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Abstract. The Atiyah–Drinfeld–Hitchin–Manin–Nahm (ADHMN) construc-
tion of magnetic monopoles is given in terms of the (normalizable) solutions of an
associated Weyl equation. We focus here on solving this equation directly by algebro-
geometric means. The (adjoint) Weyl equation is solved using an ansatz of Nahm in
terms of Baker–Akhiezer functions. The solution of Nahm’s equation is not directly
used in our development.
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1. Introduction. Consider the dimensional reduction to three dimensions of
the four-dimensional Yang–Mills Lagrangian with gauge group SU(2) under the
assumption that all fields are independent of time. Upon identifying the a4-component
of the gauge field with the Higgs field � we obtain the three-dimensional Yang–Mills–
Higgs Lagrangian

L = −1
2

Tr FijFij + Tr Di� Di�.

Here, Fij = ∂iaj − ∂jai + [ai, aj] is the curvature of the (spatial) connection of the
gauge field ai(x) and Di the covariant derivative Di�= ∂i� + [ai,�], x = (x1, x2, x3) ∈
�3. We are interested in configurations minimizing the energy of the system. These are
given by the Bogomolny equation

Di� = ±
3∑

j,k=1

εijkFjk, i = 1, 2, 3. (1.1)

A solution with the boundary conditions√
−1

2
Tr �(r)2

∣∣∣∣
r→∞

∼ 1 − n
2r

+ O(r−2), r =
√

x2
1 + x2

2 + x2
3

is called a monopole of charge n.
In this paper we shall follow the Atiyah–Drinfeld–Hitchin–Manin–Nahm

(ADHMN) construction (see the original papers [4], [6] and the recent review [8]).
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26 H. W. BRADEN AND V. Z. ENOLSKI

This has its origin in the construction of instanton solutions to the (Euclidean) self-
dual Yang–Mills equations by Atiyah–Drinfeld–Hitchin–Manin (ADHM): here the
self-duality equations, partial differential equation in four variables, are transformed
to an algebraic matrix equation. In the monopole setting the ADHMN construction
reduces the Bogomolny equation, again a partial differential equation but now in three
variables, to a system of ordinary differential equations. Our interest here will be to
integrate these by algebro-geometric methods.

The standard approach to the integration of the Bogomolny equation within the
ADHMN construction consists of two stages. First, an auxiliary equation known as
Nahm’s equation,

dTi(z)
dz

= 1
2

3∑
j,k=1

εijk[Tj(z), Tk(z)], z ∈ [−1, 1] (1.2)

is integrated for n × n matrices Ti(z) subject to certain boundary conditions. The
solution of this equation is then used to define a differential operator

�† = ı 12n
d
dz

−
3∑

j=1

(Tj(z) + ı xj1n) ⊗ σj, (1.3)

where σj are the Pauli matrices. The Higgs and gauge fields are then expressed as
certain averages over the normalizable solutions v to the Weyl equation �†v(x, z) = 0.
Nahm’s equation, introduced in the ADHMN construction, plays an important role
in many problems of mathematical physics and the integration of this equation is of
great significance. Its role in the integration of the Bogomolny equation is nevertheless
an auxiliary one. In this paper, we shall concentrate on solving of the Weyl equation
directly by algebro-geometric means using an ansatz (again of Nahm) that has not been
considered previously in this light. Our new insight is that this ansatz may be solved
in terms of a Baker–Akhiezer function. Although the associated spectral problem
is equivalent to that appearing in the algebro-geometric integration of the Nahm
equation, we do not use solutions of Nahm’s equation directly in our development. To
achieve our result we implement the θ -functional integration of the Nahm equation
by Ercolani and Sinha [3] and our recent analysis [1]. The limitations of space in this
volume prevent detailed examples being given and a fuller exposition will be given
elsewhere.

