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PROBABILITY OF RUIN UNDER INFLATIONARY CONDITIONS
OR UNDER EXPERIENCE RATING

G. C. TAYLOR *

The effect of inflation of premium income and claims size distribution, but no¢
of free reserves, on the probability of ruin of an insurer is studied.

An interesting similarity between this problem and the ruin problem in an ex-
perience-rated scheme is exhibited. This similarity allows the deduction of parallel
results for the two problems in later sections.

It is shown that the probability of ruin is always increased when the (constant)
inflation rate is increased.

The distribution of aggregate claims under inflationary conditions is described
and used to calculate an upper bound on the ruin probability. Some numerical ex-
amples show that this bound is not always sharp enough to be practically useful. It
is also shown, however, that this bound can be used to construct an approximation
of the effect of inflation on ruin probability.

It is shown that if inflation occurs at a constant rate, then ruin is certain, ir-
respective of the smallness of that rate and of the largeness of initial free reserves
and the safety margin in the premium. The corresponding result for experience-
rated schemes is that a practical and “intuitively reasonable’” experience-rating
scheme leads eventually to certain ruin.

Finally, a simple modification of the techniques of the paper is made in order to
bring investment income into account.

1. INTRODUCTION

The probability of ruin of a risk business has been studied under various
conditions in the past, e.g. LUNDBERG (1909), CRAMER (1930, 1955), and
others. Most of these studies have assumed that the risk process is either a
stationary one or can be made stationary by means of a simple transformation.

Such models of the risk process do not include the case in which the phe-
nomenon of inflation is causing the volume of premium income and of claims
but not free reserves to vary in time. In current times, when rates of inflation
in many countries have been, are and appear likely to remain for some time
at high levels, it seems advisable to examine the impact of this feature on the
solvency of the risk business in so far as this latter is described by the prob-
ability of ruin.

In carrying out this examination, it is noted that the operation of certain
types of experience rating schemes is closely parallel to that of inflation on a
“conventional” risk business, so that the methods foreshadowed in the pre-
ceding paragraph are also applicable to experience rated processes.

* The author gratefully acknowledges the use of facilities of the Swiss Reinsurance
Company, Zurich, Switzerland in the preparation of this paper.
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2. DESCRIPTION OF THE RISK PROCESS

We consider a risk process in which premiums received in the time-interval
[0, #] total C(¢) (the process begins at ¢=0). Let X(¢) denote the aggregation of
claims occurring in the time-interval {0, t].

Suppose that {X(¢#), £ > o} is a one-dimensional Markov process. Let Z(¢)
denote the free veserves at time ¢t and write x for Z(0). Then

(1) Zty=x+C{t)— X(?)

is also a one-dimensional Markov process.

Since X(#) is the aggregation of claims up to time ¢, it is possible to write
~(t)
X =X S,

where S; is the random variable denoting the size of the i-th claim and N(t) is
the random variable denoting the number of clasms occurving in the time-interval
[o, t].

Sometimes in the following sections, no further assumptions about the risk
process will be made. At other times it will be necessary to place some restric-
tions on the random variables N(f) and S;.

3. ADDITION OF INFLATION TO THE RISK PROCESS

We now wish to superimpose an inflation process on the risk model described
in Section 2. We suppose this process to be a deterministic one in that we as-
sume the existence of a non-stochastic inflation factor f(¢) (> o) at time ¢.

Premium volume at time ¢ and also claims paid at time ¢ are inflated by the
factor f(f) (assume f(0) = 1). Let C*, X* and Z* represent the functions C,
X and Z respectively after modification by the factor f. Then

2) Crt) = | () dC(s);

X*() = | f() dX(9

~N()
(3) = X f{t) Ss

where #; is the epoch of the ¢-th claim;
(4) Z5t) = x+C*t) — X*().
Note that in (4} inflation is assumed to have no effect on free reserves. This

is not unrealistic in the light of the experience of the last few years. In any
case, this restriction is relaxed in Section 12.
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4. THE RELATION BETWEEN INFLATION AND EXPERIENCE RATING

Consider a risk business subject to the same risk process as (1) except that
each element of premium paid is modified by a refund or surcharge according
to the difference between past premiums and past claims. Suppose that the
precise form of this experience rating is such that the element of premium
payable at time ¢ is:

(s) dC(t) = {c~-k[C({)— X(t)]} dt.

