow velocities
via (Γ u)(x)= Γ (x, u)u(x), where Γ (x, u) ∈R

3×3. The choice Γ = 0 corresponds to a
DNS implementation, in which (4.1) is mathematically equivalent to (1.4). The case Γ = I
corresponds to ILES, for which, the unknowns u(x, t) and p(x, t) should be interpreted
as the large-scale component of velocity and pressure. Note finally that the advection
terms in (4.1) are written in skew-symmetric form in order to reduce aliasing errors
(Kravchenko & Moin 1997).

4.1. Numerical implementation of the forcing term
To allow for a validation with the numerical study of Biau (2023), we will perform
simulations in the case of momentum thickness control (see § 2.2) where the forcing
amplitude f (t) is given by (2.12). The distinction between the two considered numerical
methods (i.e. DNS and ILES) introduces an extra subtlety in terms of how f (t) must be
chosen to achieve a desired unity value of the momentum thickness. For DNS, we use the
explicit formula (2.12), letting

f (t)= fDNS(t) :=
−keθ (t)− 1

2Cf (t)+ 2
Re

∫∞
0

(
∂U
∂y

)2
dy − 2

∫∞
0 〈uv〉 ∂U

∂y dy

θ(t)
. (4.2)

Lemma 2 then guarantees that limt→∞ θ(t)= 1 for any solution to PDE (1.4), meaning
that one would expect a DNS of (4.1) to have the same behaviour. We show in § 5 that this
is indeed the case.

In the case of ILES it is not appropriate to define the forcing amplitude by (2.12) since
this expression is only accurate for solutions of the Navier–Stokes equations (1.4), while
ILES only gives an approximate solution via (4.1). This subtlety can be avoided by adding
an ‘integral control’ term to the forcing and using

fILES(t) := fDNS(t)− k2 z(t)

θ(t)
, (4.3)

where z(t) ∈R is defined as the integral of the momentum thickness via

dz

dt
= eθ (t)= 1 − θ(t). (4.4)

This accounts, with the addition of only one extra scalar-valued variable, for the small
difference between the theoretical value (2.12) and the forcing required to maintain a
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Reθ Method Domain size Grid �T + T +
f Total cost

(Lx × L y × Lz)/θ (nx × ny × nz) (Core-hour)

1000 DNS 40 × 30 × 15 192 × 257 × 128 0.0214 4285 1280
2000 DNS 40 × 30 × 15 352 × 465 × 224 0.0177 7079 10 752
4060 ILES 60 × 30 × 15 320 × 305 × 128 0.0482 12 958 3584
6500 ILES 80 × 30 × 15 640 × 449 × 224 0.0407 20 347 31 360
8300 ILES 120 × 30 × 15 1216 × 545 × 272 0.0393 27 538 163 840

Table 1. Simulation details for the DNS and ILES of (4.1).

unity value of momentum thickness in ILES. For simplicity, a gain value of k = 1 is used
throughout this paper.

4.2. Computational domains, data collection and computational cost
The DNS are performed at Reθ = 1000, 2000 and the ILES at Reθ = 4060, 6500, 8300.
These Reynolds numbers have been selected in order to allow for a direct comparison
with published numerical data of a spatially evolving turbulent boundary layer. The spatial
discretisation, temporal discretisation and computational cost of each simulation run are
given in table 1. With increasing Reynolds number it is necessary to use both a longer
temporal window and a larger domain in the streamwise direction to obtain converged
statistics. For example, Lx is chosen to be 40/θ for Reθ = 1000 and is increased by a
factor of three for Reθ = 8300.

The flow statistics are computed by first performing a space/time average to obtain
the mean streamwise velocity profile U (y) and, subsequently, the wall shear stress
τw = νU ′(0) and friction velocity Uτ := √

τw/ρ = √
τw. Using l∗ = ν/Uτ as a length

scale and t∗ = l∗/Uτ as a time scale, all variables can be expressed in wall units, e.g.
u+ = U/Uτ , y+ = y/ l∗, and t+ = t/t∗. In addition to the displacement thickness δ∗ and
momentum thickness θ , we will also consider the ‘shape factor’ H12 := δ∗/θ , and the wake
parameter

Cwake =
∫ ∞

0

(
U+∞ − U+)d(y/δ), (4.5)

introduced by Coles (1956), where δ is the boundary layer thickness defined in terms of
99 % of the free-stream velocity.

