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Abstract

The well-known abc-conjecture concerns triples (a, b, c) of nonzero integers that are coprime and
satisfy a + b + c = 0. The strong n-conjecture is a generalisation to n summands where integer solutions
of the equation a1 + · · · + an = 0 are considered such that the ai are pairwise coprime and satisfy a
certain subsum condition. Ramaekers studied a variant of this conjecture with a slightly different set of
conditions. He conjectured that in this setting the limit superior of the so-called qualities of the admissible
solutions equals 1 for any n. In this paper, we follow results of Konyagin and Browkin. We restrict
to a smaller, and thus more demanding, set of solutions, and improve the known lower bounds on the
limit superior: for n ≥ 6 we achieve a lower bound of 5

4 ; for odd n ≥ 5 we even achieve 5
3 . In particular,

Ramaekers’ conjecture is false for every n ≥ 5.

2020 Mathematics subject classification: primary 11D04; secondary 11D72.
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1. Introduction

The abc-conjecture [5, 6, 11] is a well-known open problem in mathematics. It postu-
lates that there is no constant q > 1 such that there exist infinitely many triples (a, b, c)
of coprime and nonzero integers with a + b + c = 0 and such that the ‘quality’ of
(a, b, c) exceeds q.

More precisely, the radical rad(n) of a nonzero integer n is defined as the largest
square-free positive divisor of n. Now let (a, b, c) ∈ Z3 be such that a, b, c � 0. Then
the quality of (a, b, c) is defined as

q(a, b, c) =
log(max(|a|, |b|, |c|))

log(rad(a · b · c))
.
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For example, given the triple (8192,−8181,−11) = (213,−34 · 101,−11), its entries are
pairwise coprime, their largest square-free positive divisor is 6666 = 2 · 3 · 11 · 101,
and its quality is log(8192)/log(6666) ≈ 1.0234, seemingly supporting the claim of
the abc-conjecture.

The conjecture itself has been rather well studied but is still unresolved. However,
on the way towards partial solutions, various variants of the original problem
were formulated and conjectures about the achievable qualities in these cases were
made. While Vojta [9, 10] has studied a very general statement that implies the
abc-conjecture, a more immediate generalisation is the n-conjecture first studied by
Browkin and Brzeziński [2].

The topic of this paper is not this n-conjecture but two variants, respectively,
introduced by Browkin [1], building on work of Konyagin, and Ramaekers [8]; both
used the term ‘strong n-conjectures’ for their versions. Before we can state these
conjectures, we first need to generalise the above definition of quality from triples
to n-tuples.

DEFINITION 1.1. For a = (a1, . . . , an) ∈ Zn, with ai � 0 for 1 ≤ i ≤ n, we write

q(a) =
log(max(|a1|, . . . , |an|))

log rad(a1 · · · · · an)
.

Then for a sequence A = {a(1), a(2), . . .} ⊆ Zn of n-tuples as above, let the quality of A
be defined as

QA = lim sup
k→∞

q(a(k)).

Different strong n-conjectures concern the qualities of different sets A of n-tuples
of integers; it is not hard to see that q and therefore QA cannot take values less than 1
for any A.

We can now state the strong n-conjectures mentioned above. We first recall the
n-conjecture and how it relates to the abc-conjecture.

CONJECTURE 1.2 (n-conjecture; Browkin and Brzeziński [2]). Let n ≥ 3 and let
A(n) ⊆ Zn be the set of n-tuples (a1, . . . , an) such that

(i) a1 + · · · + an = 0,
(ii) there are no b1, . . . , bn ∈ {0, 1} and i, j with 1 ≤ i, j ≤ n such that bi = 0 and

bj = 1 and
∑n

k=1 bk · ak = 0,
(iii) gcd(a1, . . . , an) = 1.

Then QA(n) = 2n − 5 for every n.

In the following we informally refer to condition (ii), as well as to analogous
statements introduced below, as the subsum condition. Note that in the case n = 3 this
condition excludes only finitely many triples and is therefore irrelevant for the value
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of QA(3); this implies that the statement ‘QA(3) = 1’ is equivalent to the abc-conjecture.
For larger n, we have the following relationship.

THEOREM 1.3 (Browkin and Brzeziński [2]). If the abc-conjecture is false then the
n-conjecture is false for every n ≥ 4.

One half of the n-conjecture is known: Browkin and Brzeziński [2, Theorem 1]
proved for n ≥ 3 that QA(n) ≥ 2n − 5. This statement is not hard to prove; we come
back to it in Remark 4.1 at the end of this paper.

Different conjectures arise when considering different sets A and one of the main
goals of this paper is to clarify the relation between these different conjectures and to
try to unify the picture.

Browkin [1] introduced the following conjecture he referred to as the ‘strong
n-conjecture’. It is obtained from the n-conjecture by requiring that the entries in each
n-tuple are pairwise coprime and removing the subsum condition.

CONJECTURE 1.4 (Browkin [1]). Let n ≥ 3 and let B(n) be the set of n-tuples
(a1, . . . , an) ∈ Zn such that

(i) a1 + · · · + an = 0,
(ii) gcd(ai, aj) = 1 for all i, j with 1 ≤ i < j ≤ n.

Then QB(n) < ∞ for every n.

The statement ‘QB(3) = 1’ is a reformulation of the abc-conjecture.

REMARK 1.5.

(1) If QA(4) ≤ 3, then QB(3) = 1. Indeed, assume that there are infinitely many
counterexamples (a, b, c) to the abc-conjecture of quality at least q with q > 1.
Then QA(4) ≥ 3q is witnessed by the quadruples

(a3, b3, c3,−3abc).

(2) Similarly, QA(5) ≤ 5 implies that QB(3) = 1 via quintuples of the form

(a5, b5, c5,−5abc3, 5a2b2c).

(3) More generally, if QA(n) ≤ 2n − 5 for some n ≥ 4, since the reverse inequality
is known as mentioned above, it would follow that the n-conjecture is true for
this particular n. As a consequence, in view of Theorem 1.3, the abc-conjecture
would be true as well in this case.

Konyagin established the following result about Conjecture 1.4.

THEOREM 1.6 (Konyagin; see Browkin [1]).

QB(n) ≥
⎧⎪⎪⎨⎪⎪⎩

1 if n ≥ 4 is even,
3
2 if n ≥ 5 is odd.
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For completeness we mention that Konyagin’s result can also be derived from an
example given by Darmon and Granville [4, item (d) on page 542] by choosing t = 2k;
they cite correspondence with Noam D. Elkies as the source.

Another variant of the n-conjecture that we study is as follows.