¢ being the base rate of premium payable, i.e. the premium rate when the
experience follows its expected pattern exactly; and % being the experience
rating factor at time ¢ (normally, o <k <1).

It is easy to deduce from (5) that

N(t)
[1—ekt] + X S;[1—e k@-t3],

i=1

6) e =

BRI

whence
[ ~N(¢)
Z({t) = x+eF [ ceksds — ekt X S;ekty

o i=1
or
~ t N(1)
) Z({t) = ebt Z(t) = xekt + [ ceksds — X Sy ekt

From (2), (3) and (4) it can be seen that Z(f) represents a ‘‘conventional”
risk process subject to inflation at a continuous rate of k per unit time except that
the inatial free veserve also inflates at this vate instead of remaining constant as
assumed tn Section 3.

In each of the following sections, this relation between a risk process in
inflationary conditions and an experience-rated risk process permits the deduc-
tion of parallel results, although the emphasis is on the former in the section
headings.

5. PROBABILITY OF RUIN IS NONDECREASING WITH INCREASING INFLATION

This result is proved by showing that any realization of {Z*(¢), ¢ > o} leading
to ruin also leads to ruin if the rate of inflation is increased.

Consider two Z*-processes called Z] and Z; with associated inflation factors
of f; and f, respectively. Suppose a particular realization of Z; leads to ruin.
Then for some ¢, we have

(8) Zi{t) < 0,Z{(s) =oforo<s < &

Now, from (2), (3} and (4),
Zi0) - 2L = [ LA — Al dZ(s).
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Integration by parts yields:

©) Zi0 - 21 = a7 — [ 206 dels),

where g(s) = fy(s)/fy(s)—1, and it has been assumed that this function is
measurable. If g(s) is a monotone nondecreasing function (recall that g(o) = o),
then g(s) = o for s = o and dg(s) = o for s> o, and by (8) and (g)

(10) Zy@t) — Zi(t) <o.

We may summarize the above in the following:

Result

If two Z*-processes, Z; and Z;, are subject to measurable inflation factors of
f1(®) and f,(¢) such that the difference f,(¢)/f1(¢) is nondecreasing with increasing
¢, then the probability of ruin (in finite or infinite time) is not less for the
Zy-process than for the Z3-process.

Remarks

1. It is of course assumed that the initial reserves are the same in the Z3- and
Z4y-processes.

2. The result is entirely independent of the properties of the process Z. It
includes, for example, cases where the claim number process is not Poisson,
where sizes of different claims are not independent, etc.

3. The requirement that f,(¢)/f,(¢) be monotone nondecreasing is easily seen to
be equivalent to the requirement that the Zj-inflation rate should always be
not less than the Zj-inflation rate in those cases where f; and f, are smooth
and the term “inflation rate” therefore meaningful.

The situation for the experience-rated process Z is not so simple, However,
in the case of zero initial reserves (i.e. x =0), we see from a comparison of

equations (4) and (7) that the ZA—process is exactly the same as a Z*-process
with f(£) = exp (k). It follows, therefore, that, in this case, increasing &, the
degree of experience rating, will ncrease the ruin probability.

We shall see further, in Section 11, that under experience rating the ultimate
{t = c0) probability of ruin is always 1.

That these results are not intuitive to some extent is clear from a paper by
SEAL (1969), in which he refers to the criticism that his simulated ruin prob-
abilities (according to “‘conventional” risk processes) were too high. The sug-
gestion is that in practice an insurer can use some kind of experience rating
and, by basing premiums on past results, will be able to reduce the ruin
probability.

The reasoning leading to this conclusion is probably somewhat along the
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following lines. There are two important classes of free reserve trajectory: that
consisting of trajectories characterized by persistently light claims experience,
and that characterized by persistently heavy claims experience. In the first
case ruin does not occur whether experience-rated or not; in the second,
premium rates are forced up by the poor experience, thus reducing the pro-
portion of ruins.

The fallacy in such an argument is that it ignores the possibility of a light
claims experience followed by a slightly heavier than usual experience. In this
case the initial light experience forces premiums down so that the fund built up
in this period is not particularly large, despite the absence of claims.