2. The ADMHN construction. Set

� = ı
d
dz

+ x − ı T4 + T · σ = ı
d
dz

− ı R, (2.1)

where

x = x4 + ı x · σ , T = T4 + ı T · σ , R = T + ix. (2.2)

We will often assume we have chosen a gauge such that T4 = 0 and that x4 = 0. The
ADHMN construction may be summarised in the following theorem:
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THEOREM 2.1 (ADMHN). The charge n monopole solution of the Bogomolny
equation is given by

�ab(x) = ı
∫ 1

−1
dz zv†

a(x, z)vb(x, z), a, b = 1, 2, (2.3)

Ai ab(x) =
∫ 1

−1
dz v†

a(x, z)
∂

∂xi
vb(x, z), i = 1, 2, 3, a, b = 1, 2. (2.4)

Here the two (a = 1, 2) 2n-column vectors1 va(x, z) = (v(a)
1 (x, z), . . . , v(a)

2n (x, z))T form
an orthonormal basis on the interval z ∈ [−1, 1]

∫ 1

−1
dz v†

a(x, z)vb(x, z) = δab, (2.5)

for the normalizable solutions to the the Weyl equation

�†v = 0, (2.6)

where �† is given by (1.3). The normalizable solutions form a two-dimensional subspace
of the solution space (v(1)(x, z), . . . , v(2n)(x, z)). The n × n-matrices Tj(z), called Nahm
data, satisfy Nahm’s equation (1.2) and are required to satisfy the following boundary
conditions: they are regular at z ∈ (−1, 1); have simple poles at z = ± 1, the residues of
which form the irreducible n-dimensional representation of the su(2) algebra; further

Ti(z) = −T†
i (z), Ti(z) = TT

i (−z). (2.7)

A proof consisting of direct verification may be found for example in the recent
exposition by the Weinberg and Yi [8] and references therein.

The integrals in (2.3), (2.4) and (2.5) may be computed in the closed form [7] in
the following way. Denote by

H(x) = x · σ ⊗ 1n, T (z) = ı σ ⊗ T(z), (2.8)

where σ = (σ1, σ2, σ3)T , T = (T1, T2, T3)T and x · σ ⊗ 1n = ∑3
i = 1 xiσi ⊗ 1n, σ ⊗ T(z) =∑3

i = 1 σi ⊗ Ti(z). Introduce the 2n × 2n matrix Q(x, z),

Q(x, z) = 1
r2
H(x)T (z)H(x) − T (z). (2.9)

Then the following formulae of Panagopoulos (see Appendix A) are valid for the
normalizable Weyl spinors, v1,2(x, z),

1Throughout the paper vectors are column-vectors and printed in bold, e.g. a; the superscript † means
conjugated and transposed, e.g. for vector a† = aT , and this holds similarly for matrices.
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v†

a(x, z)vb(x, z)dz = v†
a(x, z)Q−1(x, z)vb(x, z); (2.10)∫

zv†
a(x, z)vb(x, z)dz = v†

a(x, z)Q−1(x, z)
[

z + 2H(x)
d

d(r2)

]
vb(x, z); (2.11)∫

v†
a(x, z)

∂

∂xi
vb(x, z)dz

= v†
a(x, z)Q−1(x, z)

[
∂

∂xi
+ H(x)

zxi + ı(x × ∇)i

r2

]
vb(x, z). (2.12)

Therefore, only the boundary values of the normalized Weyl spinors v1,2(x,±1)
together with their derivatives need be computed to find solutions to the Bogomolny
equation. The Nahm data at these boundary values is also needed, and this involves
the residues noted earlier.

3. The Nahm Ansatz. Although, we wish to solve

�†v = 0,

Nahm introduced an ansatz that provides solutions to

�w = 0

that we now recall. Consider solutions of the form

w = (12 + û(x) · σ ) eı x4z|s > ⊗ ŵ(z), (3.1)

where |s > is an arbitrary normalized spinor not in ker(12 + û(x) · σ ) and û(x) is (as
we shall see) a unit vector independent of z. Substituting in �w = 0 we find

0 = |s > ⊗
(

ı
d
dz

+ û · R
)

ŵ(z) + σk|s > ⊗
(

ı ûk d
dz

+ Rk + ı(R × û)k
)

ŵ(z)

and so we require

0 =
(

ı
d
dz

+ û · R
)

ŵ(z), (3.2)

0 = Lkŵ(z) :=
(

ı ûk d
dz

+ Rk + ı(R × û)k
)

ŵ(z). (3.3)

The consistency of these equations imposes various constraints. First consider

[L1,L2] = (ı û1 + û2û3)(Ṫ2 − [T3, T1]) − (ı û2 − û1û3)(Ṫ1 − [T2, T3])

− (1 − (û3)2)(Ṫ3 − [T1, T2]) + (1 − û · û) Ṫ3.