REMARK 1.7. We point out that there is a typo when Browkin states Konyagin’s result;
where we say ‘n ≥ 5’ he says ‘n ≥ 3’. But then Theorem 1.6 would already disprove
the abc-conjecture. Indeed, Konyagin’s proof only works for odd n ≥ 5.

CONJECTURE 1.8 (Ramaekers [8]). Let n ≥ 3 and let R(n) be the set of n-tuples
(a1, . . . , an) ∈ Zn such that

(i) a1 + · · · + an = 0,
(ii) there are no b1, . . . , bn ∈ {0, 1} and i, j with 1 ≤ i, j ≤ n such that bi = 0 and

bj = 1 and
∑n

k=1 bk · ak = 0,
(iii) gcd(ai, aj) = 1 for i, j with 1 ≤ i < j ≤ n.

Then QR(n) = 1 for every n.

Note that Ramaekers’ conjecture maintains the subsum condition from the original
n-conjecture, unlike Browkin’s. Darmon and Granville [4, end of Section 5.2] also
mention this statement as the ‘generalised abc-conjecture’, but only conjecturing
QR(n) < ∞ and not clarifying whether they require pairwise or setwise coprimeness.

Except for (1,−1, 0) and its reorderings, all triples in B(3) are also in R(3); thus the
abc-conjecture is equivalent to the claim that QR(3) = 1 as well. Ramaekers computed
numerous example elements of R(3), R(4) and R(5) of quality larger than 1. Here, the
examples in R(4) exhibited a tendency to be of smaller quality than those in R(3),
which could make one suspect that disproving the claim ‘QR(4) = 1’ might be even
harder than disproving the abc-conjecture. We are, however, unaware of any known
implications between the cases n = 3 and n = 4; for larger n, though, we see below
that QR(n) > 1.

As R(n) is a strictly smaller set than B(n), a priori QR(n) could be smaller than QB(n).
Thus, we cannot directly deduce anything about QR(n) from Theorem 1.6; indeed, for
odd n ≥ 7, Konyagin’s proof of Theorem 1.6 uses n-tuples that are in B(n) \ R(n).

In this paper we introduce two new restrictions, namely a stronger subsum condition
on the one hand, and the set of forbidden factors F on the other hand. We will work
with the following definition, which is purposely designed for proving lower bounds
on QR(n); see Fact 1.12 below.

DEFINITION 1.9. Let n ≥ 3 and let F ⊆ N be a finite set, where min F ≥ 3 if F � ∅.
We let U(F, n) contain all (a1, . . . , an) ∈ Zn satisfying the following conditions:

(i) a1 + · · · + an = 0;
(ii) there are no b1, . . . , bn ∈ {−1, 0, 1} and i, j with 1 ≤ i, j ≤ n such that bi = 0 and

bj = 1 and
∑n

k=1 bk · ak = 0;
(iii) gcd(ai, aj) = 1 for i, j with 1 ≤ i < j ≤ n;
(iv) none of the numbers a1, . . . , an is a multiple of any number in F.
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REMARK 1.10.

(1) If F is empty then condition (iv) is vacuously satisfied by every n-tuple.
(2) If 2 ∈ F and n is odd, then U(F, n) = ∅ since the sum of an odd number of odd

integers cannot be 0. For the case where n is even, note that by condition (iii)
at most one of the ai can be even; but then by condition (i) no ai can be even.
Thus the assumption 2 ∈ F is unnecessary in this case, and can be omitted. In
summary, we do not consider the case 2 ∈ F.

(3) Using condition (iii), it is again easy to see that the claim ‘QU(∅,3) = 1’ is
equivalent to the abc-conjecture.

We are interested in questions of the following type.

QUESTION 1.11. Fixing different choices of F and n, what are valid lower bounds on
QU(F,n)?

While Browkin and Brzeziński opted to only allow coefficients bj ∈ {0, 1} in the
subsum condition in Conjecture 1.2, our new condition (ii) above is more demanding
as it allows negative coefficients as well. Thus the quality lower bounds we establish
below are proven for a smaller set of n-tuples and will therefore also hold for the
conjectures stated above. More precisely stated, the following relationships between
the different strong n-conjectures are immediate.

FACT 1.12. For every n ∈ N and any F as above we have QU(F,n) ≤ QA(n) as well as
QU(F,n) ≤ QR(n) ≤ QB(n).

This means in particular that, by fixing the right parameters, our new definition
provides a framework that can be used to prove lower bounds on both Browkin’s and
Ramaekers’ versions of the problem.

In the remainder of this paper, we prove lower bounds for QU(F,n) for suitable
parameters F and n. First, we improve Konyagin’s construction cited above to obtain
the following stronger version of his result.

THEOREM 1.13. Let F be such that 2, 5, 10 � F. Then QU(F,n) ≥ 5
3 for each odd n ≥ 5.

In particular, QU(∅,n) ≥ 5
3 for these n.

In particular, Ramaekers’ conjecture is wrong for odd n ≥ 5. Even integers are
covered by our second main result, which holds for arbitrary n ≥ 6 and arbitrary
finite F.

THEOREM 1.14. Let n ≥ 6 and let F be an arbitrary finite set. Then

QU(F,n) ≥ 5
4 .

In particular, QR(n) ≥ 5
4 for each n ≥ 6.

We stress that these results disprove Ramaekers’ conjecture for any n ≥ 5.
Finally, we conclude with a brief discussion of n-tuples (a1, . . . , an) that are coprime

but not necessarily pairwise coprime, with a particular focus on Conjecture 1.2 of
Browkin and Brzeziński.
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2. The case of odd n ≥ 5

As a warm-up and an illustration of Konyagin’s technique, we first give a proof of
a weaker version of Theorem 1.13 for n = 5. In the process we slightly modify the
construction that he used to prove Theorem 2.1, so as to obtain a bound on QU(∅,5) in
place of QB(5).

THEOREM 2.1. QU(∅,5) ≥ 3
2 .

PROOF. Fix any integer k ≥ 1 and let

a = (62k
+ 1)3, b = −(62k − 1)3, c = −6 · (62k

)2, d = −31, e = 29.

Then log(a) ≥ 3 · 2k · log(6) holds, while rad(a · b · c · d · e) is a factor of (62k
+ 1) ·

(62k − 1) · 6 · 31 · 29, so that its logarithm must be bounded by 2 · 2k · log(6) + � for
some constant �. Thus,

q(a, b, c, d, e) ≥ 3 · 2k · log(6)
2 · 2k · log(6) + �

,

which converges to 3
2 for k → ∞.