6. THE DISTRIBUTION OF AGGREGATE CLAIMS UNDER INFLATIONARY
CONDITIONS

In this section we investigate the distribution of X*(¢) under the more specific
assumption that it is a compound Poisson variate, the claim number process
having a Poisson parameter A and the individual claim size distribution
having d.f. B(-) at time zero. The method of obtaining the moment generating
function (m.g.f.) of X*(f) is essentially that of ANDREwWs and BRUNNSTROM
(1976), though requiring some generalization since they take B() to be the
d.f. of a single-point distribution.

Consider the time-interval (jt/m, (j+ 1) ¢/m) where m is a very large positive
integer and 7 is an integer between O and (m — 1). Because the length of this
interval, ¢/m is small, the Poisson claim number process within it approximates
a binomial process with parameters 1 and M/m. Therefore, the m.g.f. of ag-
gregate claim amount in this small interval is:

(11) M; (1)

M A
<1 B —) + — Bluf(jtim)) + O (m™?

m

M
LB (jtm) — 1]+ O (n7Y,

where 8(u) is the m.g.f. associated with B(-). If the additional assumption of
independence of sizes of different claims is made, then the cumulant generating
function of X*(¢) becomes:

M
L+ Bl f(tm)) —1] + O (m-z)f

m—1 it —

Letting m — oo, we see that the c.g.f. becomes:

(13) .mwn=uﬁfwmm@~4

(12) K*(u, t) = mi] log

j=

https://doi.org/10.1017/50515036100006474 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100006474

154 G. C. TAYLOR

From this it follows that the j-th cumulant of X*(¢) is

t

S 1Ly ds

¢

’

(14) W) = Mo

where «; is the j-th order moment (about the origin) of the d.f. B(:) and the
second factor on the right is the average value of [ f(s)}/ over se[o, £].

Obviously, the m.g.f. of X*(¢) is:

(15) M*(u,t) = exp

Ak st as=1 |

In the most important special case, f(s) = ¢k$, (13) and (14) can be put in a
sometimes more convenient form. Equation (14) becomes:

(16) W) = hay (™ —1) | jk,
whence
* _ o oy (u ekt "~ oy ud
(17 K*(u, 1) = (R) [Zﬁ - 27_,7]
= om [ H e

7. AN UPPER BOUND ON THE PROBABILITY OF RUIN UNDER INFLATIONARY
CONDITIONS

An upper bound on the ruin probability can be found using the method of
GERBER (1973). Define Y*(¢) = Z*(t) — Z*(0). Gerber shows that, if *(x, )
is the probability of ruin before time ¢ (in the model of Section 6), then

(18) *(x, f) <mine-r® max E[exp{—r Y*(s)}],

r O<s<t
where for the sake of simplicity we are now assuming that time has been so
scaled that expected number of claims for unit time, i.e. A, is equal to unity.

In our case this reduces to:
(19) $*(x,f) <mine-r? max exp[—7C*(s) + K*(r,s)].

r 0<g<t

Let us examine the square-bracketed term in (19), By (14), it is

>

(20) s

S s e >, . > [ty au

where ¢ is premium income per unit time.
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Since all claims are > o, the «;’s are all > o. Thus for large #, the higher
powers of » dominate and expression (20) is positive and increasing. It also has
a zero at » = 0. Differentiation (with s constant) shows that it has one turning
point. Thus expression (20) is 0 at » =0, becomes negative as » increases, and
for s constant has a single real positive zero =(s).

For » > w (s) it is positive and increasing. In view of this, we can deduce
from (18) that:
(21) P*(x, £) < min e-"* max {1, exp[—7» C*({¢) + K*(r, t)l},

r=0

since, for given » = o, the maximum in (19) is 1 if r < =(¢), and is —# C*(t) +
K*(r, t) if » > =(t). Note that, in (21) we consider only » > o. This is because the
maximum in (19) is always at least 1 (whether # is positive or negative), so
that consideration of 7 <o tells us no more than that *(x, #) < exp (—rx)
which is > 1 and can be improved upon by choosing » =0 in (19). We can
simplify (21) a little further by noting that the exponential term there is <1
when o <7» < =(t), and so
(22) $*(x,¢) < min  exp[—rx — v C*(@t) + K*(7, )]

remn(t)

where we recall that » = =(f) is the unique real and positive solution of:
(23) ~ v C*(¢) + K*(r,t) = o.

The similarity between this result and Gerber’s (19}, both derived from
(18) by very similar reasoning, is to be noted. The two formulas are easily seen
to be identical if f(t) = 1 for all £

Remark

GERBER (1973, p. 210) commented for the case f(f) = 1 that inequality
(22) is rather sharp if £ is not too small. It would follow then in our case of more
general f(f) that we could take the right side of inequality (22) as reasonable
provided ¢ is not too small and the rate of inflation underlying f(¢) is not too
large.