The mean values of all flow statistics reported in subsequent sections are collected after
the flow was observed to have transitioned to a statistically steady state. For the five
Reynolds numbers considered in table 1, this was deemed to occur at non-dimensional
times t+0 = 1976, 3418, 7534, 12 208 and 16 511, ordered in terms of increasing Reθ . Each
flow statistic was then averaged over a window t+ ∈ [t+0 , T +

f ], respectively (see table 1),
in order of increasing Reθ . To describe statistical convergence, suppose that g(t) is a given
time-dependent flow property of interest, and ḡ is its average over the window [t+0 , T +

f ].
Letting

G(t+)= 1
t+ − t+0

∫ t+

t+0
g(s)ds, (4.6)
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Case Method �x+ �y+
min �z+ Reθ Marker Line patterns

Present DNS 10 0.5 5.5 — � Solid(-)
Present ILES 30 1.5 16.5 — � Solid(-)
Schlatter & Orlu (2010) DNS 18 0.35 9.6 4300 © Dashed(- -)
Eitel-Amor et al. (2014) LES 18 0.06 8 8300 © Dashed(- -)
Sillero et al. (2013) DNS 7 0.32 4.07 6500 � Dashdotted (−·)

Table 2. The DNS and LES grid resolutions, and figure formatting conventions.

be the moving average of g, we define the maximum percentage deviation of the moving
average from the reported mean over the final half of the averaging window by

E = max

{
100 % ·

∣∣∣∣G(t+)− ḡ

ḡ

∣∣∣∣ : t+0 + T +
f

2
� t+ � T +

f

}
. (4.7)

The maximum value of E for any of the flow statistics δ∗,Uτ , f,Cwake that we report
subsequently in table 3 is, 1.2 %, 0.9 %, 0.9 %, 1.1 % and 1.5 %, respectively, for the five
cases considered in order of increasing Reθ .

Finally, we note that there are significant differences in computational cost, detailed in 1,
of the proposed numerical scheme in comparison with that of the highlighted reference
studies listed in table 2. The DNS of Sillero et al. (2013), achieving a maximum Reynolds
number of Re = 6500, is computationally expensive, and required 45 million core hours
while using a large number of cores (32 768). The LES of Eitel-Amor et al. (2014),
achieving a maximum Reynolds number of Reθ = 8300, used only around 1 million core
hours and 4096 cores. In this study, we sought a balance between computational cost
and efficiency. At the highest Reynolds number considered in this study, Reθ = 8300, the
proposed numerical scheme used 1 60 384 core hours on 8192 cores, a sixfold reduction
compared with the LES of Eitel-Amor et al. (2014).

5. Results
In § 5.1 the DNS implementation of the numerical method proposed in this paper
is validated against the DNS of Biau (2023) at Reθ = 1000, 2000. Subsequently, in
§ 5.2, an ILES implementation of the periodic boundary layer equations (4.1) at Reθ =
4060, 6500, 8300 is compared with reference data from the DNS of Schlatter & Orlu
(2010) and Sillero et al. (2013), and with the LES of Eitel-Amor et al. (2014). The reference
data were obtained for spatially evolving turbulent boundary layers.

A common colour scheme is used throughout § 5 to indicate data from simulations at
different Reynolds numbers: ( ) black for Reθ = 1000; ( ) purple for Reθ = 2000;
( ) blue for Reθ = 4060; ( ) red for Reθ = 6500; and ( ) green for Reθ = 8300.

Results using the method presented in this paper are shown with solid lines ( ), and
those from an implementation of the method of Biau (2023) using Xcompact3d are shown
with dotted lines ( ). Data extracted directly from Biau (2023) are shown with (×); those
from the DNS of Schlatter & Orlu (2010) at Reθ = 1000, 2000, 4060 are shown with
circles ( ), while data from the DNS of Sillero et al. (2013) at 6500 are shown with
closed triangles (�). The LES of Eitel-Amor et al. (2014) at Reθ = 6500, 8300 are also
shown with circles ( ), since on all subsequent figures these data are always visually
distinguishable from those of Schlatter & Orlu (2010).
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Table 2 also reports the grid resolutions in wall units between the present study and the
reference works. For DNS, achieving accurate statistical results requires capturing a wide
range of scales, e.g. from the boundary layer thickness to the Kolmogorov length scale.
Proper grid resolution is essential for this purpose. While it is ideal to fully resolve both
scales, previous DNS studies have demonstrated that good agreement with experiments
can still be achieved even when the Kolmogorov length scale remains partially under-
resolved. This trade-off between accuracy and computational cost is noteworthy. Moin &
Mahesh (1998) proposed one possible set of grid resolutions, expressed in wall units
as (�x+ = 14.3, �y+ = 0.33, �z+ = 4.8), which seeks to strike this balance. Of the
considered reference studies, the DNS of Sillero et al. (2013) used a grid resolution within
the same range for both normal and spanwise directions, while Schlatter & Orlu (2010)
used a fine spatial resolution in the normal direction, and a coarser grid in the streamwise
and spanwise directions. The DNS performed in this paper have similar mesh resolutions
to those in the reference data. For the ILES, following the work of (Mahfoze & Laizet
2021), the spatial resolution is more or less three times larger per spatial direction than in
the DNS, while keeping a fine mesh close to the wall in the normal direction.