We claim that for every k ≥ 1, if a, b, c, d, e are chosen as above, then they are pair-
wise coprime. If we write s = 62k

, then a, b and c are of the forms (s + 1)3, −(s − 1)3

and −6s2, respectively. Trivially, s − 1 and s are coprime, and the same holds for s and
s + 1. As 2 and 3 are the only factors of s, neither of them can be a factor of s − 1
or s + 1, and thus (s + 1)3 and 6s2, as well as (s − 1)3 and 6s2, are coprime. As s − 1
and s + 1 are both odd, they cannot have 2 as a common factor, and thus s − 1 and
s + 1 must be coprime; consequently, (s − 1)3 and (s + 1)3 are coprime. To complete
the argument, consider the sequence (62k

)k≥1; if we can show that, modulo 29 and
modulo 31, none of its elements equals −1, 0, or 1, then none of s − 1, s or s + 1 can
be a multiple of 29 or 31, implying that each of a, b, c is coprime with both d = 29 and
e = 31. We proceed by repeated squaring; first we obtain

6 ≡ 6 (mod 29)
62 = 36 ≡ 7 (mod 29)
64 ≡ 72 = 49 ≡ −9 (mod 29)
68 ≡ (−9)2 = 81 ≡ −6 (mod 29)
616 ≡ (−6)2 = 36 ≡ 7 (mod 29),

and so on. Similarly, modulo 31, we obtain the sequence 6, 5, −6, 5, and so on. Thus,
a, b, c, d, e are pairwise coprime, establishing condition (iii) of Definition 1.9.

Condition (i) is immediate. For condition (ii), assume that there exist nontrivial
subsums equalling 0 and fix one. Clearly, no combination of only the elements c, d
and e exists that sums to 0. Thus at least one of a or b must occur in our subsum. But
if ±(s + 1)3 is part of the subsum, so must ∓(s − 1)3, as otherwise there would be no
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hope of the subsum equalling 0. Also, the signs of these two numbers must clearly be
opposite; assume without loss of generality that they are chosen in such a way that
the sum of these two elements is positive, that is, that it equals 6 · s2 + 2. Then −6s2

must also be part of the subsum in order to have any hope of achieving a subsum
equalling 0. But (s + 1)3 − (s − 1)3 − 6s2 = 2, and thus the only way to achieve a sum
of 0 in this case is by also including 29 and −31. Thus all five of a, b, c, d, e are required
in a subsum for it to equal 0; this contradicts our assumption that our subsum was a
nontrivial example.

Finally, condition (iv) of Definition 1.9 is vacuous as F = ∅. �

To obtain the stronger Theorem 1.13 stated in the introduction, we use a proof that
is similar to the previous one, except that we employ a degree 5 polynomial instead of
a degree 3 one to obtain a better bound. We begin by proving an auxiliary result.

LEMMA 2.2. Let u, m ∈ Z with u < 0 < m and m ≥ max(2, |u|), write

q =
∏

p≤m∧ p prime

p

and let F = {3, 4, . . . , m}. Then there are a natural number v > 0 and an odd integer
w ≤ 0 with u = v + w such that

• q < v ≤ |w| ≤ (m + 1) · q,
• gcd(v, w) = 1, and
• no element of F divides v or w.

PROOF. Let q be as in the statement. We run the following algorithm.

(1) Let v = u + 1 + q and w = −q − 1.
(2) For all prime numbers 3 ≤ p ≤ m,
(3) while p divides one of v or w,
(4) let v = v + q/p and w = w − q/p.
(5) If 4 divides v then let v = v + q and w = w − q.

Note that the sum v + w = u and the fact that w is odd are invariants during the
execution of this algorithm. Further note that q < v and |w| ≤ (m + 1) · q are immediate
by construction.

During the ‘for’ loop over p, since q/p is not a multiple of p, only one of v,
v + q/p and v + q/p + q/p can be a multiple of p. The same applies to w, w − q/p, and
w − q/p − q/p. Thus, for each p, the instruction inside the ‘while’ loop will be
executed 0, 1 or 2 times, and afterwards neither v nor w will be divisible by p.

We claim that, once established, this property is preserved throughout the rest of
the algorithm. Indeed, consider some prime p′ � p which was handled in a previous
iteration of the ‘while’ loop, and assume that at the beginning of the iteration for p
we have that neither v nor w is divisible by p′. Since q/p is a multiple of p′, we have
v ≡ v + q/p (mod p′) and w ≡ w − q/p (mod p′); thus the property is preserved by the
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action taken at line (4). For similar reasons, the property also is preserved during the
final execution of (5). This proves the claim, and it follows that after the algorithm
terminates, v and w are not divisible by any odd prime less than or equal to m.

Assume that v is divisible by 4 before the execution of line (5). Then, since q is not
divisible by 4, v + q is an even number not divisible by 4. Thus, in any case, after the
execution of line (5), v is not divisible by 4. Since w was odd, it is still odd after the
execution of line (5); in particular, it is not divisible by 4.

Overall we have established that, when the algorithm terminates, none of the
numbers 3, 4, . . . , m divide v or w.

To see that v and w are coprime, first note that 2 cannot be a common prime factor
since w is odd. By construction, any odd common prime factor p of v and w must be
larger than m. But any such p also is a prime factor of u = v + w, which is impossible
as u ≤ m.

Finally, since v + w = u and u < 0 it is obvious that v ≤ |w|. �

With this established, we are ready to prove the first main result of this paper. We
point out that it is closely related to an observation of Ramaekers [8, Section 4.4]; he
gives credit for the idea of using polynomial identities to the previously mentioned
examples of Darmon and Granville [4] and Elkies. For these, the condition that the ai

have to be pairwise coprime is dropped; see Remark 4.1.

THEOREM 1.12 (restated). Let F be such that 2, 5, 10 � F. Then QU(F,n) ≥ 5
3 for each

odd n ≥ 5. In particular, QU(∅,n) ≥ 5
3 for these n.

PROOF. We will construct infinitely many n-tuples (a1, . . . , an) where

• a1 = (x − 1)5,
• a2 = 10(x2 + 1)2,
• a3 = −(x + 1)5.

We will then show that there exist choices for a4, . . . , an that only depend on n and such
that there are infinitely many x such that these n-tuples satisfy the conditions posited
by Definition 1.9. We begin by letting

â4 =

⎧⎪⎪⎨⎪⎪⎩
24 if F = ∅,
3 · (8 +max(F)) otherwise.

For i = 4, 5, . . . , n − 2 we proceed inductively by letting each ai be any prime number
larger than âi and by letting each âi+1 = 3 · ai.

