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Abstract

The Zakharov-Shabat scattering transform is an exact solution technique for the nonlinear
Schrédinger equation, which describes the time evolution of weakly nonlinear wave trains.
Envelope soliton and uniform wave train solutions of the nonlinear Schrodinger equation
are separable in scattering transform space. The scattering transform is a potential
analysis and synthesis technique for natural wave trains. Discrete versions of the direct
and inverse scattering transform are presented, together with proven algorithms for their
numerical computation from typical ocean wave records. The consequences of discrete
resolution are considered.

1. Introduction

The potential of the nonlinear Schrodinger equation and the Zakharov-Shabat
scattering transform as an analysis technique for natural wave trains has been
argued by Sobey and Colman [15]. The nonlinear Schrodinger equation describes
the evolution of weakly nonlinear wave trains in deep water, retaining a measure
of nonlinearity and leading to both envelope soliton and uniform wave train
solutions. Steep wave forms interact in a nonlinear manner, complicating the
separation of the fundamental components or normal modes and invalidating
linear superposition and the Fourier transform or variance spectrum representa-
tion of a natural sea state. Under certain circumstances, however, the nonlinear
normal modes are separable in scattering transform space, just as the linear
normal modes are separable in Fourier transform space. The scattering data in
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scattering transform space is time invariant and analogous to the Fourier spec-
trum for the linear problem. The inverse scattering transform is also defined,
allowing synthesis of consistent sea states in a manner analogous to the inverse
Fourier transform. In addition, the inverse scattering transform accommodates
consistent time evolution of the initial wave train.

Following a brief review of the background to the nonlinear Schrddinger
equation and the Zakharov-Shabat scattering transform, an implementation is
described of the discrete direct scattering transform and the discrete inverse
scattering transform in the context of typical ocean wave records.

2. The nonlinear Schrodinger equation

The classical approach to representation of the nonlinearity of surface gravity
waves in deep water has been the Stokes expansion, in which the smallness of the
wave steepness is exploited to linearise the equations and estimate nonlinear
influences as small corrections to the linear wave solution. This approach has
proved reasonably successful but the linearisation removes potentially fundamen-
tal aspects of the problem.

A number of more recent studies of the evolution of nonlinear wave trains in
deep water and in one spatial dimension have retained weak nonlinearity in the
lowest order equations by requiring a balance between two small parameters, the
wave steepness ka and the spectral narrow-bandedness Ak /k, where k is the wave
number and a the wave amplitude. It is convenient to extract the central,
dominant or carrier wave (frequency w,, wave number k,, where wj = gk,) and
focus attention on the slowly varying complex wave envelope A(x, ¢t) which is
related to the free water surface H(x, t) as

H(x, t) = Re[ A(x, t)exp{i(kox — wyt)}], (2.1)

where x represents position and ¢ time. The resulting lowest order equation is the
nonlinear Schrodinger equation

(04 | w, 04 w, 924
l(¥+_2—l_c();§)__0_x__%w°k§lAle=0’ (22)

describing evolution in space and time of the envelope of a weakly nonlinear wave
train in deep water. A simple cubic nonlinearity appears in the final term.
Equation (2.2) was first established by Zakharov [18] and subsequently confirmed
by Hasimoto and Ono [9], Davey and Stewartson [6] and Yuen and Lake [17].
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Introducing dimensionless variables 1 = —wyt, s = 2y2 ko(x — wyt/2k,) and
u(s, 1) = kyA(x, t)/4 gives
Qu | %u .
187_+as2+8[u|u—0, (2.3)

as the standard dimensionless form of the nonlinear Schrédinger equation; u(s, 7)
being the dimensionless complex envelope in a co-ordinate system now moving
with the group velocity w,/2k, of the dominant wave.

As for linear wave theory, there are uniform wave train or sine wave solutions
to the nonlinear Schrédinger equation. In dimensional terms,

H(x, 1) = agsin[kox — wy(1 + ik2a)t], (2.9)
or in dimensionless terms
u(s, 7) = eexp(i8e’r). (2.5)
The amplitude ¢ of the dimensionless wave envelope is related to the wave
steepness as ¢ = kya,/4. The wave envelope modulates at a frequency of 82,
which is also related to the wave steepness.