Finally, we note that the reference data are obtained for a spatially evolving turbulent
boundary layer, and the reported wall units are typically scaled based on the Reθ close to
the end of the computational domain. In contrast, for the periodic turbulent simulations
conducted here, Reθ is constant throughout the simulation, which is advantageous since it
allows a targeted choice of mesh resolution to be made a priori.

5.1. Validation against Biau (2023)
We perform DNS by solving (4.1) with Γ = 0 and with the forcing amplitude f , given
by (4.2), at Reθ = 1000, 2000. Data are compared with those extracted from Biau (2023)
(obtained with a different flow solver), and with a separate implementation of Biau’s
numerical scheme (in which θ = 1 is imposed at each time step via the iterative solution
of an optimisation problem).

The temporal evolution of f, θ, δ∗ and uτ is shown in figure 2. The instantaneous
friction velocity uτ is defined in terms of the wall-normal derivative of the streamwise-
and spanwise-averaged wall-normal velocity

uτ = ν
∂U

∂y
(0, t). (5.1)

For the two implementations of Biau’s method, the momentum thickness satisfies θ = 1 at
all times. The present method has the same behaviour as the method initially designed by
Biau, apart from a small initial transient corresponding to an exponential convergence of
the error eθ → 0. For all three methods (Biau’s original method and solver; Biau’s original
method with Xcompact3d; and the present method with Xcompact3d), f approaches
a statistically steady state with mean values of approximately 0.0012 for Reθ = 1000,
and 0.0014 for Reθ = 2000. This confirms the veracity the analytical expression for the
asymptotic value of the forcing term (2.13) in this case.

It is interesting to observe that, for all methods, the displacement thickness δ∗, whose
value is not prescribed, also converges to a constant. This constant is observed to
decrease with increasing Reynolds number, implying a corresponding decrease in shape
factor H12 = δ∗/θ , which is in line with the observations presented in Schlatter & Orlu
(2010). Similarly, the friction velocity uτ also decreases with increasing Reynolds number.
Overall, the relative error between any of the three methods for any of the flow statistics
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Figure 2. Temporal variation of the forcing amplitude f , momentum thickness θ , displacement thickness δ∗
and friction velocity uτ . Data from the present DNS using fDNS are shown with solid lines ( Reθ = 1000;

Reθ = 2000) and from implementation of Biau’s method in Xcompact3d with dotted lines ( Reθ = 1000;
Reθ = 2000).

Uτ , δ, δ∗, θ, H12,C f and Cwake does not deviate by more than 1 %, indicating excellent
agreement between the current implementation and with the data presented in Biau (2023).

Figure 3 shows the mean stream wise velocity u+ and root-mean-square (r.m.s.) velocity
and pressure profiles obtained from the three methods. The implementation of Biau’s
method in Xcompact3d compares very well with the present method. Both exhibit small,
but noticeable, differences from data extracted directly from Biau (2023) which are most
prominent in u+ and p+

rms in the outer layer for Reθ = 1000. These discrepancies are lower
at Reθ = 2000 and it is important to note that at this Reynolds number the implementation
of the present method in Xcompact3d is shown in § 5.2.2 to compare very well with
reference DNS data from spatially evolving boundary layers.

5.2. Comparison against spatially evolving turbulent boundary layer data

5.2.1. Statistical quantities
Table 3 presents some key statistics for the turbulent boundary layer flows simulated with
the present method and those of the selected reference data for spatially evolving turbulent
boundary layers. It should be emphasised that for the present method the fixed control
parameter is Reθ , while the other reported statistics are emergent properties of the flow.
Furthermore, throughout this section the friction Reynolds number is defined in terms of
the 99 % boundary layer thickness via Reτ = Uτ δ/ν.