Next, we let an−1 and an be the numbers v and w provided by Lemma 2.2 when
applied with parameters

• u = −(8 + a4 + a5 + · · · + an−2),
• m = ân−2;

in particular, an−1 > 0. Finally, let ân = 3 · (|an−1| + |an|).
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Note that (x − 1)5 + 10(x2 + 1)2 − (x + 1)5 = 8 holds independently of the choice
of x; thus by choice of u we have a1 + a2 + · · · + an = 0. Recall that n is odd by
assumption. As a4 + a5 + · · · + an−2 is composed of an even number of all odd
summands, u must be even. Therefore, an−1 and an must have the same parity; however,
by Lemma 2.2 they cannot both be even. Thus it follows that all of a4, a5, . . . , an are
odd; moreover, they are pairwise coprime by construction.

Set y = ân! and consider the equation

y2 · s2 − (y2 + 1) · t2 = −1. (2-1)

As there is an initial solution (s, t) = (1, 1) and as y2 · (y2 + 1) is positive and not a
square, it follows that equation (2-1) has infinitely many integer solutions (see, for
instance, Bundschuh [3, Subsection 4.3.7, page 198]). Fix any solution (s, t) of equation
(2-1) and let x = y · s.

Thus x is a multiple of each element of F and of each of a4, a5, . . . , an; and therefore
x − 1, x + 1 and x2 + 1 are each coprime with any of these numbers. Furthermore, each
of 2, 5 and 10 is coprime with each of a4, a5, . . . , an; as a result 10(x2 + 1)2 is coprime
with these numbers as well. As x is even, (x − 1)5 and (x + 1)5 are coprime and (x2 + 1)
is coprime with x2 − 1, and thus with x − 1 and x + 1 as well. As 10 divides x, the
numbers x − 1, x + 1 and x2 + 1 are coprime with 10. Also, no element of F divides
any of a1, . . . , an.

In summary, conditions (i), (iii) and (iv) in Definition 1.9 are satisfied. Now assume
there exists a nontrivial zero subsum, that is, that there are b1, . . . , bn such that
b1 · a1 + · · · + bn · an = 0 and such that not all bi equal 0. We distinguish two cases.

If b1, b2, b3 are not all equal, then (b1, b2, b3) or (−b1,−b2,−b3) must equal one of

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 0,−1),
(1, 1, 0), (1,−1, 0), (1,−1, 1), (1, 1,−1), (1,−1,−1).

Recalling that x is a multiple of y, it is easy to verify that in each of these cases we
have |b1 · a1 + b2 · a2 + b3 · a3| > y. But then, since their absolute values are too small
compared with y = ân!, no combination of the remaining ai with i ≥ 4 is possible that
would lead to a zero subsum.

In the other case, if b1 = b2 = b3, then their sum is −8, 0 or +8. We distinguish all
three possible cases concerning the value of bn.

• If bn = 0, then the subsum is empty. This is because in the sequence

|a1 + a2 + a3|, |a4|, |a5|, . . . , |an−1|

each entry is at least 3 times larger than the previous one; thus the only way of
obtaining a zero subsum in this case is when bk = 0 for all 1 ≤ k ≤ n.

• If bn = 1, then bk = 1 for all 1 ≤ k ≤ n. Assume that for some choice of (bk)1≤k≤n

with bn = 1 we have
∑n

k=1 bk · ak = 0. Since we also have
∑n

k=1 ak = 0 it follows
that
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n∑
k=1

ak −
n∑

k=1

bk · ak

= (1 − b1) · (a1 + a2 + a3) +
n−1∑
k=4

(1 − bk) · ak

= 0,

where 1 − bk ∈ {0, 1, 2} for k ∈ {1, 4, 5, . . . , n − 1}. For the same reason as in the
previous item, the only choice of (1 − bk)k∈{1,4,5,...,n−1} that makes this equality true
is 1 − bk = 0 (thus bk = 1) for all k ∈ {1, 4, 5, . . . , n − 1}.

• If bn = −1, then bk = −1 for all 1 ≤ k ≤ n, by a symmetric argument.

In summary, the subsum condition (ii) in Definition 1.9 is satisfied as well.
It remains to estimate the qualities of the constructed n-tuples. Note that the terms

y and y2 + 1 as well as the terms a4, . . . , an are constant, and that by equation (2-1)
the term a2 = 10(x2 + 1)2 = 10(y2 + 1)2 · t4 only contributes a factor t ∈ O(x) to the
radical. Thus we have rad(a1 · · · · · an) ∈ O(x3).

On the other hand, max(|a1|, . . . , |an|) = |a3| = |x + 1|5, and so there is a constant C
such that we have

q(a1, . . . , an) ≥ log(x + 1)5

log(Cx3)
,

and therefore

QU(F,n) ≥ lim
x→∞

q(a1, . . . , an) ≥ lim
x→∞

log(x5)
log(x3) + log(C)

=
5
3

.

This completes the proof. �

The above result only holds for F not containing 2, 5 or 10. If we do allow 5 or 10
in F, we can still obtain the following weaker lower bound by considering polynomials
whose degrees depend on F.

THEOREM 2.3. Let F be a finite set with min(F) ≥ 3. Then QU(F,5) > 1.

PROOF. As before, we may assume F = {3, 4, . . . , m} for some m. Let s = h!−1 for
h > 9m and keep h and s constant during the remainder of the construction. Let x = k!
for some k > s; as in the previous construction, we demonstrate that for sufficiently
large k all required properties are satisfied. Then by letting k go to infinity we obtain
infinitely many examples that together witness the desired lower bound for QU(F,5).

We consider the following numbers; here, the choice of a1, a2, a3 and a4 + a5
follows Ramaekers [8, Section 4.4] but we then additionally split a4 + a5 into two
summands:

• a1 = (x + 1)s,
• a2 = −(x − 1)s,
• a3 = −2s · (x2 + (s − 2)/3)(s−1)/2,
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• a4 = −(a1 + a2 + a3 + y) for some fixed odd y > s that we choose below,
• a5 = y.

Note that, as a polynomial in x, we have that a1 + a2 is of degree s − 1 and even, that is,
of the form c0 + c2x2 + c4x4 + c6x6 + · · · . Similarly, note that a1 + a2 + a3 is an even
polynomial in x of degree s − 5. Finally, note that, when dividing an even polynomial
by a polynomial of the form x2 + c, for some c ∈ Z, the remainder is an integer not
depending on x; if we write z0, z1 and z2 for the remainders of a1 + a2 + a3 modulo x2,
modulo x2 − 1 and modulo x2 + (s − 2)/3, respectively, then the following auxiliary
statement holds.

LEMMA 2.4. We have that 6 divides z0 and that there exists an integer y such that

• none of y, y + z0, y + z1 and y + z2 has a prime factor q where

5 ≤ q ≤ (2s)s + |z0| + |z1| + |z2|,

• neither y nor y + z0 is divisible by 2 or 3.