In the case of an experience-rated scheme, the whole analysis goes through as
before except that Y*(¢#) is replaced by:

V() = Y*(t) + x(ebt—1).

Making this replacement and following through the previous working, we
soon find that:

~

(24) @(x, f) < min exp[—rxekt — 76(15) + K(r, 1))
rzf(¢)
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where d Ié denote C*, K* with constant inflation rate k, and » = #(¢) is the
unique real and positive solution of the equation

(25) — ra(et—1) — 7C) + Kr, 1) = o.

8. AN APPROXIMATION

It would be useful to have on hand a simple approximation to the ratio
$y(x, 8) [ $i1(x, ¢) where ¢; is the ruin probability associated with inflation
factor f;. Table 1 in Section 10 shows that inequality (22) is not always as
sharp as we would like, but that the ratio {(x,?#)/{i(x, ¢) is usually ap-
proximated reasonably by the ratio of the upper bounds given by (22). At
least this tends to be so in the “interesting’ cases where probability of ruin is
not too high.
This is demonstrated in Table 2z of Section 10.

Q. INFLATION AND EXPERIENCE RATING COMBINED

There is no difficulty in combining an inflation factor of f(¢) and an experience
rating factor of . It is easily checked that reserves at time £ are:

t N(t)
x+ekt [ ¢cf(s)ebsds — ek T S; f(t;) ebts,

which leads us to consider the stochastic process,
Zx(t) = xekt 4+ Cx(p) — X*(1),

where C *() and X *(¢) are the premium income and claims outgo respectively
up to time ¢ under the influence of an inflation factor of exp (kf) f(£).

10. NUMERICAL EXAMPLES

Consider the case in which the time-axis has been scaled in such a way that,
in the absence of any inflation, the claim intensity is 1 per unit time. Suppose
that money values have also been so scaled that (again in the absence of
inflation) the distribution of individual claim size is ¥3/6, i.e. m.g.f. is (1 — 7/3) 2.
We shall assume constant rates of inflation, i.e. f(f) = e¢¥¢, and consider the
values 2 =0, .05 and .15. Suppose that the basic premium income is 1.2 per
unit time, thus allowing a safety margin of 209%,. Then, by (22) and (23),

ekt — 1

k

(26) ¢*(x, 1) < min exp [—m—l.z 4 + K*(r, t)]»

rzwn(t)

where » = w(f) is the real positive solution of
ot —

k

(27) —~ 127 + K*@r,8) = o.
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In cases where the minimum in (26) is assumed for 7> =(¢), the relevant
value of 7 is that satisfying the equation:

ekt — 1 1 [B(re’”) -1 B - 1]
~ =0

k +k r B 7

— X — 1.2

ie.
(28) (1—4rekt)-3 — (1—4%7)-3 = r[kx + 1.2 (¥t —1)].

Also

—15-3_
K*(r, t) = ! f (_l_iJI dv
ki

o
=¥f [(1—30)"' + (1—40)"2 + (1—4v)~dv

1
= s l=log(1=40) + (1—§0)7" + 3(1—30)-

We take initial reserves equal to 5 and, for each value of %, calculate for
various ¢ the upper bound (22) on ¢*(5, £) and the ratio of this bound to the
corresponding bound on §(5, ¢). The results are given in Tables 1 and 2 where
the values of *(x, ¢) obtained from a computer simulation are also given. The
sample size for each simulated probability was 2400.

Similar calculations are made for the case of a negative exponential claim
size distribution. Equation (28) is replaced by:

(1—rebt)-2 — (1—7)"1 = r[hx+ 1.2 (¥ —1)].

ie.
r=314e B [1 — V1 —~ 4(1—1/A) ekt (14 eFt)-2)
where
A = 1.2 + kx(ebt—1)-1
Also,
- 1 . 1—7
.9 = k 8 1 — rekt)

Tables 3 and 4 then summarize these calculations. Once again the results of
a computer simulation (sample size again 2400) are given.
Several facts emerge from Tables 1 to 4.
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TABLE 1: UPPER BOUND (22) ON ¢*(5, f) IN CASE OF A %2/6 CLAIM SIZE

DISTRIBUTION2
¢ k=o0 k = .05 k= .15
1 .021 (.0033) .023  (.0038) 031  (.0046)
2 .057 (.0096) .071  (.014) .105  (.024)
3 .094 (.023) 122 (.031) .194  (.048)
4 .126  (.032) .169  (.055) .283  (.091)
5 154 (.054) 212 (.074) 364 (.150)
10 .235 (.008) .360  {.172) 631>  (.365)
25 273 (.165) .563P  (.383) 944" (.787)
[o'e} 273 1P 1P

& Figures in parentheses are simulated ruin probabilities.
b Values based on » = =(t).