The wake statistics for the present method compare very well with the reference data,
with H12, Reδ∗ and Uτ not deviating by more than 2 % from any of the corresponding
reference data values, for any of the considered Reynolds numbers Reθ . The skin-friction
coefficient Cf also compares very well with the reference data, with a maximum deviation
of only 3.3 % from the results of Sillero et al. (2013) at Reθ = 6500.
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(c)
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Figure 3. A comparison of DNS of the current method with that of Biau (2023): (a) mean streamwise velocity
u+; (b) r.m.s. velocities and pressures at Reθ = 1000; (c) r.m.s. velocities and pressures at Reθ = 2000. Data
from Biau (2023) are shown with markers (× Reθ = 1000; Reθ = 2000), from the present DNS using
fDNS with solid lines ( Reθ = 1000; Reθ = 2000) and from the implementation of Biau’s method in
Xcompact3d with dotted lines ( Reθ = 1000; Reθ = 2000).

Case Reθ Reτ Reδ∗ Uτ H12 C f f (t) Cwake δ∗

Present 1000 398 1448 0.0463 1.448 0.00429 0.00141 3.578 1.448
Schlatter & Orlu (2010) 1006 359 1459 0.0462 1.445 0.00426 — 4.062 1.451
Sillero et al. (2013) 1100 445 1585 0.0462 1.434 0.00426 — 3.586 1.434

Present 2000 712 2806 0.0421 1.403 0.00359 0.00121 3.938 1.403
Schlatter & Orlu (2010) 2000 671 2827 0.0421 1.414 0.00353 — 4.214 1.414
Sillero et al. (2013) 1968 690 2780 0.0422 1.416 0.00356 — 3.984 1.418

Present 4060 1315 5614 0.0385 1.383 0.00298 0.00102 4.269 1.383
Schlatter & Orlu (2010) 4061 1271 5633 0.0385 1.387 0.00297 — 4.431 1.387
Sillero et al. (2013) 4000 1306 5589 0.0390 1.377 0.00304 — 4.324 1.375

Present 6500 2141 8749 0.0373 1.346 0.00279 0.00097 4.085 1.346
Eitel-Amor et al. (2014) 6500 1972 8886 0.0368 1.367 0.00273 — 4.494 1.364
Sillero et al. (2013) 6500 1989 8879 0.0368 1.363 0.00270 — 4.492 1.363

Present 8300 2763 10 987 0.0368 1.324 0.00272 0.00095 3.976 1.324
Eitel-Amor et al. (2014) 8300 2557 11 192 0.0364 1.348 0.00265 — 4.464 1.352

Table 3. A comparison of flow statistics between periodic boundary layer and spatially evolving boundary
layer simulations.
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Figure 4. The scaling of (a) Reτ and Reδ∗ ; and (b) Cf and H12 with Reθ . The markers indicate: ( ) for both
DNS data from Schlatter & Orlu (2010) and LES data from Eitel-Amor et al. (2014); (�) for DNS data from
Sillero et al. (2013); and (�) data from the present method.

Slightly larger discrepancies are observed for the friction Reynolds number Reτ and
the wake coefficient Cwake. These have maximum deviations of 10.8 % and 11.9 %,
respectively, from the DNS of Schlatter & Orlu (2010) at Reθ = 1000, although these
deviations decrease with Reynolds number and are below 4 % for Reθ = 4060. The larger
discrepancies for Reτ and Cwake can be explained by the fact that both are defined in
terms of the 99 % boundary layer thickness δ, as opposed to H12, Reδ∗ , which are defined
using the displacement thickness δ∗. Since δ is a pointwise measure of the boundary layer
thickness, this is a less robust statistic than the integral quantity δ∗. This is important,
given that the forcing f ∼ y(∂u/∂y) required to maintain the momentum thickness is of
largest magnitude away from the wall.

The above observations are confirmed by figure 4 which shows excellent agreement
between the present method and the reference data in terms of the scaling of displacement
Reynolds number (in figure 4a), and the skin-friction coefficient and shape factor (in
figure 4b) with Reθ . Slightly larger deviations for the reference data can be observed
in figure 4(a) in terms of the scaling of Reτ with Reθ . Despite this, numerical fits (shown
in the legend of figure 4a) to the data reveal near-linear scalings of Reτ and Reδ∗ with the
control parameter Reθ , namely

Reτ ≈ α1Reβ1
θ and Reδ∗ ≈ α2Reβ2

θ , (5.2)

for prefactors in the ranges 0.41 � α1 � 1 and 1.82 � α2 � 2.84 and scaling exponents in
the ranges 0.87 � β1 � 0.97 and 0.95 � β2 � 0.97. The smaller range of scaling exponents
for β2 again confirms that Reδ∗ is a more robust statistic than Reτ .