Thus, provided û(x) is a unit vector and the Ti’s satisfy the Nahm equations we have
consistency of the equations Lkŵ(z) = 0.

At this stage we introduce a convenient parameterization (reflected in Hitchin’s
minitwistor construction). Let y ∈ �3 be a null vector. We may consider y ∈ �2 and
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parameterize y as

y =
(

1 + ζ 2

2 ı
,

1 − ζ 2

2
,−ζ

)
. (3.4)

Then

y · y = (1 + |ζ |2)2

2
, y · y = 0.

The signs here have been chosen so that

L(ζ ) := 2 ı y · T = (T1 + ı T2) − 2 ı T3 ζ + (T1 − ı T2) ζ 2.

In due course we will see this to be our Lax matrix. Set

û = û(ζ ) := ı
y × y
y · y

= 1
1 + |ζ |2 (ı(ζ − ζ ), (ζ + ζ ), 1 − |ζ |2). (3.5)

Then

û × y = − ı y, û × y = ı y.

The three vectors Re( y), Im( y) and û form an orthogonal basis in �3 with |û| = 1,
whence any v ∈ �3 may be written as

v = û (û · v) + y
(

y · v

y · y

)
+ y

(
y · v

y · y

)
.

In particular,

v + ı v × û = û (û · v) + 2 y
(

y · v

y · y

)
. (3.6)

We record that

y(ζ ) = −ζ
2

y(−1/ζ ), û(−1/ζ ) = −û(ζ ),

û = (− ı ζ−1, ζ−1,−1) − 2 y
ζ (1 + |ζ |2)

= (ı ζ, ζ, 1) + 2ζ y
1 + |ζ |2 ,

û · T = − ı
[
(T1 + ı T2)ζ−1 − ı T3

]− 2 y · T
ζ (1 + |ζ |2)

= ı [(T1 − ı T2)ζ − ı T3] − 2ζ y · T
1 + |ζ |2 .

Parameterizing û as above and using (3.6) we may write

ı û
d
dz

+ R + ı R × û = ı û
d
dz

+ û (û · R) + 2 y
(

y · R
y · y

)
= û

(
ı

d
dz

+ û · R
)

+ 2 y
(

y · R
y · y

)
and as a consequence (3.2) and (3.3) are equivalent to

0 =
(

ı
d
dz

+ û · R
)

ŵ(z), (3.7)

0 = ( y · R) ŵ(z). (3.8)
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The remaining consistency to be checked is then[
ı

d
dz

+ û · R, y · R
]

= ı y · Ṫ + [û · T, y · T ] = 0,

which upon use of û × y= − ı y is equivalent to Nahm’s equation.
Equally from

û · R = − ı[(R1 + ı R2)ζ−1 − ı R3] − 2 y · R
ζ (1 + |ζ |2)

= ı [(R1 − ı R2)ζ − ı R3] − 2ζ y · R
1 + |ζ |2 ,

we may write the equations as

0 =
(

d
dz

+ [(R1 − ı R2)ζ − ı R3]
)

ŵ(z) =
(

d
dz

+ M + ı [(x1 − ı x2)ζ − ı x3]
)

ŵ(z),

0 = ( y · R) ŵ(z),

where

M = (T1 − ı T2)ζ − ı T3. (3.9)

The equations we have obtained are just the Lax equations

0 = 2 ı ( y · R) ŵ(z) = (L(ζ ) − η) ŵ(z), η = 2 y · x,

0 =
(

ı
d
dz

+ û · R
)

ŵ(z),

and

L̇ = [L, M].

From the first of these we see that

0 = det (L(ζ ) − η) ,

which gives the equation of the spectral curve C. Upon using y(ζ ) = −ζ
2

y(−1/ζ ) we
see from

0 = det (L(ζ ) − η)† = det(L(ζ )† − η) = det(2 ı y(ζ ) · T − η)

= det(−2 ı ζ
2

y(−1/ζ ) · T − η)

that the spectral curve is invariant under

(ζ, η) →
(

− 1

ζ
,− η

ζ
2

)
.