PROOF. We achieve this by a method similar to that in the proof of Lemma 2.2.
Let b = (2s)s + |z0| + |z1| + |z2|, r =

∏
q≤b∧ q prime and proceed as follows.

(1) Let y = 1.
(2) For all primes q with 5 ≤ q ≤ b,
(3) replace y by min(M ∩ N) where

M = {y + i · r/q : 0 ≤ i ≤ 4},
N = {y′ : q � y′ ∧ q � (y′ + z0) ∧ q � (y′ + z1) ∧ q � (y′ + z2)}.

Note that q does not divide r/q, and thus, for each

z ∈ {y′, y′ + z0, y′ + z1, y′ + z2},

at most one among z, z + r/q, . . . , z + 4 · r/q can be a multiple of q. Thus, by the
pigeonhole principle, the choice of y in (3) is always possible.

That the final y emerging from this process has the first of the two stipulated
properties then follows from an argument analogous to that used in the proof of
Lemma 2.2.

To argue that y and y + z0 have the second property, we first prove that z0 is divisible
by 6. An easy calculation shows that z0 = 2 − 2s · ((s − 2)/3)(s−1)/2, an even number.
To see that z0 ≡ 0 (mod 3), it is enough to show that

2s · ((s − 2)/3)(s−1)/2 ≡ 2 (mod 3).

To that end, note that, as h!≡ 0 (mod 4), we have that s − 1 = h!−2 ≡ 2 (mod 4),
and thus that (s − 1)/2 is odd. Recall that s = h!−1, thus s ≡ 8 (mod 9). Now
s − 2 ≡ 6 (mod 9) and (s − 2)/3 ≡ 2 (mod 3). Moreover, 2s ≡ 2 · 2 ≡ 1 (mod 3).
Therefore, 2s · ((s − 2)/3)(s−1)/2 ≡ 2 (mod 3) and thus z0 ≡ 0 (mod 6).
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To complete the proof of the lemma, note that after executing (1),
y + z0 ≡ y ≡ 1 (mod 6). As all terms r/q appearing in the algorithm are multiples
of 6, this last property is invariant during the algorithm’s execution, and the final y
and y + z0 are not divisible by 2 or 3. �

To continue with the proof of Theorem 2.3, fix an integer y as provided by
Lemma 2.4; note that y does not depend on x, a fact which will prove crucial in our
closing arguments below. We verify conditions (i)–(iv) stipulated by Definition 1.9.
Condition (i) is trivially satisfied by choice.

By construction, x is a multiple of 3 while neither s nor (s − 2)/3 is a multiple
of 3 by the arguments given in the proof of Lemma 2.4; thus, 3 does not divide
a3 = −2s · (x2 + (s − 2)/3)(s−1)/2. We further claim that a3 is not divisible by 4 either;
this is because x is even, s is odd, and (s − 2)/3 is easily seen to be odd by construction.
Now let q > 3 be a prime factor of any element of F. By construction, q divides x
but neither s nor (s − 2)/3. It follows that none of x + 1, x − 1 and x2 − (s − 2)/3 is
a multiple of q. By Lemma 2.4 neither y nor y + z0 is divisible by q. Thus none of
a1, a2, a3, a4, a5 is a multiple of any element of F and thus condition (iv) is satisfied.

Clearly, the fact that x is even implies that a1 and a2 are coprime by construction.
Observe that (x2 + (s − 2)/3) − (x2 − 1) = (s + 1)/3 = h! /3; this implies that if x + 1
or x − 1 has a common factor q with a3, then q must divide either 2s or (s + 1)/3. By
construction, any such q also divides x, which implies q = 1. In summary, we have that
a1, a2 and a3 are pairwise coprime.

For sufficiently large k we have

k ≥ 2s + |y| + |z0 + y| + |z1 + y| + |z2 + y|; (2-2)

from now we assume that such a k was chosen. Then a prime factor q of any of the
summands in this inequality is also a factor of x = k!, and therefore not of x − 1 or
x + 1. By Lemma 2.4, no prime factor q of y, z0 + y, z1 + y, or z2 + y divides 2s or
(s − 2)/3 either. Altogether we obtain that no such q is a factor of a1, a2 or a3, and
therefore all three must be coprime with a5.

Next suppose that there exists a prime q dividing both a3 and a4. As a4 is odd,
this would mean that either q divides s or q divides x2 + (s − 2)/3. In the first case,
q would divide x = k! since k > s. Therefore, a1 + a2 + a3 ≡ z0 (mod q) and thus
a4 would be congruent to −(z0 + y) modulo q. Since q divides a4 by assumption
(and as we have already seen that a3 is not divisible by 3), this would contradict
the choice of y in Lemma 2.4. So suppose that q divides x2 + (s − 2)/3. Since
a4 ≡ −(z2 + y)(mod x2 + (s − 2)/3) it would follow that q is a prime factor of z2 + y.
In view of (2-2) this would imply that q divides x = k!. But then q would also divide
(s − 2)/3, which, together with the fact that q divides y + z2, would again imply q ≤ 3.
Since q divides the odd a4 and also a3, which is not divisible by 3, this is impossible.

If a prime q divides one of a1 or a2 then q must also divide x2 − 1. However,

a4 ≡ −(z1 + y) (mod x2 − 1);
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thus if q divided a4 then it would also divide z1 + y. For k large enough so that (2-2)
holds, it would follow that q divides x = k!, yielding a contradiction.

Finally, we prove that a4 and a5 are coprime. First note that by (2-2) every prime
factor of a5 is a factor of x and, as a4 ≡ 2s · ((s − 2)/3)(s−1)/2 (mod x), any common
prime factor of a4 and a5 must be a factor of 2s · ((s − 2)/3)(s−1)/2. But as we argued
above, no prime factor of y = a5 divides 2s or (s − 2)/3. Thus a4 and a5 are coprime.
In summary, condition (iii) is satisfied.

To see that condition (ii) is satisfied for all sufficiently large k, consider a1, a2,
a3 and a4 as polynomials in x = k!. In order for a subset of these numbers or their
negations to sum to 0 all terms depending on x need to be eliminated. To achieve this,
if one of a1 or a2 is present in a subsum, that is, if its coefficient is in {−1, 1}, the
other clearly needs to be present using the same coefficient as well. First assume that
they are both present; then their sum is of degree s − 1; thus a3 would be needed in
the subsum as well with a suitable coefficient taken from {−1, 1}. Regardless of the
choice of coefficients, the polynomials a1, a2 and a3 cannot be combined in such a
way as to produce a polynomial that is of degree less than s − 5; which implies that
a4 is also needed. Finally, as a1 + a2 + a3 + a4 = −y by definition, we also require a5
in the subsum to make it equal 0. A similar argument applies if neither a1 nor a2 is
present in a subsum. We conclude that no nontrivial subsum can equal 0.

