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Abstract

We prove that any subset of Q
m

(closed under complex conjugation and which contains the origin) is the
exceptional set of uncountably many transcendental entire functions over Cm with rational coefficients.
This result solves a several variables version of a question posed by Mahler for transcendental entire
functions [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer-Verlag,
Berlin, 1976)].
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1. Introduction

An analytic function f over a domain Ω ⊆ C is said to be an algebraic function over
C(z) if there exists a nonzero polynomial P ∈ C[X, Y] for which P(z, f (z)) = 0, for all
z ∈ Ω. A function which is not algebraic is called a transcendental function.

The study of the arithmetic behaviour of transcendental functions started in 1886
with a letter of Weierstrass to Strauss, proving the existence of such functions taking
Q into itself. Weierstrass also conjectured the existence of a transcendental entire
function f for which f (Q) ⊆ Q (as usual, Q denotes the field of all algebraic numbers).
Motivated by results of this kind, he defined the exceptional set of an analytic function
f : Ω→ C as

S f = {α ∈ Q ∩Ω : f (α) ∈ Q}.
Thus, Weierstrass’ conjecture can be rephrased as: does there exist a transcendental

entire function f such that S f = Q? This conjecture was settled in 1895 by Stäckel [4],
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[2] The exceptional set of entire functions 65

who proved, in particular, that for any Σ ⊆ Q, there exists a transcendental entire
function f for which Σ ⊆ S f .

In his classical book [1], Mahler introduced the problem of studying S f for various
classes of functions. After discussing a number of examples, Mahler posed several
problems about the admissible exceptional sets for analytic functions, one of which is
as follows. Here B(0, ρ) denotes the closed ball with centre 0 and radius ρ in C.

PROBLEM 1.1. Let ρ ∈ (0,∞] be a real number. Does there exist for any choice of
S ⊆ Q ∩ B(0, ρ) (closed under complex conjugation and such that 0 ∈ S) a transcen-
dental analytic function f ∈ Q[[z]] with radius of convergence ρ for which S f = S?

In 2016, Marques and Ramirez [3] proved that the answer to this question is ‘yes’
provided that ρ = ∞ (that is, for entire functions). Indeed, they proved the following
more general result about the arithmetic behaviour of certain entire functions.

LEMMA 1.2 [3, Theorem 1.3]. Let A be a countable set and let K be a dense subset
of C. For each α ∈ A, fix a dense subset Eα ⊆ C. Then there exist uncountably many
transcendental entire functions f ∈ K[[z]] such that f (α) ∈ Eα for all α ∈ A.

This result was improved by Marques and Moreira in [2] giving an affirmative
answer to Mahler’s Problem 1.1 for any ρ ∈ (0,∞].

In this paper, we consider Mahler’s Problem 1.1 in the context of transcendental
entire functions of several variables. Although the previous definitions extend to the
context of several variables in a very natural way, we shall include them here for the
sake of completeness.

An analytic function f over a domainΩ ⊆ Cm (we also say that f is entire ifΩ = Cm)
is said to be algebraic over C(z1, . . . , zm) if it is a solution of a polynomial functional
equation

P(z1, . . . , zm, f (z1, . . . , zm)) = 0 for all (z1, . . . , zm) ∈ Ω,

for some nonzero polynomial P ∈ C[z1, . . . , zm, zm+1]. A function which is not algebraic
is called a transcendental function. (We remark that an entire function in several
variables is algebraic if and only if it is a polynomial function just as in the case of
one variable.) Let K be a subset of C and let f be an analytic function on the polydisc
Δ(0, ρ) := B(0, ρ1) × · · · × B(0, ρm) ⊆ Cm for some ρ = (ρ1, . . . , ρm) ∈ (0,∞]m. We say
that f ∈ K[[z1, . . . , zm]] if

f (z1, . . . , zm) =
∑

(k1,...,km)∈Zm
≥0

ck1,...,km zk1
1 · · · z

km
m ,

with ck1,...,km ∈ K for all (k1, . . . , km) ∈ Zm
≥0 and for all (z1, . . . , zm) ∈ Δ(0, ρ).

The exceptional set S f of an analytic function f : Ω ⊆ Cm → C is defined as

S f := {(α1, . . . ,αm) ∈ Ω ∩ Qm
: f (α1, . . . ,αm) ∈ Q}.
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66 D. Alves, J. Lelis, D. Marques and P. Trojovský [3]

For example, let f : C2 → C and g : C2 → C be the transcendental entire functions
given by

f (w, z) = ew+z and g(w, z) = ewz.

