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Abstract

In this paper we investigate the limiting behavior of the failure rate for the convolution
of two or more life distributions. In a previous paper on mixtures, Block, Mi and
Savits (1993) showed that the failure rate behaves like the limiting behavior of the
strongest component. We show a similar result here for convolutions. We also show by
example that unlike a mixture population, the ultimate direction of monotonicity does
not necessarily follow that of the strongest component.
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1. Introduction

Two of the most important operations in reliability theory are mixtures and convolutions of
distributions. For extensive discussions concerning mixtures of distributions and the shape of
their failure rate functions, see the monographs of Lai and Xie (2006) and Marshall and Olkin
(2007). In this paper, based on the corresponding results for mixtures, we discuss similar results
for convolutions.

Convolutions correspond to instantaneous replacement of failed components in mechanical
or electrical systems. Mixtures arise when components in a population can be either weak or
strong. A fundamental result for mixtures is that the mixture of components with decreasing
failure rates have a decreasing failure rate. For convolutions, a basic result is that convolutions
of lifetimes with increasing failure rates have increasing failure rates.

Other results on mixtures include the result that the asymptotic failure rate is the same as
that of the failure rate of the strongest item, see Block ez al. (1993), and also that the asymptotic
direction of the failure rate corresponds to that of its strongest member, see Block and Joe
(1997) and also Block et al. (2003). In particular, if the failure rate of the strongest component
is eventually increasing, so is the failure rate of the mixture. Failure rates for mixtures with
bathtub shape have been analyzed by Navarro and Hernandez (2004), Wondmagegnehu et al.
(2005) and Navarro et al. (2009).
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We begin a program for convolutions similar to the one for mixtures. The first step is to show
that the failure rate for a convolution converges to the failure rate of the strongest component.
This is covered in Section 2. Although the result is quite general, it does not cover the case
when the failure rate of the strongest item is unbounded, such as in the case of a decreasing
failure rate (DFR) gamma. This case will be considered in a separate paper; see Block et al.
(2014).

In the case of mixtures, as mentioned above, we also know that the ultimate direction of its
failure rate follows that of its strongest subpopulation. This does not hold for convolutions. We
provide a counterexample in Section 3.

2. The general case

In this section we derive our general result. Consider the convolution of two life distributions
having densities g(t), h(t), survival functions G (1), H(r), and failure rates a(z), b(r). We
assume that lim;_, oo a(t) = a and lim;_, o, b(¢) = b with 0 < a < b < oco. The density f(¢)
and survival function F (1) of the convolution are respectively given by

f@ =/<) gt —y)dH(y) = /0 h(t — y)dG(y),

F(r)zfo G(t—y)dH(y)sz H(t —y)dG(y).

But since these are life distributions, g(u) = h(u) = 0 and G(u) = H(u) = 1 for u < 0, these
reduce to

t t
f(t)=/0 g(t—y)h(y)dy=/0 h(t —y)g(y)dy,

t t
F(t) = / G —yh(y)dy+ H@) = / H@t —y)g(y)dy + G@).
0 0
Letc(t) = f(t)/F(¢) be its failure rate. We want to show that ¢(¢) converges to the asymptotic
limit of the strongest component, i.e. that lim;_, o c(¢#) = a. We first need a lemma.

Lemma 1. Let r(t) be the failure rate of a life distribution with survival function S(t). Assume
that limy_, oo () = a for 0 < o < 0. Then, for every 8, n satisfying 0 < <a <n < oo,
there exists constants C, Ca such that

Cie™™ < S(t) < Cre™ forallt > 0.

Proof. Fix 6, n as above and set 261 = n — o, 2¢p = o — §. Since r(t) - «w ast — 00,
there exists o such that for all ¢ > 1,

Ir() —al <e,

where ¢ = min {e1, &;}. Hence, for t > 1y, we have

t
8(t —19) = / r(u)du < n(t —10).
1

0

Since we can write

1 1
S(t) =exp{—f0 r(u)du} = S(to)exp{—/ r(u)du},
to
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it follows that
S(to)e "0 < §(r) < S(19)e 2 forallt > 1.

Our result follows by setting
Ci = min{c;, S(fp)e"}, C, = max {ca, S(19)e’},
where ¢; = minjo<s<}{S(¢)e"'} and ¢z = max(o<;<s}{S(t)e’}.
We use this lemma to conclude our main result.