TABLE 2: ESTIMATE OF RATIO ¢*(s5, #)/{(5, {) BY
THE RATIO OF THE CORRESPONDING UPPER BOUNDS
(22) IN CASE OF A ¥3/6 CLAIM SIZE DISTRIBUTION?

¢ k= .05 k= .15

1 1.10 (1.15) 1.48 (1.39)
2 1.25 (1.46) 1.84 (2.50)
3 1.30  (1.35) 2.06 (2.09)
4 1.34 (1.75) 2.25 (2.87)
5 « 1.38 (1.38) 2.36 (2.79)
10 1.53 (1.76) 2.69 (3.72)
25 2.06 (2.33) 346 (4.78)

a Tigures in parentheses are taken from com-
puter simulation.

TABLE 3. UPPER BOUND (22) ON (*(5,¢) IN CASE OF A NEGATIVE
EXPONENTIAL CLAIM SIZE DISTRIBUTION#

t k=o k = .05 k=15

1 .108 (.009) .117  (.011) .136  (.017)
2 .182  (.035) 205 (.041) .258 (.053)
5 311 (.096) 379 (.121) 529 (.200)
10 397 (.158) 520 (.233) 883 (.4306)

& Figures in parentheses are simulated ruin probabilities.

TABLE 4: ESTIMATE OF RATIO ¢*(5, £)/4(5, ?)

BY THE RATIO OF THE CORRESPONDING UPPER

BOUNDS (22) IN CASE OF A NEGATIVE EXPONEN-
TIAL CLAIM SIZE DISTRIBUTION2

13 k = .05 k=15

1 1.08 (1.22) 1.26  (1.89)
2 1.13  (1.17) 1.42 (1.51)
5 1.22  (1.26) 1.70 (2.08)
10 1.31  (1.47) 2.22 (2.76)

a Figures in parentheses are taken from com-
puter simulation.
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Tirstly, in Tables 1 and 3 we see that the upper bound (22), even in the case
of no inflation, is not as sharp as one might expect after a perusal of the cal-
culations of GERBER (1973, p. 210). The bound does, however, improve with
increasing ¢, whether inflation is present or not.

Secondly, for a given pair of inflation rates the ratio of upper bounds (22),
as exemplified in Tables 2z and 4, can serve as a rough approximation to the
ratio of the corresponding ruin probabilities, provided that these probabilities
are not too large. Even though the simulated results of Tables 1 to 4 are based
upon 2400 trials, the simulated low probabilities are still subject to random
disturbance. However, for 2= .05 in Table 2, the average relative error in the
approximation to $*(5, £)/4(5, ) is 11%,. The corresponding figure for 2 =.15
is 159,. If for k= .15, this error is calculated only on the basis of those ¢ for
which simulated probability is less than .z (this corresponds to considering
the values ¢=1, 2, 3, 4, 5 for £ =.05), then the average relative error is again
only 109%,.

In Table 4, the average relative error in the ratio for £ =1, 2 is 89, for £ = .05.
It is larger for 2 =.15 but mainly as a result of random error at =1 in the
simulation.

Thirdly, as $*(s, ¢) increases with increasing ¢, the approximation to ¢*(s, #)/
U(5, t) dealt with in Tables 2 and 4 becomes poorer.

In summary, it is fair to say that this approximation seems reasonable for
$*(5,¢) < about .z, but thereafter is rather dubious. However, the range
$*(5, #) < .2 is certainly the most interesting from a practical viewpoint.

11. EXPONENTIAL INFLATION MAKES ULTIMATE RUIN CERTAIN

The values of 1 given by (22) in the case {= oo are rather conspicuous in
Table 1, and raise the question of whether ultimate ruin always occurs with
probability 1 when inflation is present.