There are also envelope soliton solutions to the nonlinear Schrodinger equa-
tion:

u(s, 1) = 2mexp| —i{4(£? = )7 + 2&s — 8} |sech[2n(s — 5o + 4£7)].
(2.6)

This complex envelope has a dimensionless amplitude of 5, a dimensionless half
width of In(2 — y3)2% and moves at a dimensionless speed of 4£ relative to the
group velocity of the dominant wave of the train. The hyperbolic secant profile
oscillates at a dimensionless angular frequency of 4(¢2 — 7%) and a dimensionless
wave number of 2¢. It is defined by four independent dimensionless parameters;
1, £, s, and 8. In dimensionless terms the water surface profile is given by

H(x, 1) = asech[2 k2a{(x — x,) — (wo/2ko + 0)1}]
Xexp[-— %kgazwot ~(4ik?/wo )o{(x — xo) —(wo/2ky + )t + 0}],
2.7)

where a characterises the amplitude and v the velocity relative to the group
velocity of the dominant or carrier wave; x, and @ represent position and phase.
Equation (2.7) describes a wave packet oscillating at the dominant wave frequency
and wave number but amplitude modulated by the hyperbolic secant profile.
Envelope solitons are uniquely nonlinear wave forms, the stability of the wave
packet being achieved by a balance between nonlinear and dispersive influences.

https://doi.org/10.1017/50334270000003908 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000003908

(4] Scattering analysis 47

3. The scattering transform

The scattering transform is applicable to a certain class of nonlinear partial
differential equations of evolution. It was first applied to the Korteweg-de Vries
equation by Gardner et al. [8]) and extended to the nonlinear Schrodinger
equation by Zakharov and Shabat [19]. The close analogy with the solution of a
linear partial differential equation of evolution by the Fourier transform (or
indeed any integral transform) has been drawn by Ablowitz et al. [1}.

The solution of the nonlinear Schrodinger equation can be represented (see
Figure 1) as

u(s,O)—;S({,O)l—;S(f,'r)I;u(s,'r). (3.1)

The initial data is mapped into scattering transform space in step I by the
direct scattering transform, appropriate time evolution is accomplished in scatter-
ing transform space by step II and the mapping is reversed to physical space in
step III by the inverse scattering transform. The representation S({, 7) in scatter-
ing transform space is called the scattering data, which is analogous to the Fourier
transform in Fourier transform space. It is fundamental to the Zakharov-Shabat
scattering transformation that each of the three steps in Equation (3.1) is a
separate linear problem, the solution of the nonlinear Schrodinger equation being
decomposed into a sequence of linear problems. It is also fundamental that the
free wave (continuous spectrum) and soliton components (discrete spectrum) are
separable from the scattering data and that these normal modes are time

invariant.

WAVE WAVE D'F;ETCT SCATTERING
RECORD > ENVELOPE - DATA
H{x,0) u(s,0) S(%,0)

ANALYSIS
v TIME
EVOLUTION
SYNTHESIS

WAVE WAVE SCATTERING
RECORD - ENVELOPE mv@s DATA
H{x,t) u (s,T) ST s(g,t)

Figure 1. Analysis and synthesis of weakly nonlinear waves.
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4. Direct scattering problem

The direct scattering problem involves the solution of the Zakharov-Shabat
eigenvalue problem which can be reduced, [19], to the simultaneous linear partial
differential equations

9o, + i§v, = qv,, (4.1a)
as .

do )

a_s2 — ifv, = —q*v,, (4.1b)

where the eigenfunctions are the vectors

vz[ul(m,:)
”2(S;T,§)

which have complex eigenvalues { = ¢ + in. In application, time 7 and the
eigenvalues { are constant parameters of the problem, so that equations (4.1)
become ordinary differential equations. The scattering potential ¢(s; 7) =
2iu(s; 7) is the representation of the complex dimensionless wave envelope u(s; 7)
and the asterisk superscript indicates the complex conjugate. The time invariant
asymptotic characteristics of the eigenfunctions form a sufficient basis for the
reconstruction of the scattering potential and subsequently the wave record at any
future time. These asymptotic characteristics comprise the scattering data, form-
ing a complete summary of the wave data in scattering transform space, analo-
gous to the linear Fourier spectrum. For real eigenvalues ¢ = £, Zakharov and
Shabat define two pairs of linearly independent eigenfunction solutions of
Equation (4.1), ¢, ¢ and Y, 47, termed the Jost functions, which have the
asymptotic characteristics