The spectral curve then has the form

ηn + a1(ζ )ηn−1 + · · · + an(ζ ) = 0, deg ak(ζ ) ≤ 2k, (3.10)

and the genus of C is g = (n − 1)2.
It is worth remarking that Nahm’s ansatz only yields solutions of �w = 0 and does

not yield solutions of �†v = 0.
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3.1. Strategy of solution. The strategy for constructing solutions involves three
steps. We have seen that finding solutions to �w = 0 reduces to solving

0 = (L(ζ ) − η) ŵ(z), (3.11)

0 =
(

d
dz

+ M
)

ŵ(z), (3.12)

upon using the (slightly modified) ansatz

w = (12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗ ŵ(z).

Here û(x) is a unit vector and η = 2 y · x. We might construct a solution as follows.

(1) Given a spectral curve 0 = det (L(ζ ) − η) and a position x we substitute
η = 2 y · x using the expression for y in terms of ζ . This is an equation of degree
2n in ζ which we shall refer to as the Atiyah–Ward constraint, this equation
having appeared in their work. The 2n solutions give us 2n associated values
ûa, a = 1, . . . , 2n. For each of these we solve for ŵ(z) yielding a 2n × 1 matrix
wa. Taking each of the 2n solutions we obtain a 2n × 2n matrix of solutions W .

(2) As 0 = �W = ı ( d
dz − R)W , then

d
dz

W = RW,
d
dz

W † = W †R,
d
dz

(W †)−1 = −R(W †)−1,

whence

0 = �†(W †)−1 = ı
(

d
dz

+ R
)

(W †)−1. (3.13)

So given W we may construct V = (W †)−1.
(3) To reconstruct the gauge and Higgs fields using the formulae of the previous

section we must extract from V the two normalizable solutions.

The new insight that the study of integrable systems brings to this problem is that
ŵ(z) may be understood as a Baker–Akhiezer function constructed explicitly. Before
considering this, we conclude the section by noting Nahm’s construction for ŵ(z).

3.2. Constructing ŵ(z) using the adjoint equation. We begin with several simple
observations. First, assuming L is invertible, the Lax equation L̇ = [L, M] means also
that

d
dz

L−1 = −L−1L̇L−1 = [L−1, M],

d
dz

Adj L = d
dz

(det(L) L−1) = [Adj L, M].

Second, suppose λi is an eigenvalue of L with associated eigenvector fi, Lfi = λifi. Then
fi is only determined up to a scale fi → fihi(z) which may differ from eigenvector to
eigenvector. Set

F = ( f1, . . . , fn), � = Diag(λ1, . . . , λn).
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Then

LF = F�

is compatible with the Lax equation if and only if F = F(z) is governed by( d
dt

+ M
)

F = F Diag(α1, . . . , αn), (3.14)

for some αi(z). Conversely, given a solution of this equation we may reconstruct L
satisfying L̇ = [L, M] via L = F�F−1. Third, if λi is an eigenvalue of L we may construct
a corresponding eigenvector fi via

fi = Adj(L − λi)νhi(z), (3.15)

where ν is any constant vector. This follows as

(L − λi)fi = (L − λi) Adj(L − λi)νhi(z) = det(L − λi)νhi(z) = 0.

With such eigenvectors fi we see that

Ḟ = [Adj(L − λi), M]νhi(z) + Adj(L − λi)νḣi(z)

= −MF + Fh−1
i ḣi + Adj(L − λi)Mνhi(z)

and for this to be of the form (3.14) we require

0 = Adj(L − λi)ν(ḣi − hiαi) + Adj(L − λi)Mνhi(t).

Taking the inner product with an arbitrary vector μ then yields the differential equation

h−1
i

dhi

dz
= αi(z) − μT Adj(L − λi)Mν

μT Adj(L − λi)ν
.

Therefore requiring the differential equation for F leads to a differential equation for
hi. Suppose we write

hi(z) = exp[−θi(z) + ∫ z
αi(z) dz]√

μT Adj(L − λi)ν

then

h−1
i

dhi

dz
= αi(z) − dθi

dz
− 1

2
μT [Adj(L − λi), M] ν

μT Adj(L − λi)ν

which provides a solution if

dθi

dz
= 1

2
μT {M, Adj(L − λi)} ν

μT Adj(L − λi)ν
.