By the Hermite–Lindemann theorem,

S f = {(α,−α) : α ∈ Q} and Sg = (Q × {0}) ∪ ({0} × Q).

In general, if P1(X, Y), . . . , Pn(X, Y) ∈ Q[X, Y], then the function

f (w, z) = exp
( n∏

k=1

Pk(w, z)
)

has the exceptional set given by

S f =

n⋃
k=1

{(α, β) ∈ Q2
: Pk(α, β) = 0}.

We refer the reader to [1, 5] (and references therein) for more about this subject.
In the main result of this paper, we shall prove that every subset S of Q

m
(under

some mild conditions) is the exceptional set of uncountably many transcendental entire
functions of several variables with rational coefficients.

THEOREM 1.3. Let m be a positive integer. Then, every subset S of Q
m

, closed under
complex conjugation and such that (0, . . . , 0) ∈ S, is the exceptional set of uncountably
many transcendental entire functions f ∈ Q[[z1, . . . , zm]].

To prove this theorem, we shall provide a more general result about the arithmetic
behaviour of a transcendental entire function of several variables.

THEOREM 1.4. Let X be a countable subset of Cm and let K be a dense subset of
C. For each u ∈ X, fix a dense subset Eu ⊆ C and suppose that if (0, . . . , 0) ∈ X, then
E(0,...,0) ∩ K � ∅. Then there exist uncountably many transcendental entire functions
f ∈ K[[z1, . . . , zm]] such that f (u) ∈ Eu for all u ∈ X.

Theorem 1.4 is a several variables extension of the one-variable result due to
Marques and Ramirez [3, Theorem 1.3].

2. Proofs

2.1. Proof that Theorem 1.4 implies Theorem 1.3. In the statement of Theorem
1.4, choose X = Q

m
and K = Q∗ + iQ. Write S = {u1, u2, . . .} and Q

m
/S = {v1, v2, . . .}

(one of them may be finite) and define

Eu :=

⎧⎪⎪⎨⎪⎪⎩
Q if u ∈ S,
K · πn if u = vn.
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By Theorem 1.4, there exist uncountably many transcendental entire functions

f (z1, . . . , zm) =
∑

k1≥0,...,km≥0

ck1,...,km zk1
1 · · · z

km
m

in K[[z1, . . . , zm]] such that f (u) ∈ Eu for all u ∈ Qm
. Define ψ(z1, . . . , zm) as

ψ(z1, . . . , zm) :=
f (z1, . . . , zm) + f (z1, . . . , zm)

2
.

By the properties of the conjugation of power series,

ψ(z1, . . . , zm) =
∑

(k1,...,km)∈Zm
≥0

Re(ck1,...,km )zk1
1 · · · z

km
m

is a transcendental entire function in Q[[z1, . . . , zm]] since Re(ck1,...,km ) is rational and
nonzero for all (k1, . . . , km) ∈ Zm

≥0 by construction. (Here, as usual, Re(z) denotes the
real part of the complex number z.)

Therefore, it suffices to prove that Sψ = S. In fact, since S is closed under complex
conjugation, if u ∈ S, then u ∈ S and thus f (u) and f (u) are algebraic numbers and
so is ψ(u). (Observe also that f (0, . . . , 0) = c0,...,0 ∈ Q.) In the case in which u = vn,
for some n, we can distinguish two cases. When vn ∈ Rm, then ψ(u) = Re( f (vn)) is
transcendental, since f (vn) ∈ K · πn. For vn � Rm, we have vn = vl for some l � n. Thus,
there exist nonzero algebraic numbers γ1, γ2 such that

ψ(vn) =
γ1π

n + γ2π
l

2
,

which is transcendental, since Q is algebraically closed and π is transcendental. In
conclusion, ψ ∈ Q[[z1, . . . , zm]] is a transcendental entire function whose exceptional
set is S.

2.2. Proof of Theorem 1.4. Let us proceed by induction on m. The case m = 1
is covered by Lemma 1.2. Suppose that the theorem holds for all positive integers
k ∈ [1, m − 1]. That is, if K is a dense subset of C, X is a countable subset of Ck and Eu
is a dense subset in C for each u ∈ X, then there exist uncountably many transcendental
entire functions f ∈ K[[z1, . . . , zk]] such that f (u) ∈ Eu for all u ∈ X, for any integer
k ∈ [1, m − 1].