§= —o0 § = 0

sl ¢<s;7,§)=[j;] - [‘] (4.22)

be's®
[_2&] - q‘s(s;f,;):[“] - [b*e”“], (4.2b)

—¢7 —a*e'ts

[b*e—m] _ "’(“’f):[m . L?{s], (4.2¢)

ae'’s

a*e” s (s r — 124
[—be"“] v (sim§) [—\PT}

1

[e"“]. (4.2d)
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The scattering data are the coefficients a({) and b({, 7) relating these two sets of
linearly independent solutions at the opposite asymptotic state, as

¢ =ay+ by, (4.3a)
¢ = a*y + b*y, (4.3b)
§ = —a¢ + b*9, (4.3¢)
and
¥ = a*¢ + bo, (4.3d)
from which it follows that
aa* + bb* = 1. (4.9)

The existence of the scattering transform is subject to the condition

f°° lq|ds < oo, (4.5)

- 00

which requires that the scattering potential decay sufficiently rapidly as | s |— oo.
When this condition is satisfied, the eigenfunctions and the scattering data can be
extended into the upper half of the complex ¢ plane, n = 0. The eigenvalues are
continuous along the real axis { = £, and there are a discrete number, say N,
corresponding to zeroes of the a({) function in the upper half plane. Each of
these discrete complex eigenvalues {,, j = 1,2,...,N, corresponds to a soliton
whose complete scattering data representation is b(§,, 7). Correspondingly, the
continuous eigenvalues § along the real axis are identified, [1], with the free wave
or radiation components and their complete scattering data is given by both a(§)
and b({, 7). For the continuous and discrete eigenvalues, the scattering data
S(¢, 7) is defined as

— b(g’T) c T) = ] —
St r)=S a(8) $.¢(8,7) ©) J=12,...,N|, (4.6)

where 1/a’({,) is the complex residue of the 1/a({) function at the pole {;. A
schematic illustration of the discrete and continuous components of the scattering
data spectrum is shown in Figure 2. The discrete spectrum is shown as delta
functions, being poles of the b({, 7)/a({) function, but the spectral constants
¢,(§,, 7) are decidedly finite, being the result of nonzero residues 1/a’({)).

The nature of the direct scattering problem for the particular solution ¢, for
example, can be discerned from equations (4.1) and (4.2a). Equations (4.1) are an
initial value problem describing subsequent development in non-dimensional
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space of the eigenfunctions, given an initial state. For the particular solution ¢,
the initial state is the plane wave exp(—i{s) at s = — oo which is scattered by the
scattering potential g(s; 7), the wave envelope, as it propagates or radiates in s
space, to result in a transmission coefficient a({) and a reflection coefficient
b(§, 1) at s = +o00. Where the wave envelope or the scattering potential is zero,
the plane wave propagates unchanged through space such that the transmission
coefficient a({) is identically one and the reflection coefficient b({, 7) is zero.
Hence from equation (4.4) it follows that a(§) —» 1 and b(§, 1) — 0 as | £|— oo.
For ¢ real, the eigenvalues have the nature of dimensionless wave numbers or
phase speeds but they refer to relative motion with respect to the dominant wave
with wave number k. These eigenvalues are continuous in the range —oo < § <
oo, although in practice it would be expected that most of the energy would be
concentrated about the dominant wave, § = 0. A narrow-banded spectrum is also
fundamental to the derivation of the nonlinear Schrddinger equation. The discrete
eigenvalues are {, = §; + in;, § characterising the phase speed of the jth soliton
with respect to the dominant wave celerity and 7; characterising its dimensionless
amplitude and length.

oo
iy
Eal Ral
-l

CONTINUOUS SOLITON
SPECTRUM T

T SOLITON

Figure 2. Schematic representation of scattering data spectrum.
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5. The discrete scattering transform

Computation of the discrete scattering transform from a real wave record
H(0, t) involves the computation of the scattering potential ¢(s; 0) from the wave
record, followed by numerical solution of the Zakharov-Shabat eigenvalue prob-
lem to obtain the scattering coefficients a({) and b({,0) and the scattering data
spectrum. An initial step is the identification of the dominant wave parameters w
and k.