Nahm’s approach to construct ŵ(z) was to express this in the form (3.15) together
with the one-dimensional differential equations for θi. This method has only been
implemented in the charge two case and we now propose an alternative approach.
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4. A spectral problem. We have identified ŵ(z) with the Baker–Akhiezer function
and now must ask whether this can be constructed. Set

A−1 = T1 + iT2, A0 = −2iT3, A1 = T1 − iT2,

and so

L(ζ ) = A−1 + A0ζ + A1ζ
2, M = 1

2
A0 + A1ζ.

Viewing equation (3.12) as a spectral problem(
d
dz

+ 1
2

A0(z)
)

ŵ(z) = −ζA1(z)ŵ(z),

we seek to solve this. The z-dependence of the right-hand side means however this is
not a standard eigenvalue problem, but it may be reduced to such using the trick by
Ercolani and Sinha [3]. With the notation introduced, Nahm’s equation yield

d
dz

A1(z) = 1
2

[A0(z), A1(z)] (4.1)

and so by introducing the matrix C(z) with

d
dz

C(z) = 1
2

A0(z)C(z), C(0) = 1n

we may write

A1(z) = C(z)A1(0)C(z)−1.

Then upon performing a gauge transformation

Q0(z) = C(z)A0(z)C(z)−1, �(z) = C(z)−1ŵ(z)

we obtain the spectral problem(
d
dz

+ Q0(z)
)

�(z) = −ζA1(0)�(z). (4.2)

Here, �(z) = �(ζ, η, z) = �(P, z) is given by the Baker–Akhiezer function on the curve,
P = (ζ, η) ∈ C. Then

ŵ(z) = C(z)�(ζ, η, z)

and

w = (12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗ C(z)�(ζ, η, z),

= 12 ⊗ C(z)
(

(12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗ �

(
ζ, η = 2 y · x

ζ
, z
))

.

Again, if we group all 2n solutions � together into a n × 2n matrix �̂ we then obtain

W = (12 ⊗ C(z)) ϕ, ϕ = (12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗�̂,
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where ϕ is a 2n × 2n matrix. Then

V † = W−1 = ϕ−1(12 ⊗ C(z)−1)

will be in terms of the Baker–Akhiezer function. It remains then to construct �.

4.1. The Baker–Akhiezer function. By a constant gauge transformation we may
assume that A1(0) is diagonal. Its behaviour may be read from the spectral curve (3.10),

A1(0) = Diag (ρ1, . . . , ρm) , ρm = ResP→∞m

η

ζ
,

where ∞m (m = 1, . . . , n) are the n points above ζ = ∞. Thus the integration of the
Adjoint Weyl equation reduces to the matrix spectral problem (4.2). The same problem
appeared in [1] and [3] when focussing on the algebro-geometric integration of the
Nahm equation and we shall use the results of our recent paper [1] for the integration
of the Weyl equation.

Let θ be the canonical θ -function of the curve C and let τ be its period matrix. The
period lattice is then generated by �= (1g, τ ) and

θ (w) =
∑
k∈�g

exp{ı πkTτ k + 2 ı πwT k}.

Denote by �= {w|θ (w) = 0} the θ -divisor in the Jacobi variety of the curve C, �g/�.

THEOREM 4.1. Let �(P, z) = (�1(P, z), . . . , �n(P, z))T be the eigenfunction (or
Baker–Akhiezer function) of the standard spectral problem (4.2). The components
�j(P, z) are given by

�j (P, z) = gj(P)
θ (φ(P) − φ(∞j) + (z + 1) U − K̃)θ (U − K̃)

θ (φ(P) − φ(∞j) + U − K̃)θ ((z + 1) U − K̃)
e

z
P∫

P0

γ∞−z νj

. (4.3)

Here φ(P) is the Abel map, z ∈ (−1, 1), and P ∈ C. The vector K̃ is defined by

K̃ = K + φ

(
(n − 2)

n∑
k = 1

∞k

)
,

where K is the vector of Riemann constants. We have that
(1) K̃ is independent of the choice of base point of the Abel map;
(2) θ (K̃) = 0;
(3) 2K̃ ∈ �;
(4) for n ≥ 3 we have K̃ ∈ �singular.