Now, let X be a countable subset of Cm and Eu a fixed dense subset of C for all
u ∈ X. Without loss of generality, we can assume that (0, . . . , 0) ∈ X. In this case,
by hypothesis, K ∩ E(0,...,0) � ∅. To apply the induction hypothesis, we consider the
partition of X given by

X =
⋃

S∈Pm

XS,

where Pm denotes the powerset of [1, m] = {1, . . . , m} and XS denotes the set of all
z = (z1, . . . , zm) in X ⊆ Cm such that zi � 0 if and only if i ∈ S. In particular, X∅ =
{(0, . . . , 0)} and X[1,m] = X ∩ (C \ {0})m.
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Given S = {i1, . . . , ik} in Qm = Pm \ {∅, [1, m]} and z = (z1, . . . , zm) in Cm, we denote
by zS the element (zi1 , . . . , zik ) ∈ Ck. To simplify the exposition, we will assume that
i1 < · · · < ik for all S ∈ Qm. Our goal is to show that there exist uncountably many
ways to construct a transcendental entire function f ∈ K[[z1, . . . , zm]] given by

f (z1, . . . , zm) = a0 +

( ∑
S∈Qm

(∏
i∈S

zi

)
fS(zS)

)
+ f ∗(z1, . . . , zm),

where a0 ∈ E(0,...,0) ∩ K and, for each S = {i1, . . . , ik} ∈ Qm, the function fS : Ck → C is
a transcendental entire function such that

fS(uS) ∈ 1
αi1 · · ·αik

· (Eu − ΘS,u)

for all u = (α1, . . . ,αm) ∈ XS with

ΘS,u = a0 +
∑

T∈Qm,T�S

(∏
i∈T

αi

)
fT (uT ) ∈ C.

By the induction hypothesis, fS exists for all S ∈ Qm (noting that if Eu is a dense
subset of C, then (αi1 · · ·αik )

−1 · (Eu − ΘS,u) is also a dense set). Moreover, we want the
function f ∗(z1, . . . , zm) ∈ K[[z1, . . . , zm]] to satisfy the condition

f ∗(u) ∈
(
Eu − a0 −

∑
S∈Qm

(∏
i∈S

αi

)
fS(uS)

)
(2.1)

for all u = (α1, . . . ,αm) ∈ X[1,m], and f ∗(z1, . . . , zm) = 0 whenever zi = 0 for some i with
1 ≤ i ≤ m. Under these conditions, it is easy to see that if S ∈ Qm and u ∈ XS, then
f ∗(u) = 0 and f (u) ∈ Eu.

To construct the function f ∗ : Cm → C, let us consider an enumeration {u1, u2, . . .}
of X[1,m], where we write uj = (α(j)

1 , . . . ,α(j)
m ). We construct a function f ∗ ∈

K[[z1, . . . , zm]] given by

f ∗(z1, . . . , zm) =
∞∑

n=m

Pn(z1, . . . , zm) =
∑

i1≥1,...,im≥1

ci1,...,im zi1
1 · · · z

im
m ,

where Pn is a homogeneous polynomial of degree n and the coefficients ci1,...,im ∈ K
will be chosen so that f ∗ will satisfy the desired conditions.

The first condition is

|ci1,...,im | < si1+···+im :=
1(

i1+···+im−1
m−1

)
(i1 + · · · + im)!

,

where ci1,...,in � 0 for infinitely many m-tuples of integers i1 ≥ 1, . . . , im ≥ 1. These
conditions will be used to guarantee that f ∗ is an entire function. Let L(P) denote
the length of the polynomial P(z1, . . . , zm) ∈ C[z1, . . . , zm] given by the sum of the
absolute values of its coefficients. Since

|Pn(z1, . . . , zm)| ≤ L(Pn) max{1, |z1|, . . . , |zm|}n,
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for all n ≥ m and (z1, . . . , zm) belonging to the open ball B(0, R),

|Pn(z1, . . . , zm)| <

(
n−1
m−1

)
(

n−1
m−1

)
n!

max{1, R}n = max{1, R}n
n!

,

since Pn(z1, . . . , zm) has at most
(

n−1
m−1

)
monomials of degree n. Hence, the series∑

n≥m Pn(z1, . . . , zm) converges uniformly in any of these balls. Thus, f ∗ is a
transcendental entire function such that f ∗(0, z2, . . . , zm) = f ∗(z1, 0, z3, . . . , zm) =
f ∗(z1, z2, . . . , 0) = 0.