For the present purpose, w, has been equated with the peak frequency of the
Fourier spectrum and . is computed subsequently from the dispersion relation-
ship, although it is possible to refine this initial estimate of w, by means of any
remaining linear trend in the phase of the estimated complex envelope, as
described by Bolt and Brillinger [2].

The complex wave envelope A(x, 0) may be computed from H(x,0), related to
the wave record H(0, ¢) in a discrete sense as

H(mAx,0) = H(0, mAt), (5.1)

where Ax = —wyAt/2kyand m= —M,...,—1,0,1,..., M. The initial data re-
quired is the spatial description of the water surface at time zero, but it is the time
history of the water surface at position zero that is available from wave records.
Equation (5.1) essentially invokes Taylor’s hypothesis, [16], utilised in turbulence
to relate H(O, t) to H(x,0). In this context it is a frozen envelope assumption, the
hypothesis being that the wave envelope at time zero is convected past the zero
position at the group speed of the dominant wave and without change of form.
This assumption is in fact exact to lowest order, where only the first and second
terms of equation (2.2) remain and the envelope is propagated at the group speed.
The time and space origins can be assumed as central to the appropriate records
without loss of generality. For a typical wave record, Az is 0.5s and M is 1024.
Adopting a Fourier representation for H(x, 0), it follows directly, [7], that

A(x,0) =[H(x,0) + iH(x,0)]exp(—ikyx), (5.2)
where
A(x,0) = 2—17 f:oiF(k)exp(ikx) dk, (5.3)
and
F(k) = f_wwH(x,O)exp(—ikx) dx. (5.4)

In complex demodulation of time series, the real function H is the Hilbert
transform, [7], of H and the term in square brackets is the pre-envelope function.
Equations (5.3) and (5.4) are the inverse and direct Fourier transforms in the
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space domain and were implemented in their finite discrete forms, using an FFT
algorithm. The wave envelope was computed as

A(mAx,0) =[ H(mAx,0) + iH(mAx,0)]exp(—ikymAx), (5.5)
which was scaled to the finite discrete scattering potential
g(mAs) = (2iky/4)A(mAx,0), (5.6)
where
As =22 k,Ax.

The existence condition for the scattering transform imposed by equation (4.5) is
very similar to the existence condition for the Fourier transform, [3],

f_°° |H(t) | di < oo. (5.7)

These conditions potentially restrict the respective transforms to wave records
that decay sufficiently rapidly as |7|— . Of course, this condition is not
satisfied in the nondecaying finite records used in analysis but is accommodated
for the Fourier transform by invoking the theory of generalised functions, [11],
and using the Dirac comb, [13], and a wide range of possible data windows. An
approach akin to the theory of generalised functions may be applicable also to the
scattering transform and further clarification of this point is necessary. The
approach has nonetheless been adopted, using a cosine taper window to J points
at either end of the discrete record of 2M + 1 points. In discrete Fourier analysis
the fraction J /M is normally 1/5.

The computation of the scattering coefficients requires the numerical solution
of the Zakharov-Shabat eigenvalue problem, equations (4.1), to obtain any one of
the possible solutions ¢, ¢, ¥ or ¥. Simultaneous solution of equations (4.1) with
initial conditions given by equations (4.2) yields the scattering coefficients at the
other extremity. The particular solution ¢ was chosen for its mathematical
convenience and a simple change of variable introduced to simplify the problem:

P, = ¢, exp(i$S/2), (5.8a)-
and
@, = ¢, exp(—i{S/2), (5.8b)

where S is the length of the finite integration domain, extending from —S/2 to
S /2. Equations (4.1) thus become

do
_dsl = —i¢{®, + q®,exp(i{S), (5.9a)
do
7ds—2 = i{®, — g*®, exp(i¢S), (5.9b)
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and the asymptotes become

s=—S/2 s=8/2
[(l)]exp(igs) - [2] - [Z] (5.10)
giving initial conditions at s = —S/2 of
®,(—5/2) = exp(ifS), (5.11a)
and
®,(—S/2) = 0. (5.11b)

For numerical integration, the complex solutions ®, and ®, were separated into
real and imaginary parts, ®, = y, + iy, and ®, = y, + iy,, reducing equations
(5.9) to a set of four simultaneous first-order ordinary differential equations
which were numerically integrated for each value of { using the standard
fourth-order Runge-Kutta algorithm. As the algorithm requires computation of
the derivatives incorporating ¢(s) at 4 intervals, a solution step of A = 2As was
adopted so that the discrete scattering potential was available at the locations
where the derivative was required. The scattering coefficients a({) and b(§,0)
were extracted from the final values of the solutions at s = §/2, i.e. a({) = y,,, +
iy, and b(§,0) = y; + iy, .

The choice of the £ and 5 values is not dictated by the locations of the
scattering potentials, but the choice is not entirely free. To lowest order, £ = 0
and the complete wave train is identified with the dominant wave. The range of
possible £ values is thus centred about £ = 0; for convenience a uniform A{ step
(typically 0.005) was chosen with £ = rA§ for r = —R,...,—1,0,1,...,R. The
bandwidth RA{ should be relatively narrow, a large value giving better resolution
but at a computational cost. The choice is also related to the discrete resolution
parameter £As as subsequently discussed. For exploratory computations R = M /2
has been used. The 5 values were chosen in a similar manner but only the upper
half plane is necessary.

With the scattering data computed for a selected range of { values in the upper
half plane, the zeroes of the a({) function were located by the specification of a
threshold level for the | 1/a({) | surface, exceedance of which identified a pole or
discrete eigenvalue ¢ »J = 1,...,N. With experience in setting the threshold level,
systematic scanning of the surface was very effective.

Computation of the continuous spectrum b(£, 0)/a(£) required simple division
of the complex scattering coefficients. The discrete spectrum b(§;)/a’(§;) required
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in addition the determination of the residue of each of the poles of the 1/a({)
function, computed by complex integration, [4], as

1 1 f 1
=-— | —xdt, (5.12)
al(gj) 2mi Ca(f)

along any closed contour C enclosing only that pole in a positive sense; the
trapeznidal rule was used along a ecfnngular contour sym“mptrir'n"y ?lm\pd

a4 elliall cLailall aveae

around the pole §; = £; -+ in, and not including other poles.

6. Inverse scattering problem

The inverse scattering problem is the reconstruction of the scattering potential
(and hence the wave envelope and wave train) at any time from the scattering
data spectrum, S({,0). The time evolution of the propagating wave train is
represented as time evolution of the scattering data spectrum in scattering
transform space. Zakharov and Shabat [19] have shown that, for the continuous
spectrum, a(§) is time invariant and

b(&, 1) = b(£,0)exp(id¢?r), 6.1)

and, for the discrete spectrum, a({)) is of course zero and

b($;, 7) = b($,,0)exp(i4¢r)
= b(§,,0)exp(8nér)exp[id($? — 7)1 (6.2)

The evolution of b(&, 7) involves a rotation at dimensionless angular speed 4£2
with the magnitude remaining constant and the evolution of b(§;, 7) involves a
time-dependent amplitude scaling in addition to a rotation at speed 4(£¢2 — 7).
The time evolved scattering data spectrum is

b(§,7) b(gj,") .

L O R

1,2,...,N|; (6.3)

S(¢, ) contains all the information necessary for reconstruction of the potentials
at any time.