For each j the function gj(P) is meromorphic on C, gj(∞j) = 1, and has a zero-divisor of
degree g + n − 1 that includes the n − 1 points (∞1, . . . , ∞̂j, . . . ,∞n).

The matrix Q0(z) (which has poles of first order at z = ± 1) is given by

Q0(z)jl = εjl
ρj − ρl

E(∞j,∞l)
eiπ q̃·(φ(∞l )−φ(∞j))

θ (φ(∞l) − φ(∞j) + (z + 1)U − K̃)

θ ((z + 1)U − K̃)
ez(νl−νj).

(4.4)
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Here E(P, Q) = E(P, Q)/
√

dx(P)dx(Q) is the Schottky–Klein prime form, U −
K̃ = 1

2 p̃ + 1
2τ q̃( p̃, q̃ ∈ �g) is a non-singular even θ -characteristic, and εjl = εlj = ±1

is determined (for j < l) by εjl = εjj+1εj+1j+2 · · · εl−1l . The n − 1 signs εjj+1 = ±1 are
arbitrary.

In passing we note that a formula with similar features was obtained by Dubrovin
[2] when giving a θ -functional solution to the Euler equation describing motion of the
n-dimensional rigid body. The essential difference is that the curve C here should be
subjected to the the following three constraints H1, H2, H3 of Hitchin who showed a
bijection between such curves and magnetic monopoles [5]:

H1 C admits the involution: (ζ, η) −→ (−1/ζ ,−η/ζ
2
).

H2 Let γ∞(P) be the unique differential of the second kind on C defined by the
conditions

γ∞(P)|P→∞i =
(

ρi

ξ 2
+ O(1)

)
dξ,

∮
ak

γ∞(P) = 0, i, k = 1, . . . , g,

where ξ is a local coordinate and ρi = ResP→∞iη/ζ . Then b-periods defining the winding
vector U are to be half-periods,

U = 1
2π ı

(∮
b1

γ∞, . . . ,

∮
bg

γ∞

)T

= 1
2

n + 1
2
τ m. (4.5)

The vectors n, m ∈ �g are called Ercolani–Sinha vectors. They should be primitive, i.e.
sU belongs to the period lattice � if and only if s = 0 or s = 2 (equivalently, z = s −
1 = ± 1). (Hitchin’s original constraint was reformulated to this form in [1].)

H3 All components of the Baker–Akhiezer function �j(P, z) are real and smooth
for z ∈ (−1, 1).

Bringing the previous results together then yields

PROPOSITION 4.2. Let w(k)(x, z), k = 1, . . . , 2n be the column vectors

w(k)(x, z) = (12 + û(Pk) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗ C(z)�(Pk, z) (4.6)

where Pk = (ζk, ηk) ∈ C are solutions to the Atiyah–Ward constraint, C(z)−1 is the
fundamental solution to the ODE

d
dz

C(z)−1 + 1
2

Q0(z)C(z)−1 = 0

normalized by the condition C(0) = 1n, and the n × n-matrix Q0(z) and n-vector �(P, z)
are given by the θ -functional formulae (4.3) and (4.4) respectively. Then the 2n × 2n
matrix

V (x, z) = {(w(1)(x, z),w(2)(x, z), . . . ,w(2n)(x, z)
)−1}†

(4.7)

defines the fundamental solution to the Weyl equation, �†V = 0.

5. Conclusions. Although non-abelian magnetic monopoles have been objects of
fascination for some decades now, very few explicit solutions are known. This note
fits into our longer programme of seeing how far the techniques from integrable
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systems will allow us to construct such solutions. Here, we have considered the
explicit construction of magnetic monopoles using algebro-geometric constructions
coming from integrable systems. Previous studies along these lines have focussed on
the construction of solutions to Nahm’s equation which is an auxiliary problem to
that of the explicit integration of the Bogomolny equations. Although the ADHM
construction is based upon normalizable solutions of the equation �†v = 0 an ansatz
of Nahm naturally gives solutions of the adjoint equation �w = 0: the matrices of
fundamental solutions of these equations are related by V = (W †)−1. Here we have
expressed w in terms of a Baker–Akhiezer function and given explicit expressions
for this. Assuming one has a spectral curve these expressions may be evaluated
algorithmically. Unfortunately the curves characterizing magnetic monopoles are often
restricted by transcendental constraints (H2 and H3), but this is a separate and
interesting story to the one presented here. Finally we have not addressed here the
remaining problem of extracting the normalizable solutions from this data. Details
and examples of this approach will be given elsewhere.