To obtain the coefficients ci1,...,im ∈ K such that f ∗ satisfies the condition (2.1), we
consider a hyperplane π(n, j) for positive integers n and j with 1 ≤ j ≤ n, given by

π(n, j) : μ(j)
n,1z1 + · · · + μ(j)

n,mzm − λ(j)
n = 0,

and such that if uj, un+1 and the origin are noncollinear, then π(n, j) is a hyperplane
containing uj and parallel to the line passing through the origin and the point un+1,
and, if uj, un+1 and the origin are collinear, then π(n, j) is a hyperplane containing uj
and perpendicular to the line passing through the origin and the point un+1. Note that in
both cases, λ(j)

n � 0 and un+1 does not belong to any hyperplane π(n, j) with 1 ≤ j ≤ n.
Now, we define the polynomials A0(z1, . . . , zm) := z1 · · · zm and

An(z1, . . . , zm) :=
n∏

j=1

(μ(j)
n,1z1 + · · · + μ(j)

n,mzm − λ(j)
n )

for all n ≥ 1. By the definition of π(n, j), we have An(uj) = 0 for 1 ≤ j ≤ n. Since un+1
and the origin do not belong to π(n, j), we also have An(0, . . . , 0) � 0 and An(un+1) � 0
for all n ≥ 1. Thus, we can define the function

f ∗1,0(z1, . . . , zm) := δ1,0A0(z1, . . . , zm) = δ1,0z1 · · · zm

such that Θ1 + f ∗1,0(u1) ∈ Eu1 and 0 < |δ1,0| < sm/m, where

Θj := a0 +
∑
S∈Qm

(∏
i∈S

α
(j)
i

)
fS(uj,S),

and uj,S = (α(j)
i1

, . . . ,α(j)
ik

) for S = {i1, . . . , ik}, for all integers j ≥ 1.
Since K is a dense subset of C, we can choose δ1,1 such that the coefficient c1,1,...,1

of z1 · · · zm in the function

f ∗1,1(z1, . . . , zm) := f ∗1,0(z1, . . . , zm) + δ1,1z1 · · · zmA(1)
1 (z1, . . . , zm)

belongs to K with |c1,1,...,1| < sm. Therefore, we take

f ∗1 (z1, . . . , zm) := f ∗1,1(z1, . . . , zm),

where P1(z1, . . . , zm) = c1,1,...,1z1 · · · zm.
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Recursively, we can construct a function f ∗n,0(z1, . . . , zm) given by

f ∗n,0(z1, . . . , zm) := f ∗n−1(z1, . . . , zm) + δn,0zn
1z2 · · · zmAn−1(z1, . . . , zm)

where we take δn,0 � 0 in the ball B(0, sn+m−1/(n + m − 1)) such that

Θn + f ∗n,0(un) ∈ Eun .

This is possible since Eun is a dense subset of C and all coordinates of un are nonzero.
Since K is a dense subset of C, if we consider the ordering of the monomials of

degree n + m − 1 given by the lexicographical order of the exponents, then we can
choose δn,l such that the coefficient cj1,...,jm of the lth monomial zj1

1 · · · z
jm
m in

f ∗n,l(z1, . . . , zm) := f ∗n,l−1(z1, . . . , zm) + δn,lz
j1
1 · · · z

jm
m An(z1, . . . , zm)

belongs to K with |cj1,...,jm | < sn+m−1. Thus, we define

f ∗n (z1, . . . , zm) := f ∗n,L(z1, . . . , zm),

where L =
(

n+m−2
m−1

)
is the number of distinct monomials of degree n + m − 1. Then

f ∗n (z1, . . . , zm) is a polynomial function such that cj1,...,jm ∈ K for every m-tuple
(j1, . . . , jm) such that j1 + · · · + jm ≤ n + m − 1.

Finally, this construction implies that the functions f ∗n converge to a transcendental
entire function f ∗ ∈ K[[z1, . . . , zm]] as n→ ∞ such that

f ∗(uj) = f ∗n (uj) = f ∗j (uj)

for all n ≥ j ≥ 1. Let f : Cm → C be the entire function given by

f (z1, . . . , zm) = a0 +

( ∑
S∈Qm

(∏
i∈S

zi

)
fS(zS)

)
+ f ∗(z1, . . . , zm).

Then f (u) ∈ Eu for all u ∈ X ⊂ Cm. Since f is an entire function that is not a
polynomial, it follows that f is transcendental. Note that there are uncountably many
ways to choose the constants δn,j. This completes the proof.
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