These numerical fits are consistent with the theoretical scaling laws proven in § 3, which
state that the scaling exponents cannot exceed β = 1. It is still an open theoretical question
whether the small observed deviations of the scaling exponents β1, β2 from this value arise
due to a logarithmic term in the true scaling law for the skin friction in turbulent boundary
layers.

5.2.2. Velocity profiles, fluctuating statistics and turbulent kinetic energy budgets
Figure 5(a) shows the mean velocity profile u+ in comparison with the reference data from
spatially evolving boundary layer simulations at comparable Reynolds numbers. Excellent
agreement can be observed in the inner layer, with only small deviations in the wake
region. In the linear and logarithmic regions, a grey line shows the fit κ−1 ln y+ + B
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2.64 ln ( y+) + 4.16

1.0

0.5

0 0

1

0

2

0

101 103

y+

101 103

y+

101 103

y+

101 103

y+

u+

v
+ rm

s

w
+ rm

s
u+ rm

s

(a) (b)

(c) (d)

Figure 5. Profiles of (a) u+; (b) u+
rms; (c) v+

rms; and (d) w+
rms. Reference data are shown with markers: ( ) for

both the DNS of Schlatter & Orlu (2010) and the LES of Eitel-Amor et al. (2014); (�) for the DNS of Sillero
et al. (2013). Results with the present method are shown with solid lines. The colour convention is explained
in § 5.

with κ = 0.379 and B = 4.161 to the present data, which is in good agreement with that
presented in Eitel-Amor et al. (2014). As Reθ increases, the asymptotic value of u+ in
the wake region increases from u+ = 21.60 at Reθ = 1000 to u+ = 27.13 at Reθ = 8300,
indicated by the arrow in figure 5(a), with very good agreement between the reference data
and the present method.

Figure 5 (b–d) show profiles of r.m.s. velocity fluctuations. Again, these reveal a
good agreement between data from periodic and spatially evolving simulations. The
peak values of the streamwise velocity fluctuations u+

rms are observed to lie consistently
in the buffer layer at y+ ≈ 14, which agrees well with the value of y+ ≈ 15 reported
by both Smits et al. (2021) and Devenport & Lowe (2022). Following this peak value
u+

rms decreases, with the rate of decrease slowing in the overlap region near y+ ≈ 100.
Here, the gradient ∂u+

rms/∂y+ is observed to increase with Reθ , with data from the
highest considered Reynolds number Reθ = 8300 exhibiting a plateau consistent with the
experimental observations of Devenport & Lowe (2022) for spatially evolving boundary
layers.

Regarding peak values of the r.m.s. velocities, Smits et al. (2021) reported that the peak
value of the squared r.m.s. streamwise velocity, denoted u2+

rms, was observed to lie on the
line 3.54 + 0.646 ln(Reτ ) for friction Reynolds numbers in the range 6123 � Reτ � 19680.
Although our studies are at lower Reynolds numbers, we observe a similar relationship
of 3.88 + 0.56 ln(Reτ ). This compares well with analogous fits to the combined data of
Schlatter & Orlu (2010), Eitel-Amor et al. (2014) and to the data of Sillero et al. (2013),
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u2+
rms v2+

rms w2+
rms

α β R2 α β R2 α β R2

Present 0.56 3.88 0.973 0.1 0.57 0.875 0.4 −0.51 0.982
Schlatter & Orlu (2010) and

Eitel-Amor et al. (2014)
0.58 3.96 0.996 0.1 0.6 0.918 0.37 −0.26 0.996

Sillero et al. (2013) 0.71 3.15 0.994 0.12 0.48 0.973 0.38 −0.3 0.999

Table 4. Linear regression coefficients α, β and correlation statistics R2 for fits of the peak value of the squared
r.m.s. velocity, u2+

rms, v
2+
rms and w2+

rms to the line α ln (Reτ )+ β. Fits are reported to data from the present study;
the combined data of Schlatter & Orlu (2010), Eitel-Amor et al. (2014); and the data of Sillero et al. (2013).