We consider here the case where there exists a constant K > o such that

(29) [ f(s)ds < K f(t) forall ¢

For example, if there is a constant rate of inflation, i.e. the inflation factor
is exponential, then (29) is satisfied. We also assume that the uninflated pre-
mium income is always received at a rate of ¢ per unit time, and that individual
claims in excess of cK occur with nonzero probability.

Under these conditions the rather discomforting answer to our question is
that no matter how large the initial reserves, no matter how large the safety
margin in premiums, no matter how small the rate of inflation (subject to
(29)), the ultimate probability of ruin is always 1.

This is easily proved. Suppose that our assertion is untrue; then {*(x, ¢)
approaches a limit (< 1) as ¢ — oo.
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Then
(30) [0% U (x, t)] / [1— * (x, t)] —> 0 as t— 0.

Now let G(x, ¢, y) denote the probability that an insurer with initial reserve
x will survive to time ¢ and have reserves between 0 and y at that time.
If By(.) denotes the d.f. of individual claim size at time ¢, then:

(31) A J 1 =Blo) G (.4, 9) | [ dyG (3,7, 9) =0 as t— oo
But reserve; at time ¢ are at most: 0
(32) v+ ¢ [ fo)ds < x + cKfH
By (31) and (32): 0
M T D= Bulw+ oK [0 4Gl 1, 3) | [ dyGl 1, 3)

< [ =By dyGlx, &, 3) | | dyGls, ¢, 9)

—>0 as t— o
ie.
(33) 1 — Byx+cKf(t)) —o0 as {— o

But, of course
Bulz) = B/ f)),
so that (33) becomes:
1 — B{cK+x/f(t)) > o as t— oo.
ie.
1 — B(K) = o.

Since this contradicts our assumption that larger claims than ¢K (unin-
flated) can occur, our hypothesis of ¢*(x, f) < 1 is false.

By an identical line of reasoning, we find that if individual claims in excess
of ¥+ cK can occur in an experience rated scheme, then the probability of
ultimate ruin is 1. This result was conjectured (though without any condition
on the distribution of individual claim sizes) by Sidney Benjamin.

As was remarked in Section 3, this result is not entirely intuitive. However,
it does become reasonable when one notes that (by formula (7)), the contri-
bution to reserves at time ¢ of all safety margins paid up to then is

(t+7n)"Ynce ¥t [ eksds

= (ne [ k) (1—e7¥) [ (1+m)
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where v is the proportion of risk premium taken as a safety margin. We see
that accumulated safety margins converge to a finite limit with increasing
t, i.e. the average safety margin per unit time tends to zero. In these cir-
cumstances, it is not surprising that Zp(x, ) = 1.

This suggests that the experience rating formula (5) should be replaced by
one which does not refund most safety margin. Perhaps, we could take

c—k [C(t) —~ X(t)]E dt.

1+

(34) ac) =

i.e. only the risk premium C(¢) / (x + ) is allowed for in the experience rating.
Thus (34) can be rewritten as

(35) aclt) — §17_f,,) + §ljn — [1%(% - X(t>]§§ a,

and we can see that a constant rate of safety margin cy/(1 + %) is maintained
in addition to the experience rated risk premium.

However, there may be some sales difficulties with rating formula (34),
since the proportion of the premium absorbed by the safety margin increases
as the claims experience improves. One can well imagine the insured objecting
to an increase in the relative safety margin being occasioned by a favourable
experience.

12. ALLOWANCE FOR EARNINGS ON ASSETS

Of course, all of the preceding analysis has been made on the assumption that
the free reserves of the insurer earn no interest. We now relax this assumption
and suppose that interest is earned at a rate such that a unit invested at time
zero accumulates to amount A(¢) at time ¢ Then the free reserves at time ¢
under the operation of both interest and inflation are:

AW + () AW ] A() dC6) ~ [ (F5) AQ) [ As)) dX (s
Discounting these free reserves back to time zero, we obtain

24 [0 46)dC6) ~ [ (7)) 46) aXE),

so that a process subject to an inflation factor f(¢) and an interest accumulation
factor A(¢) is equivalent to a process with just an inflation factor of f(£)/4(Z).
What matters, therefore, is whether rate of inflation is greater or less than the
rate of interest. For example, if the difference between the force of inflation
and the force of interest is constant and positive (be it ever so small), then the
result of Section 11, viz. unit probability of ruin, still holds.

1T
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