Appendix A. The Panagopolous formulae. We have

� = ı
d
dz

+ x4 + ı x · σ − ı T4 + T · σ .

Thus

�† = ı
d
dz

+ x4 − ı x · σ − ı T4 − T · σ .

Set

�† = ı
[

12n
d
dz

− ı x4 − T4 + H + F
]

with Hermitian

H = −
3∑

j=1

xjσj ⊗ 1n, F = ı
3∑

j=1

σj ⊗ Tj.

Then if v is any solution of �†v = 0 we have that

12n
d
dz

v = [ı x4 + T4 − (H + F)] v.

For completeness we prove here the Panagopolous formulae [7] using the method
described in this reference (extending very slightly to the case x4, T4 possibly non-zero).
These integral formulae reduce to the problem of finding for any given operator A and
any two solutions va,b of �†v = 0 an operator B such that

v†
aAvb = d

dz
(v†

aBvb). (A.1)

In this case

v†
aAvb = dv

†
a

dz
Bvb + v†

a
dB
dz

vb + v†
aB

dvb

dz
= v†

a

(
dB
dz

− (H + F)B − B(H + F)
)

vb,
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and thus we seek to relate the operators A and B by

A = dB
dz

− (H + F)B − B(H + F).

Introduce the operator D by

D(R) = dR
dz

− (H + F)R − R(H + F).

We shall use the following relations:

F2 = −12 ⊗
3∑

i=1

TiTi − ı
3∑

i,j,k=1

εijk σk ⊗ TiTj (A.2)

and

dF
dz

= ı
3∑

i,j,k=1

εijk σk ⊗ TiTj (A.3)

Therefore

F2 + dF
dz

= −12 ⊗
3∑

i,j=1

TiTj

and [
F2 + dF

dz
,H
]

= 0.

PROPOSITION A. 1. Let

Q = 1
r2
HFH − F .

Then we have the anti-derivative∫
dz v†

avb = v†
aQ−1vb. (A.4)

Proof. In this case A = 12n and we must show that

dQ−1

dz
− (H + F)Q−1 − Q−1(H + F) = 12n. (A.5)
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The left-hand side of (A.5) may be rewritten as follows:

Q−1
[
− d

dz

(
1
r2
HFH−F

)
−(H + F)

(
1
r2
HFH−F

)
−
(

1
r2
HFH−F

)
(H + F)

]
Q−1

= Q−1
[
− 1

r2
HdF

dz
H + dF

dz
− 1

r2
(H + F)HFH − 1

r2
HFH(H + F)

+ (H + F)F + F(H + F)
]
Q−1

= Q−1

⎡⎣ 1
r2
H

⎛⎝F2 + 12 ⊗
3∑

i,j=1

TiTj

⎞⎠H −
⎛⎝F2 + 12 ⊗

3∑
i,j=1

TiTj

⎞⎠
− 1

r2
H2FH− 1

r2
FHFH + HF + F2− 1

r2
HFH2− 1

r2
HFHF + FH + F2

]
Q−1.

Now H2 = r212n and

Q2 =
(

1
r2
HFH − F

)2

= 1
r4
HFH2FH + F2 − 1

r2
HFHF − 1

r2
FHFH

= 1
r2
HF2H − 1

r2
HFHF − 1

r2
FHFH + F2.

Performing the appropriate cancellations we obtain the necessary result. �
PROPOSITION A. 2. Let Q be as in the Proposition A. 1 and

S = Q−1
(

z + 2H d
dr2

)
.

Then we have the anti-derivative ∫
dz zv†

avb = v†
aSvb. (A.6)

Proof. Denote

S1 = Q−1z, S2 = Q−12H d
dr2

.

Then

D(S1) = d
dz

(zQ−1)−z(H + F)Q−1−zQ−1(H + F) = zD(Q−1) + Q−1 = z12n + Q−1.