revealing relationships of 3.96 + 0.58 ln(Reτ ) and 3.15 + 0.71 ln(Reτ ), respectively. We
note that, for this analysis, the data of Schlatter & Orlu (2010) and Eitel-Amor et al. (2014),
which were produced by the same group and the same code, were combined to achieve a
wider range of Reynolds numbers. Table 4 also shows that the location of the peak values
of v2+

rms and w2+
rms also lie on the lines of the form α ln (Reτ )+ β with a good degree of

confidence, and that there is good agreement between the present results and data from the
considered reference studies. For clarity, we emphasise that the logarithmic dependence
of the peak values of r.m.s. velocities discussed here gives no information on whether the
quantity Ev , discussed in § 3 and Corollary 1, exhibits the logarithmic growth required to
bring our theoretical results into full agreement with empirical observations. The reason
is that Ev is defined as an integral quantity over the whole domain, as opposed to the
pointwise observations regarding peak values discussed in this section.

Regarding differences between periodic boundary layers and the spatially evolving
reference data, the most prominent are in the case Reθ = 1000 where differences are
apparent in all three r.m.s. velocity profiles, as well as in the Reynolds shear stress and
r.m.s. pressure profiles shown in figure 6. However, it can be seen in figures 5 and 6
that these differences decrease significantly with Reθ , a finding that is consistent with the
analysis of Kozul et al. (2016) for temporal, periodic, boundary layers. A slight deviation
is observed between the u+

rms profile obtained in the present study and that of Eitel-
Amor et al. (2014) for Reθ = 8300. A possible cause of this discrepancy is that in this
simulation of a spatially evolving boundary layer, the spatial location for the statistics
for Reθ = 8300 is very close to the outlet of the computational domain, with Eitel-Amor
et al. (2014) only technically reporting results on u+ up to Reθ = 7500. At such a location,
the outlet boundary conditions can cause spurious, non-physical behaviour. Thus, while
we believe it is useful to consider the data from Eitel-Amor et al. (2014) at Reθ = 8300 for
comparison, they should be treated with appropriate caution. It was reported in Fernholz &
Finley (1996) that the peak location of the Reynolds shear stress is proportional to

√
Reτ .

Our observations support this, revealing a strong correlation (R2 = 0.984) of this peak
value with the line 2.24

√
Reτ + 0.97. A similar analysis using the combined data from

Schlatter & Orlu (2010), Sillero et al. (2013) and Eitel-Amor et al. (2014), yields fits of
2.48

√
Reτ − 0.1 (R2 = 0.847) and of 2.99

√
Reτ + 19.35 (R2 = 0.951), respectively, and

show proportionality constants in good agreement with the data using the present method.
Finally, we note that figure 6 shows discrepancies in p+

rms near the wall between the
present method and the reference data, which can be attributed to the coarser near-wall
grid resolution employed in this study (see table 2).

Figure 7 shows the mean turbulent kinetic energy budget for Reθ = 1000 and 6500. It can
be seen that the largest difference between periodic and spatially evolving boundary layers
are obtained for the lowest Reynolds number. In particular, the production, dissipation and
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Figure 6. (a) Mean Reynolds shear stress; and (b) r.m.s. pressure profiles. Reference data are shown with
markers: ( ) for both the DNS of Schlatter & Orlu (2010) and the LES of Eitel-Amor et al. (2014); (�) for the
DNS of Sillero et al. (2013). Results with the present method are shown with solid lines.
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Figure 7. Turbulent kinetic energy budgets for (a) Reθ = 1000 and (b) Reθ = 6500. Reference data are shown
with markers: ( ) for both the DNS of Schlatter & Orlu (2010) and the LES of Eitel-Amor et al. (2014); (�)
for the DNS of Sillero et al. (2013). Results with the present method are shown with solid lines.

viscous diffusion components of the budget have consistently lower magnitudes in the
periodic case when compared with the spatially evolving case. For the highest Reynolds
number in the figure the present energy budget is in excellent agreement with the reference
data.

5.2.3. Vorticity profiles and instantaneous visualisations
Figure 8 shows the profiles of the r.m.s. vorticity components. Overall, there is very good
agreement between the present method and the reference data, in terms of the locations of
minimum and maximum r.m.s. vorticity, as well as the general profile shapes. The peak
location of ωyrms is in the buffer layer at y+ ≈ 13, which is consistent with the results of
Schlatter & Orlu (2010), Sillero et al. (2013) and Eitel-Amor et al. (2014).