Following Zakharov and Shabat [19], the reconstruction of the scattering
potential reduces to the solution of the linear Gel'fand-Levitan integral equation
of Marchenko type

K(s,y;7)—F*(s+y,1)— /wK’z*(s, w; 7)F*(w + y; 1) dw =0, (6.4)
s
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where K5(s,w; 1) = — [* K \(s, r; 7)F(r + w; 7) dr and y = 5. The kernel is

F(s;1) = 51;/ b(i’ﬁ)) exp(its)dé — i 2 ( ' 'r)exp(tg‘ s), (6.5)

and the potential ¢(s; 7) is related to the dependent variable K (s, y) as
q(s;7) = —2K(s, 5; 7). (6.6)

The kernel is closely analogous to the inverse Fourier transform and clearly shows
the linear summation of the continuous and discrete elements. These components
are separable only in scattering transform space, where advantage may be taken
of linearity and the validity of superposition.

7. The discrete inverse scattering transform

Computation of the discrete inverse scattering transform requires the discrete
computation of the kernel F(z) from the time evolved scattering data spectrum
and the numerical solution of the Gel'fand-Levitan equation. The resultant time
evolved discrete scattering potential may then be demodulated and dimensiona-
lised to obtain the wave record at any time.

The time evolution of the scattering data spectrum in transform space is

b(rAE, 1) _ b(rA¢,0)

a(rg) a(rAf) exp[4i(ra)’], (1.1)

and

b(¢,,7) _ b($;,0) .

&) = alt) xp(4i7), (1.2)

yielding both the discrete and continuous spectra in a suitable form for computa-
tion of the kernel F(z; 7). The time v may have any positive or negative value, a
zero value for T recovering the original record.

The continuous part of the kernel has the form of an inverse Fourier integral.
The inverse FFT algorithm is potentially applicable but loses computational
attraction where the number of discrete points in the data series is not an integer
power of two. Greater flexibility was achieved in initial computations by
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trapezoidal rule integration of the continuous spectrum, the discrete representa-
tion of the kernel being

1 & b(rat, 1) N
F(mAs) = 5= > TrA,g_) exp(irAémAs) — ijgl cj(fj, 'r)exp(ifijs),
(7.3)
form= —2M,...,—1,0,1,...,2M

The Gel’fand-Levitan integral equation was reformulated as a set of simulta-
neous linear algebraic equations in the unknowns K,(s, y) by trapezoidal rule
integration, yielding a separate linear equation for each discrete value of y = s.
Adopting the discrete notation s = SAs, S = —M,...,0,...,.M; y=YAs, Y =

oo Myw=WAs, W=S,.... M;r=RAs,R=S,.... M; Ky =K (s, y;7) =
K,(SAs, YAs; 1); Fg,y= F(s +y; 1) = F(SAs + YAs; 7); K}, = K3(s,w; 7) =
K3(SAs, WhAs; 1); equation (6.4) becomes

M—1
Ky — Ffy— As|3KEFS, v + 2 KJ*F}*+Y+%KX4FA’;+Y =0, (7.4)
J=S+1

where K}, = —As[3KsFs,, + M54 K F, oy + 1K\ Fyy ). This may be ex-

panded as
Ky—Fy+—- 2 2F:9+YFzs+ 2 J+YFs+,+2FM+YFs+M K
J=s+1
M—1
+A 2 II:‘-*-Y 2 1+SK + 2 F:Y 2 M+Y 2 :+MK
i=S+1 J=S+1 i=S+1 i=S+1
As?,
+ ) iy Fyes + 2 ,+Y M+,+ FM+YF2M m=0,
Jj=5+1
(1.5)
which is the linear algebraic equation in the M — S + 1 unknowns K:
M—1
KY + %CS,YKS + 2 C YK + CM YKM +Y’ (76)
=S+1

where C; y = As?[3F3, v F o5 + 2055 B v Fy ) + Ff, v F iy these complex
coefficients being calculated at location YAs as a function only of the known
discrete kernel F(mAs).

Equation (7.6) was reduced to lower triangular form using Gauss-Jordan
elimination with pivot scaling, the back substitution step being unnecessary as
only the K value corresponding to K (s, s; 7) was required. All 2M + 1 matrices
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of size m by m(m=2M + 1,2M,...,1) must be reduced to lower triangular
form, the scattering potential being related to the unknowns K as

q(SAs) = —2Kjq, (7.7)

for S=—M,...,—1,0,1,...,M. The complex wave envelope is reconstructed as
A(mAx; t) = (4/2ikg)g(mAs; 1) and the discrete wave record as H(mAx, t) =
Re[ A(mAx, t)exp(ikymAx)) for m= —M,...,—1,0,1,...,M; H(O,t) is then
given by the reverse of equation (5.1).