Further, using (A.5),

D(S2) = d
dz

(
Q−12H d

dr2

)
− (H + F)Q−12H d

dr2
− Q−1 2H d

dr2
(H + F)

= D(Q−1) 2H d
dr2

+ Q−1(H + F)2H d
dr2

− Q−1 2H d
dr2

(H + F)

= 2H d
dr2

+ Q−1(2r2 + 2FH)
d

dr2
− Q−1(2r2 + 2HF)

d
dr2

− Q−12HdH
dr2

.
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The last term may be expressed as

−Q−12HdH
dr2

= −Q−1 dH2

dr2
= −Q−1,

whence

D(S) = D(S1 + S2) = z12n + (2H + 2Q−1FH − 2Q−1HF)
d

dr2
.

Now the expression in brackets vanishes as a consequence of

2H + 2Q−1FH − 2Q−1HF = 2Q−1
[(

1
r2
HFH − F

)
H + FH − HF

]
= 2Q−1 [HF − FH + FH − HF ] = 0

and the result follows. �
PROPOSITION A. 3. Let Q be as in the Proposition A. 1. Then the anti-derivative∫

v†
a

∂

∂xi
vbdz = v†

aQ−1
[

∂

∂xi
+ H z

r2
xi + H ı

r2
(x × ∇)i

]
vb. (A.7)

Proof. Let L = L1 + L2 + L3 with

L1 = Q−1 ∂

∂xi
, L2 = Q−1H z

r2
xi, L3 = Q−1H ı

r2
(x × ∇)i .

We compute D(Li), i = 1, 2, 3. First

D(L1) = d
dz

(
Q−1 ∂

∂xi

)
− (H + F)Q−1 ∂

∂xi
− Q−1 ∂

∂xi
(H + F)

=
[

dQ−1

dz
− (H + F)Q−1 − Q−1(H + F)

]
∂

∂xi
− Q−1 ∂H

∂xi

= 12n
∂

∂xi
− Q−1 ∂H

∂xi
,

where we use Proposition A. 1. Next

D(L2) = d
dz

(
Q−1H z

r2
xi
)− (H + F)Q−1H z

r2
xi − Q−1H z

r2
xi(H + F)

=
[

dQ−1

dz
− (H + F)Q−1 − Q−1(H + F)

]
H z

r2
xi

+ Q−1(H + F)H z
r2

xi − Q−1H z
r2

xi(H + F) + Q−1Hxi

r2

= H z
r2

xi + Q−1(r2 + FH)
z
r2

xi − Q−1(r2 + HF)
z
r2

xi + Q−1Hxi

r2

= Q−1Hxi

r2
+ z

r2
xi(H + Q−1FH − Q−1HF).

Now the expression in brackets vanishes (see the proof of Proposition A. 2). Therefore,

D(L2) = Q−1Hxi

r2
.
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Next we calculate D(T3) for i = 1. We have

D(L3) = d
dz

[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]
− (H + F)

[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]
−
[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]
(H + F)

=
[

dQ−1

dz
− (H + F)Q−1 − Q−1(H + F)

]
H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
+Q−1(H + F)H ı

r2

(
x2

∂

∂x3
−x3

∂

∂x2

)
− Q−1H ı

r2

(
x2

∂

∂x3
−x3

∂

∂x2

)
(H + F)

= H ı
r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
+ Q−1(H + F)H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
−Q−1H(H + F)

ı
r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
− Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H

= [H + Q−1(H2 + FH) − Q−1(H2 + HF)]
ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
−Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H.

Finally we obtain

D(L3) = −Q−1H ı
r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H.

Altogether we have

D(T) = 12n
∂

∂x1
+ Q−1

{
− ∂H

∂x1
+ Hx1

r2
− H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H
}

.

Multiplying the expression in the parentheses by −r2 gives

−{·} r2 = −σ1 ⊗ 12
(
x2

1 + x2
2 + x2

3

)+ σ1 ⊗ 12x2
1 + σ2 ⊗ 12x1x2 + σ3 ⊗ 12x1x3

− ı(σ1 ⊗ 12x1 + σ2 ⊗ 12x2 + σ3 ⊗ 12x3) × (x2σ3 ⊗ 12 − x3σ2 ⊗ 12)

which vanishes by standard relations, proving the result. �
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