Finally, we use the Q-criterion to visualise the vorticial structures generated in our
periodic turbulent boundary layer flows. The Q-criterion can be used to measure the
local balance of rotation and strain rate, being defined by Q = 1/2(‖Ω‖2

F − ‖S‖2
F ), where

S = 1/2(∂ui/∂xj + ∂uj/∂xi ) is the stain rate tensor, Ω = 1/2(∂ui/∂xj − ∂uj/∂xi ) is the
vorticity tensor and ‖ · ‖F is the Frobenius norm. The Q-criterion is normalised using wall
units as Q+ = Q(t+)−2 = Qν2(Uτ )−4. The normalised Q-criterion plots, which show
contours at the values of Q+ = 0.01, 0.004 at the Reynolds numbers Reθ = 1000, 6500,
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Figure 8. Profiles of the r.m.s. vorticity components (a) ωxrms ; (b) ωyrms ; and (c) ωzrms , for Reθ = 1000 to 8300.
Reference data are shown with markers: ( ) for both the DNS of Schlatter & Orlu (2010) and the LES of
Eitel-Amor et al. (2014); (�) for the DNS of Sillero et al. (2013). Results with the present method are shown
with solid lines.

respectively, are presented in figure 9. As expected, a wider range of turbulent scales can be
observed for the DNS than the ILES, with finer vortices apparent as the Reynolds number
is increased. It should be noted that the ILES does not produce spurious oscillations,
suggesting that the numerical dissipation is acting properly. The shape and structure of
the vortices (mainly elongated structures in the streamwise direction, slightly inclined up
with respect to the wall) is similar to the ones observed in spatially evolving turbulent
boundary layers. It is clear that the periodic boundary layer model considered in this paper
appears to capture the expected features of canonical turbulent boundary layers across a
range of Reynolds numbers.

6. Conclusions
In this paper we have performed a rigorous analytical study of the periodic boundary
layer equations proposed by Biau (2023), in which a body force is used to maintain the
boundary layer thickness of the flow. It is shown that an explicit formula can be obtained
for the amplitude of this body force as a function of the flow velocity field. This enabled
a PDE to be identified for the flow, as opposed to the implicit definition given by Biau
(2023).

The explicit form of the PDE was important for two reasons. First, it allowed an
application of the ‘background field’ method of Constantin–Doering–Hopf, and we proved
that the skin-friction coefficient of the periodic boundary layer flow was upper bounded
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Figure 9. Contours of constant Q+ for selected snapshots of a periodic turbulent boundary layer at
(a) Reθ = 1000, Q+ = 0.01; (b) Reθ = 6500, Q+ = 0.004. The colour bar indicates non-dimensional
streamwise velocity u. Each panel shows a section of the respective spatial domains described in table 1.

by an absolute constant. Future work will investigate wither this constant can be reduced
by implementing computationally an optimal version of the proof presented in this paper.

The second implication of our explicit formula for the forcing amplitude was that it
allowed the construction of a simple numerical scheme for simulating turbulent boundary
layers on periodic domains which can be used with both DNS and ILES approaches.
Validation of this scheme was presented, with results shown to closely match those from
Biau (2023), but also with data from spatially evolving turbulent boundary layers up to
Reθ = 8300. It was observed that the similarity between the two classes of flow was greater
at higher Reynolds number. This is important, since periodic turbulent boundary layer
simulations can be performed at a lower computational cost than simulations of spatially
evolving boundary layers. For example, the ILES of a periodic boundary layer flow at
Reθ = 8300 performed in this study is nearly 300 times cheaper than the DNS of Sillero
et al. (2013), and about 6 times cheaper than the LES of Eitel-Amor et al. (2014) for
spatially evolving boundary layers at comparable Reynolds numbers.

In conclusion, this paper presented a detailed theoretical and numerical study of
turbulent boundary layer flows and investigated their statistical similarity with canonical
spatially evolving boundary layers. Further investigations at higher Reynolds numbers and
exploration of more complex flow scenarios are warranted to fully explore our findings.
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Appendix A.
In this section we provide detailed proofs of Lemma 1, Lemma 2 and the energy
equation (3.4).
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A.1. Proof of (2.2) and Lemma 1

Proof. By taking the streamwise and spanwise average of (2.8), it can be shown that

∂U

∂t
+ ∂

∂y
〈uv〉 = 1

Re
∂2U

∂y2 + f (t)y
∂U

∂y
. (A1)

Using the boundary conditions, it follows that

dδ∗

dt
= −

∫ ∞

0

∂U

∂t
dy = 1

Re
∂U

∂y
(0, t)− f (t)

∫ ∞

0
y
∂U

∂y
dy. (A2)

We next apply integration by parts to the final term and use the assumption that y(1 −
u(y))→ 0 as y → ∞ to obtain∫ ∞

0
y
∂U

∂y
dy =

∫ ∞

0
y
∂(U − 1)
∂y

dy = [
y(U − 1)

]∞
y=0 +

∫ ∞

0
(1 − U )dy = δ∗. (A3)

Hence,

dδ∗

dt
= − f (t)δ∗(t)+ 1

Re
∂U

∂y
(0, t). (A4)

Letting eδ(t)= 1 − δ∗(t) and using the control law

f (t)= −keδ(t)+ 1
Re
∂U
∂y

δ∗(t)
, (A5)

it follows that ėδ = −keδ . Hence, eδ(t)→ 0 as t → ∞.