We complete the proof by estimating the quality of (a1, . . . , a5). We have that

rad(a1 · · · · · a5) ∈ y · O((x2 − 1) · (x2 + (s − 2)/3) · xs−5);

that is, using that y is independent of x, there exists a polynomial in x of degree s − 1
upper-bounding rad(a1 · · · · · a5).

Thus there is a constant C such that for large enough k we have

q(a1, . . . , a5) ≥ s · log(x + 1)
log((x2 − 1) · (x2 + (s − 2)/3) · Cxs−5 · y)

,

and therefore, recalling that x = k!,

lim
k→∞

q(a1, . . . , a5) ≥ lim
k→∞

s · log(x)
log(x4 · xs−5 · C′)

=
s

s − 1
> 1

for some constant C′. We conclude that QU(F,5) > 1.

Note that the value of s in the proof depends on m = max(F) and therefore we
cannot provide a fixed lower bound q > 1 that works for any set F.

3. The case of arbitrary n ≥ 6

The results obtained in the previous section concerned only odd n ≥ 5. Here, we
prove our next main result, which holds true for general n ≥ 6 and, in particular, refutes
Ramaekers’ conjecture for these n.
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THEOREM 1.13 (restated). Let n ≥ 6 and let F be an arbitrary finite set. Then

QU(F,n) ≥ 5
4 .

PROOF. As enlarging F only makes the statement harder to prove, we can assume that
F = {3, 4, . . . , �} for some � ≥ 11. Let s = �!, fix a t > 101, and let y = s · t. �

LEMMA 3.1. In the above setting,

gcd(y + 1, 10y − 1) = gcd(y − 1, 10y − 1) = gcd(y + 1, 10y + 1) = 1.

PROOF. Suppose that a prime p divides y + 1. Then y ≡ −1 (mod p) and therefore
10y − 1 ≡ −11 (mod p). Then for p � 11 we clearly have p � gcd(y + 1, 10y − 1). On
the other hand, since � ≥ 11, we have that y = �! ·t ≡ 0 (mod 11), and thus 11 is not a
divisor of y + 1 either.

Analogously, if p divides y − 1 then y ≡ 1 (mod p) and thus 10y − 1 ≡ 9 (mod p).
Since p = 3 is a divisor of s = �!, we can conclude that gcd(y − 1, 10y − 1) = 1.

Finally, if p divides y + 1 then 10y + 1 ≡ −9 (mod p). Again, p = 3 is excluded by
the choices made above, and thus gcd(y + 1, 10y + 1) = 1. �

Note that there are infinitely many positive integers h1 such that

(y + 1)h1 ≡ 1 (mod 10y − 1)

as it suffices to choose h1 as any multiple of the order of the coset of y + 1 in the
multiplicative group of the ring of residue classes modulo 10y − 1. Analogously, there
exist infinitely many integers h2 such that

(y + 1)h2 ≡ 1 (mod 10y + 1).

Fixing some such h1 and h2, and letting h be any integer greater than or equal to
max(h1, h2), we have both

(y + 1)h! ≡ 1 (mod 10y − 1) and (y + 1)h! ≡ 1 (mod 10y + 1).

Later we let h go to infinity, but for the moment we give an analysis that holds true
independently of the exact value of h as long as it is sufficiently large.

So let x = (y + 1)h!. First note that since y is even, x is odd by definition. Secondly,
it is clear that gcd(x, y) = 1 and, in particular, that

there is no m ∈ F ∪ {2} that divides x. (3-1)

• We choose the first four entries of the n-tuple (a1, . . . , an) as

a1 = (x + y)5,

a2 = −(x − y)5,

a3 = −(10y − 1) · x4,

a4 = −(x2 + 10y3)2.
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Of course we have not fixed h yet, so that the exact value of x is undetermined, and the
same is consequently true for a1, a2, a3, a4. However, we can already observe that

a1 + a2 + a3 + a4 = 2y5 − 100y6 (3-2)

and therefore that a1 + a2 + a3 + a4 is independent of x. We continue with the
definition of a7, a8, . . . , an in a way that does not depend on x, either.

• Let a7, a8, . . . , an be negative odd prime numbers such that |a7| > 200y6 and such
that |ak+1| > 2 · |ak | for k = 7, 8, . . . , n − 1. Then, using (3-2),

|a7| > 2 · |a1 + a2 + a3 + a4|.

Finally, we need to fix the remaining two elements a5 and a6; by the preceding choices
and arguments the following definition is again independent of x.

• Let u = a1 + a2 + a3 + a4 + (
∑n

k=7 ak) and let m = −4u. By the previous choices, it
is easy to see that u must be a negative number. So it is possible to apply Lemma 2.2
to u and m and let a5 and a6 be the numbers −v and −w with u = v + w as provided
by that lemma.

We will show in a moment that, for every large enough h, the conditions in
Definition 1.9 are met by (a1, . . . , an). We claim that this then implies that Q(F, n) ≥ 5

4 ;
to see that, note that rad(a1 · · · · · an) will be a divisor of

(x + y) · (x − y) · (10y − 1) · (y + 1) · (x2 + 10y3) · a5 · · · · · an.

Letting h go to infinity does not affect a5, a6, . . . , an at all. Inside a1, a2, a3, a4, only x
grows with h while all other terms remain constant. Thus, rad(a1 · · · · · an) is bounded
from above by a polynomial in x of degree at most 4, while due to the choice of a1 we
have that max(|a1|, . . . , |an|) is bounded from below by a polynomial in x of degree 5.
Therefore, QU(F,n) ≥ 5

4 .
It remains to show that, for all h large enough, the four conditions in Definition 1.9

are met by (a1, . . . , an). That condition (i) holds is immediate by the choice of a5
and a6.

If p is an arbitrary prime factor of y then, since x ≡ 1 (mod p) by definition, it
follows that each of a1, a2, a3 and a4 is congruent to ±1 modulo p. It follows that none
of a1, a2, a3, a4 is divisible by any element of F; and since the same is true for each of
a5, a6, . . . , an by construction, condition (iv) is satisfied.

Next, we establish condition (iii) in several intermediate steps.

• a1 and a2 are coprime. Note that any common prime divisor of a1 and a2 must also
be a factor of 2y, as it must divide x + y and x − y and thus their difference. Note
that y is even by construction, so that y has the same prime divisors as 2y. Thus,
any common prime divisor of a1 and a2 must also divide y and, consequently, x.
But we already know that gcd(x, y) = 1.
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• a3 is coprime with both a1 and a2. The factor x of a3 is coprime with x + y and
x − y, as x is coprime with y. Furthermore,

x = (y + 1)h! ≡ 1 (mod 10y − 1)

by the choice of h, and thus

x + y ≡ 1 + y (mod 10y − 1),
x − y ≡ 1 − y (mod 10y − 1).