8. Exploratory computations

A number of exploratory analyses on artificially generated wave records were
conducted to verify the algorithms and to assess the significance of the discrete
finite approximations to the infinite continuous problem. Results from one of
these records, a cosine wave packet, are shown in Figure 3. Figure 3a at t = 0
shows the initial record, for which the computed scattering potential is shown in
Figure 3b at 7 = 0. The computed scattering data is shown in Figure 3c, the
discrete spectrum identifying a single soliton at £ = 0. The lobal structure of the
continuous spectrum is the direct result of the discrete resolution of the wave
record, the magnitude of the lobal components being dependent on the discrete
resolution as seen in Figure 4 for various discrete resolution intervals As. There
are similarities here to the sinc function, which is the discrete Fourier transform
of a rectangular data window, but the details will need to be clarified.

The consequences of discrete resolution are further illustrated in terms of the
sum aa* + bb* as a function of the dimensionless discrete resolution parameter

1667032 m

.30 - W, = 0.7672 rad 5™

-
kg = 0.06m

Figure 3a. Analysis, evolution and synthesis of a cosine wave packet—the wave record.
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£As, as shown in Figure 5. In accordance with equation (4.4), aa* + bb* should
remain identically one for all { values; reasonable resolution of aa* + bb* and
hence of the scattering coefficients is possible only with £As values less than
approximately 0.3. Figure 5 has the characteristics of an efficient low pass filter.
Wave components in excess of this cutoff at 0.3 are severely damped or com-
pletely filtered. This §As dependency, which is similar in concept to the aliasing

and frequency resolution phenomena encountered in the discrete Fourier trans-

form, is a direct consequence of the discretisation; it may be accommodated in
practice by appropriate selection of sampling intervals and sample lengths, in a
manner similar to current practice in Fourier analysis of wave records. The low

006
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Figure 3b. Analysis, evolution and synthesis of a cosine wave packet—the scattering potential.
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Figure 3c. Analysis, evolution and synthesis of a cosine wave packet—the scattering data.
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Figure 4. Influence of discrete resolution of scattering potential on the computed continuous spectrum
of a cosine wave packet.
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Figure 5. Numerical resolution of the discrete scattering transform.
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pass filtering may not be a serious limitation as it is consistent with narrow-banded
spectra, which are fundamental to the nonlinear Schrodinger equation.

The data window was also observed to influence the shape of the spectrum.
Figure 6 shows the computed spectra of a sinusoidal wave record with cosine
taper windows applied over various fractions J/M of the length of the record.
The limiting cases of J/M = 1.0 and 0.2 correspond to the cosine wave packet of
Figure 3a and to a sinusoidal wave record with a standard one-tenth cosine taper
data window, respectively. Leakage of the continuous spectrum into the side lobes
increases as the data window tends towards a rectangular window, as is also
observed in Fourier analysis. As for the discrete resolution problem, the influence
of the data window on the computed spectra may be accommodated and
compensated in practice as it is in the computation of the Fourier transform.

Any distortion in the scattering data introduced by the discrete direct scattering
transform is of course retained in the inverse transform but appropriate selection
of the resolution parameters A and An led to successful reconstruction of the
cosine wave packet at the same or a later time (Figure 3). Similar success was

20 4

b(£)
a(g)

Figure 6. Influence of data window on the continuous spectrum of a cosine wave packet.
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achieved with an envelope soliton record, providing adequate verification of both
the discrete direct (DST) and discrete inverse (IST) scattering transform algo-
rithms. A more detailed description of the numerical details and results has been
presented by Colman and Sobey [5), together with a discussion of wave grouping
and a preliminary application of the scattering transform to field records.