A.2. Proof of (2.9) and Lemma 2

Proof. Using (A1)

dθ
dt

=
∫ ∞

0

∂U

∂t
− 2U

∂U

∂t
dy

= −dδ∗

dt
+ 2

∫ ∞

0
U
∂〈uv〉
∂y

− 2
Re

∫ ∞

0
U
∂2U

∂y2 dy − 2 f (t)
∫ ∞

0
yU

∂U

∂y
dy

= f (t)δ∗(t)− 1
Re
∂U

∂y
(0, t)

− 2
∫ ∞

0

∂U

∂y
〈uv〉dy + 2

Re

∫ ∞

0

(
∂U

∂y

)2

dy − 2 f (t)
∫ ∞

0
yU

∂U

∂y
dy, (A6)

where in the final line, we have used integration by parts, the boundary conditions (1.5),
and the identity (A4). To evaluate the final term, we again use integration by parts and the
assumption that y(1 − U (y))→ 0 as y → ∞ to obtain∫ ∞

0
yU

∂U

∂y
dy =

∫ ∞

0
yU

∂(U − 1)
∂y

dy

= [
yU (U − 1)

]y=∞
y=0 −

∫ ∞

0
U (U − 1)dy −

∫ ∞

0
y(U − 1)

∂U

∂y
dy

(by (A3)) = θ + δ −
∫ ∞

0
yU

∂U

∂y
dy. (A7)
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Combining (A6) and (A7) gives

dθ
dt

= − f (t)θ(t)− 1
Re
∂U

∂y
(0, t)− 2

∫ ∞

0

∂U

∂y
〈uv〉dy + 2

Re

∫ ∞

0

(
∂U

∂y

)2

dy. (A8)

Hence, if eθ (t)= 1 − θ(t) and f (t) is given by (2.12), it follows that

deθ
dt

= −keθ (t), (A9)

and, hence, eθ (t)→ 0 as t → ∞.

A.3. Proof of the energy identity (3.4)

Proof. After taking the dot product of (1.4) with u − ex , integrating over Ω , and using
incompressibility, the boundary conditions, and (1.8) gives

1
2

d
dt

‖u − ex‖2 + 1
Re

‖∇u‖2 = f (t)
∫
Ω

y(u − ex ) · ∂u
∂y

dx + 1
2

Cf (t), (A10)

where the final two terms in the above equation arise from

1
Re

∫
Ω

(u − ex ) ·�udx = 1
Re

‖∇u‖2 − 1
Re

∫
Ω

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
dx

(using periodic b.c.s) = 1
Re

‖∇u‖2 − 1
Re

∫
Ω

∂2u

∂y2 dx

(by (3.3)) = 1
Re

‖∇u‖2 + 1
Re
∂U

∂y
(0, t)

= 1
Re

‖∇u‖2 + 1
2

Cf (t). (A11)

Now consider the final term in (A10)∫
Ω

y(u − ex ) · ∂u
∂y

dx =
∫
Ω

y(u − ex ) · ∂
∂y
(u − ex )dx

(by parts) =
∫ [

y|u − ex |2
]∞

y=0dxdz

− ‖u − ex‖2 −
∫
Ω

y(u − ex ) · ∂
∂y
(u − ex )dx.

(by (3.3)) = −‖u − ex‖2 −
∫
Ω

y(u − ex ) · ∂u
∂y

dx. (A12)

Noticing that the final term on the right-hand side of (A12) is the same as the term on the
left-hand side, these can be collected to show that∫

Ω

y(u − ex ) · ∂u
∂y

dx = −1
2
‖u − ex‖2. (A13)

Finally, combining (A10) and (A13) gives the energy equation

1
2

d
dt

‖u − ex‖2 + 1
Re

‖∇u‖2 = 1
2

Cf (t)− 1
2

f (t)‖u − ex‖2. (A14)
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