By Lemma 3.1, 10y − 1 is coprime with both 1 + y and 1 − y. Therefore, a3 is
coprime with a1 and a2.

• a3 and a4 are coprime. We establish this by showing that a4 is coprime with both
factors of a3. First, to determine gcd(10y − 1, a4), note that x ≡ 1 (mod 10y − 1)
and that

100y2 − 1 = (10y − 1) · (10y + 1) ≡ 0 (mod 10y − 1). (3-3)

This implies y2 + 1 ≡ 101y2 (mod 10y − 1) and thus

x2 + 10y3 ≡ 1 + 10y3 (mod 10y − 1)
= (10y − 1) · y2 + y2 + 1
≡ 101y2 (mod 10y − 1).

As 101 is prime and 10y − 1 > 101, they have no common factor. Moreover, in view
of (3-3), any common factor of y2 with 10y − 1 would also have to be a factor of 1;
as a result, gcd(10y − 1, a4) = 1. Secondly, we must determine

gcd(x, a4) = gcd(x, x2 + 10y3) = gcd(x, 10y3).

But by (3-1), no divisor of y nor any element of F ∪ {2} divides x. Therefore,
gcd(x, a4) = 1.

• a4 is coprime with both a1 and a2. Clearly, a1 · a2 is a power of

(x + y)(x − y) = x2 − y2

while a4 is a (negated) power of x2 + 10y3. Any common prime factor p of a4
with either a1 or a2 would therefore have to be a factor of the difference between
these two expressions, that is, of 10y3 + y2 = y2 · (10y + 1). Such a p divides one of
x + y or x − y; thus, it cannot be a factor of y, because otherwise it would divide x,
contradicting the coprimeness of x and y. Thus, such a p would have to be a prime
factor of 10y + 1.

Recall that x was chosen such that x ≡ 1 (mod 10y + 1); thus we would have
x ≡ 1 (mod p). Since p divides one of x + y or x − y, it would also be a prime
factor of either

(10y + 1) − 10 · (x + y) = −10x + 1 ≡ −9 (mod p)
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or

(10y + 1) + 10 · (x − y) = 10x + 1 ≡ 11 (mod p).

This could only be true if p ∈ {3, 11}, which is impossible since both 3 and 11
divide y and thus cannot divide 10y + 1. In conclusion, a4 is coprime with both a1
and a2.

• Each of a1, a2, a3 is coprime with each of a5, a6, . . . , an. Note that a5 and a6 do not
depend on x by construction. For sufficiently large h any prime factor of a5 and a6
is at most h. Observe that for any prime p with p ≤ h we have that p − 1 divides h!,
and thus, by Fermat’s little theorem,

x = (y + 1)h! ≡ 1 (mod p).

This holds, in particular, for any prime p dividing a5 or a6 and, if h is large enough,
for all primes p ∈ {a7, a8, . . . , an}; thus any such p is coprime with x. Moreover, we
have

x + y ≡ 1 + y (mod p),
x − y ≡ 1 − y (mod p)

for these primes p. Since for such a p we also have p > 200y6 > y ± 1 by
construction, it follows that p is coprime with x + y and x − y as well. As we
trivially have p � (10y − 1), we can conclude that p does not divide any of a1, a2, a3.

• a4 is coprime with each of a5, a6, . . . , an. For the same reasons as in the previous
item, we only need to consider potential prime factors p between 200y6 and h. For
such p, we again have that x ≡ 1 (mod p). Then

x2 + 10y3 ≡ 1 + 10y3 � 0 (mod p),

which implies that p does not divide a4.
• a5, a6, . . . , an are pairwise coprime. Firstly, since they are pairwise distinct primes,

a7, a8, . . . , an are trivially pairwise coprime. Secondly, recall how a5 and a6 were
defined using Lemma 2.2 in such a way as to ensure that a5 and a6 are coprime with
each other. Finally, Lemma 2.2 also guarantees that no primes less than m divide a5
or a6; and as m = −4u is larger than any of |ai| for 7 ≤ i ≤ n by the choice of u, we
have, in particular, that both of a5 and a6 are coprime with each of a7, a8, . . . , an.

It remains to establish subsum condition (ii) for (a1, . . . , an). Assume that we have
fixed b1, . . . , bn ∈ {−1, 0,+1} such that

∑n
k=1 bk · ak = 0. We proceed via a series of

claims.

• It must be true that b1 = b2 = b3 = b4. Recall that a5, a6, . . . , an do not depend on
x. Since x = (y + 1)h!, this implies for h large enough that x > |a5| + |a6| + · · · + |an|.
Thus, if for some choice of (b1, b2, b3, b4) we have that |∑4

k=1 bk · ak| > x, then no
choice of (b5, b6, . . . , bn) can lead to

∑n
k=1 bk · ak = 0. We will argue that this must

be the case unless we have b1 = b2 = b3 = b4.
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So let us inspect all possible choices of (b1, b2, b3, b4). We first exclude some
trivial cases. Firstly, if only one of b1, b2, b3, b4 is nonzero, then |∑4

k=1 bk · ak | > x.
Secondly, we can omit choices of (b1, b2, b3, b4) where the summands bk · ak are all
positive or all negative. Finally, to further reduce the numbers of cases to consider,
we assume without loss of generality that bi = 1 when {1 ≤ i ≤ 4} is the smallest
index such that {bi � 0}; the case bi = −1 is symmetric. Then the following cases
not satisfying b1 = b2 = b3 = b4 remain:

– a1 + a2 + b3 · a3 + b4 · a4 where (b3, b4) � (1, 1),
– a1 − a2 + b3 · a3 + b4 · a4 where b3, b4 ∈ {−1, 0,+1},
– a1 + b3 · a3 + b4 · a4 where b3, b4 ∈ {−1, 0,+1},
– a2 + b3 · a3 + b4 · a4 where b3, b4 ∈ {−1, 0,+1},
– a3 + b4 · a4 where b4 ∈ {−1, 0,+1},

and the absolute values of all of these expressions are easily seen to be
lower-bounded by x.

With the preceding claim established, we can from now on treat a1 + a2 + a3 + a4
as a single number that can either be included in a subsum with positive or negative
sign, or not.