9. Scattering data in wave analysis

The scattering data has much to recommend it as an analysis technique for
natural sea states. It has a solid foundation in the physics of finite amplitude
gravity waves, being based on the nonlinear Schrodinger equation. Envelope
soliton wave groups are accommodated quite naturally against a background of
free wave solutions. The normal modes, the free wave and soliton components,
are separable in scattering transform space and these eigenvalues are time
invariant. The behaviour of the corresponding eigenfunctions for all s is not
required as only the scattering data, the asymptotic (| s | = oo) behaviour of the
eigenfunctions, is necessary to fully define the complex envelope u(s, 7). Further-
more the time evolution of the scattering data is independent of u(s, 7) and the
corresponding nonlinear wave train is recoverable at any time, through the
inverse scattering transform.

The close analogy to Fourier spectrum analysis and the Gaussian random wave
model is clear and in that context the Fourier transform has become indirectly the
standard summary of a natural sea state. In the context of the nonlinear
Schrodinger equation it is the scattering transform, specifically the scattering data
S(¢,0), that provides the analogous summary. The present authors have argued in
[15] the potential of the scattering transform as a “third generation” wave
analysis technique, that retains many of the advantages of the “second genera-
tion” Gaussian random wave model but accommodates in particular envelope
soliton wave groups.

However, there remain a number of unresolved aspects associated with the
possible application of the scattering data in wave analysis, the most significant of
which is perhaps the limitation imposed by equation (4.5) on the validity of the
‘scattering transform. This condition would seem to preclude uniform wave train
solutions from inclusion among the scattering data. A background of free wave or
radiation components are retained, however, and the link between these wave
forms and the uniform wave solutions needs further clarification. A similar
limitation on the Fourier transform, equation (5.7), theoretically excludes linear
uniform wave trains from Fourier spectrum analysis but this difficulty is over-
come, or at least bypassed, by the need to use finite data windows to accommod-
ate a discrete and finite record and spectrum. A more positive development is the
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soliton solution presented by Ma [12], which decays instead to the uniform wave
train solution at infinity (i.e. to equation (2.5) as |s|— o0). At the large
amplitude extreme this solution is the superposition of the uniform solution and a
much larger envelope soliton. At the small amplitude extreme, the Ma solution
describes what Lake er al. [10], have termed Fermi-Pasta-Ulam recurrence,
recurring modulations in the amplitude of the uniform wave train. The impact of
the Ma soliton on the present analysis has not been considered in detail but it
would appear to enhance the potential utility of the scattering transform in wave
analysis.

An additional problem is the multi-directionality of wind seas and/or the
superposition of wave trains generated by separate meteorological events. The
envelope soliton is known to be unstable to three-dimensional perturbations, [14],
but the nature of this instability is not yet known. It may well be evolutionary
rather than explosive, in a manner similar to the uniform wave train solutions,
and the scattering analysis may remain relevant.

These unresolved aspects of the approach foreshadow many problems in its
possible widespread application to analysis and synthesis of natural wave trains.
However, it is pertinent to remember that many of these problems are similar in
concept to those inherent in the now commonly used Gaussian random wave
model and associated Fourier analysis. The application of the scattering data to
wave analysis would need to accommodate or tolerate many of these problems in
a similar way. In the long term however, the success of the scattering data in
representing real sea states will be the only measure of its ultimate usefulness.

10. Conclusions

The nonlinear Schrodinger equation describes the evolution of weakly nonlin-
ear wave trains, of which there are two distinct classes—uniform wave trains and
envelope solitons. The Zakharov-Shabat scattering transform is an exact solution
technique for the nonlinear Schrodinger equation and the uniform wave train and
envelope soliton solutions are separable in scattering transform space. The
scattering transform is a nonlinear analogue of the linear Fourier transform and
the scattering data, the scattering transform of the initial data, is a potential
alternative to the common Fourier transform/variance spectrum representation
of a wave record.

The Zakharov-Shabat scattering transform is applicable to infinite, continuous
records. Both the direct and inverse transforms are defined for finite, discrete
records, as typically available from wave buoys. Proven algorithms are presented
for the numerical computation of both the direct and inverse transforms. The
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influence of both discrete resolution and the data window on the numerical
transforms are considered; not unexpectedly, the analogy with the Fourier
transform is maintained, although the details are of course different.
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