Theorem 1. Consider the convolution of two life distributions g(t), h(t) with survival functions
G (1), H(t) and failure rates a(t), b(t) as described at the beginning of Section 1. Assume that
Iim; ooa(t) =a,lim; oo b(t) =bwith0 < a < b < oo and that a(t) is bounded. Then
the failure rate of the convolution c(t) converges to a ast — 0o.

Proof. If for each r > 0, we introduce the probability measure M;(dy),
G(t — y)h(y)dy
F(1)

__Gu—yhydy

Joo Gt — w)h(w) dw
__ Gu—yh(dy

fooo H(t — w)g(w)dw
_ G(t — y)h(y) dy

fy Gt — wyh(w)dw + H(t)
_ G(t — y)h(y)dy

Jo Ht — w)g(w)dw + G (1)’

M;(dy) =

we can write ~
c(t) =/O a(t — y)M,(dy) (1)
and, hence,

c(t)—a= /0 la(t — y) —alM;(dy).

In the above, we set a(u) = 0 for all u < 0 and use the fact that g(¢) = a(t)G(¢). Given e > 0,
there exists L > 0 such that |a(#) — a| < € for all u > L. We next choose positive numbers
n,o0,and & satisfyinga <n <n+o0 <& <b. Set K(t) = ((n + o) /&)t and write

e¢]

K@)
c(t)—a = / a(t — y) — alM,(dy) + / a(t — y) — alMy(dy).
0 K (1)

Ifr > L/(1— (n+0)/&), we can bound the first integral by ¢ since then L < r — K(¢) <
t—y<tforall0 <y < K().

We next use Lemma 1 to control the second integral. Since we are assuming that a(z) is
bounded, we can define the finite number A = 2 x (supjg<,, o0y la(u)]). Then

S G = mh(y)dy
Jo Ht — w)g(w) dw + G(1)
< AH[K(D]/G(0).

<AMK®)]=A

‘ / a(t — y) — alMi(dy)
K1)
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Here, as usual, M, is the survival function of the probability distribution M;. By Lemma 1,
since we have a < 1 < £ < b we know that there exists C, D such that

G(t) > Ce™™, H[K®)] < De KO forallr > 0.

Combining these two results and noting that nt — EK(t) = nt — (n + o)t = —ot, it follows
that

D AD
lc(t) —al <e+ A<E>e”’_$K(I) =+ (T>e_‘" for all large ¢,

ie. limsup,_, o, [c(t) — a| < e. This completes the proof.

Remark 1. Note that Theorem 1 does not cover the case when the strongest component has a
failure rate which is unbounded, such as in the case of a DFR gamma density. This may just
be a weakness of our method of proof. The case of a convolution of gamma distributions is
considered in a separate paper (Block et al. (2014), where it is shown that the result of Theorem
1 remains true for all gamma distributions. The proof of this result, however, is completely

different.

Corollary 1. Consider the convolution of n independent lifetimes X; with failure rates a;(t),
i =1, ,n and assume that a;(t) — a; ast — oo with 0 < a; < oo. Ifa; <
min {az, ..., ay} and a1 (t) is bounded, then the failure rate of the convolution converges to a;
ast — oo.

Proof. The proof follows easily. By Theorem 1, the failure rate of X1 + X5 converges to
ay. Next, we write X1 + X2 + X3 as (X1 + X3) + X3. It follows from (1) that the failure rate
of X| + X» is bounded; hence, the failure rate of X| 4+ X» + X3 converges to a;. Continue by
induction.

3. A counterexample

In the preceeding section we showed that the failure rate of a convolution converges to the
limiting failure rate of its strongest component, just as in the mixture case. For the mixture case,
however, it was also shown Block ef al. (2003) that the ultimate direction of the asymptotic
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FIGURE 1: Counterexample.
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failure rate followed that of its strongest subpopulation. The example below shows that this is
not generally the case for convolutions.

A clue as to why this is not true is to consider the convolution of two DFR gamma densities
with shape parameters 0 < o] < oy < 1 but with the same scale parameter A. The convolution
is thus a gamma with shape parameter «; 4+ o2 and scale parameter A. If o; + o > 1 then
the failure rate of the convolution is IFR and, hence, increases to XA, even though the failure
rate of both its component are decreasing. Although this example does not provide a direct
counterexample since the limiting failure rates of both components are the same A, a slight
variation does.

Example 1. Consider the convolution of two DFR gamma densities having shape parameters
a1 = 0.4, @ = 0.7, and scale parameters A; = 2, A = 2.01. The MATHEMATICA® plot in
Figure 1 shows that the failure rate of the convolution increases to 2.
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