• It must be true that b5 = b6. Note that by the choice of a5 and a6 and by the
properties ensured by Lemma 2.2 we have that a5 > 0 and a6 < 0 and that

|a5|, a6 >

∣∣∣∣∣∣∣a1 + a2 + a3 + a4 +

n∑
k=7

ak

∣∣∣∣∣∣∣
= |a1 + a2 + a3 + a4| +

n∑
k=7

|ak |;

here the equality uses the fact that a1 + a2 + a3 + a4 is negative by (3-2) while
a7, a8 . . . , an are negative by choice. As a consequence, in any subsum equalling
zero, a5 and a6 must either not occur at all or occur in such a way that they partly
cancel each other out additively. This is only possible when b5 = b6.

Again, from now on we treat a5 + a6 as a single number that may be part of a subsum
or not. To complete the proof we distinguish all three possible cases concerning the
value of b5 = b6.

• If b5 = b6 = 0, then the subsum is empty. This is because in the sequence

|a1 + a2 + a3 + a4|, |a7|, |a8|, . . . , |an|

each entry is more than twice larger than the previous one; thus the only way of
obtaining a zero subsum in this case is when bk = 0 for all 1 ≤ k ≤ n.

• If b5 = b6 = 1, then bk = 1 for all 1 ≤ k ≤ n. Assume that for some choice
of (bk)1≤k≤n with b5 = b6 = 1 we have

∑n
k=1 bk · ak = 0. Since we also have∑n

k=1 ak = 0 it follows that
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n∑
k=1

ak −
n∑

k=1

bk · ak

= (1 − b1) · (a1 + a2 + a3 + a4) +
n∑

k=7

(1 − bk) · ak

= 0,

where 1 − bk ∈ {0, 1, 2} for k ∈ {1, 7, 8, . . . , n}. For the same reason as in the
previous item, the only choice of (1 − bk)k∈{1,7,8,...,n} that makes this equality true
is 1 − bk = 0 (thus bk = 1) for all k ∈ {1, 7, 8, . . . , n}.

• If b5 = b6 = −1, then bk = −1 for all 1 ≤ k ≤ n, by a symmetric argument.

Thus condition (ii) holds, completing the proof.

4. Closing remarks

In the preceding sections we established new lower bounds for strong variants
of the n-conjecture. In that context, we always exclusively considered n-tuples of
pairwise coprime integers. To conclude the paper, we make some closing remarks
about instances that are not necessarily pairwise coprime.

REMARK 4.1. If we allow common factors in n-tuples, we could, for example, consider
the set of quadruples of the form

((2h + 1)3,−23h,−3 · 2h · (2h + 1),−1)

for h ∈ N. Note that we still have gcd(a1, a2, a3, a4) = 1, but that arbitrarily large
common divisors occur between pairs of these numbers; for instance, 2h divides both
a2 and a3. It is not too difficult to see that these quadruples belong to the set A(4) from
Conjecture 1.2. The limit superior of the qualities of these quadruples is 3; that is,
under these relaxed conditions, it is possible to achieve considerably larger qualities
than in the preceding sections.

This is in accordance with Conjecture 1.2 and the previously known result of
Browkin and Brzeziński [2, Theorem 1] that QA(n) ≥ 2n − 5 for every n ≥ 3. The proof
of this fact starts from the geometric sum equation

k−3∑
i=0

yi =
yk−2 − 1

y − 1
.

Multiplying both sides of the equation by x := y − 1 we obtain

yk−2 − xyk−3 − xyk−4 − · · · − x − 1 = 0.

It is easy to see that conditions (i) and (iii) from Conjecture 1.2 are satisfied. Using
a clever choice of k and x = y − 1, Browkin and Brzeziński were able to obtain a
sequence of n-tuples summing to 0 such that each single n-tuple satisfies the subsum
condition and such that the sequence of corresponding qualities has an accumulation
point greater than or equal to 2n − 5.
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The previous comments concern the case where we allow unbounded common
divisors between the elements of the solution n-tuples. This can be thought of as the
opposite extreme of the situation studied in the main parts of this paper where we only
considered n-tuples whose entries were required to be pairwise coprime. In between
these two extremes, we could also study a case where finitely many (that is, bounded)
common divisors are permitted. We conclude the paper by giving an example of an
intermediate result that can be obtained for this setting.

LEMMA 4.2. There is a finite set E such that there exists a sequence (a(h)) of quintuples
(a1, a2, a3, a4, a5) of integers such that:

(i) a1 + · · · + a5 = 0;
(ii) there are no b1, . . . , b5 ∈ {−1, 0, 1} and i, j with 1 ≤ i, j ≤ 5 such that bi = 0 and

bj = 1 and
∑5

k=1 bk · ak = 0;
(iii) gcd(ai, aj) ∈ E for any 1 ≤ i < j ≤ 5;
(iv) gcd(a1, . . . , a5) = 1; and
(v) lim suph→∞ q(a(h)) ≥ 9

5 .

PROOF. Let x be �h − 1 for some h ∈ N and some fixed odd prime number �. Fix

a1 = 189(x + 1)9,

a2 = −189(x − 1)9,

a3 = −42(3x2 + 7)4,

a4 = 16(63x2 + 79)2,
a5 = 608.

The greatest common divisor of a1 and a2 is 189.
We claim that gcd(a1 · a2, a3) divides 1890. To see this, first note that, on the

one hand, the least common multiple of 189 and 42 is 378. On the other hand,
if a prime p divides both x2 − 1 and 3x2 + 7, then x2 ≡ 1 (mod p) and therefore
3x2 + 7 ≡ 10 (mod p); thus, since p divides 3x2 + 7 by assumption, we may conclude
that p is a factor of 10. Note that 1890 is the least common multiple of 378 and 10.

In an analogous way, we can argue that gcd(a1 · a2, a4) is a factor of 214 704 and
that gcd(a3, a4) is a factor of 5712. Note that gcd(a5, ai) for any i � 5 is a factor of 608.
Then, letting

E = {r : r divides one of 608, 1890, 5712, 214704},

we have that all common divisors of the entries of (a1, . . . , a5) are contained in E. We
also note that gcd(a1, . . . , a5) divides gcd(gcd(a1, a2), a5) = 1.

An easy calculation shows that (i) is satisfied. To see that condition (ii) holds, argue
as in the proof of Theorem 2.3.

By definition, x + 1 is a power of �. Thus, rad(a1 · a2 · a3 · a4 · a5) is a factor of

189 · 42 · 16 · 608 · � · (x − 1) · (3x2 + 7) · (63x2 + 79).
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As this is a polynomial of degree 5, whereas a1 is a polynomial of degree 9, we
conclude that lim suph→∞ q(a(h)) ≥ 9

5 . �

Similarly, Pomerance [7, p. 362] describes a family of 4-tuples a(h) = (a1, a2, a3, a4)
such that gcd(ai, aj) ∈ {1, 2} for all i and j; for this family, the limit superior of the
qualities q(a(h)) is greater than or equal to 5

3 .
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