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Abstract

We study certain types of composite nonsmooth minimization problems by introducing a
general smooth approximation method. Under various conditions we derive bounds on
error estimates of the functional values of original objective function at an approximate
optimal solution and at the optimal solution. Finally, we obtain second-order necessary
optimality conditions for the smooth approximation prob lems using a recently introduced
generalized second-order directional derivative.

1. Introduction

The study of optimization techniques for solving nonsmooth optimization problems
has been a growing interest in recent years. It has been shown that the smoothing ap-
proximation techniques are efficient methods for solving certain specially structured
nonsmooth problems, see [2, 3, 4, 6, 10, 13, 14]. El-Attar et al. [6] introduced a
smoothing method for a nonlinear lx -minimization problem using a square root of the
sum of square of nonsmooth absolute value function and a smoothing parameter. The
applications of their method for a class of nonsmooth optimization problems in finite
dimensional space and for an exact penalty problem in infinite dimensional space were
studied by Ben-Tal et al. [2] and Yang [16] respectively. Ben-Tal and Teboulle [1]
obtained a smoothing method for a general nonsmooth problem using recession func-
tions of convex analysis. Bertsekas [3, 4] examined a two-parameter approximation
for a nonsmooth minimization problem with kinks and derived first-order necessary
conditions via the necessary conditions of the smooth approximation problem. Teo
and Goh [13], Jennings and Teo [10] and Teo et al. [14] studied a class of nonsmooth
optimization problems by smoothing the nondifferentiable cost functional and nondif-
ferentiable functional inequality constraints with parameter approximations.
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In this paper, we introduce a smoothing approximation method to study a gen-
eral composite nonsmooth optimization problem which, for instance, covers nonlin-
ear ^-minimization problems and exact penalty function problems. The smoothing
approximation is developed using a two-parameter approximation. One parameter
guarantees the desired accuracy. The choice of second parameter allows us to cover
a larger class of nonsmooth problems than the ones discussed in [2, 6, 16]. We show
how second-order necessary conditions can be derived for the smooth approximation
problem.

The outline of the paper is as follows. In Section 2, we introduce a smoothing ap-
proximation method to study a general composite nonsmooth optimization problem.
In Section 3, we provide error estimate of the functional values of the original ob-
jective function at an approximate optimal solution and at the optimal solution under
various conditions. In Section 4, we then obtain general second-order necessary op-
timality condition for the smooth approximation problem using a recently introduced
generalized second-order directional derivative.

Let us first recall a generalized second-order directional derivative and a generalized
chain rule introduced recently in [16, 17] which will be used in Section 4. Let X be
a Banach space with the canonical pair (•, •) between X and its continuous dual space
X* and O be an open set of X. A real-valued function / : O —> U. is called Gateaux
differentiable on O if for every x e O, there exists Df(x) e X* such that for any
u e X

f(x + su)-f(x)-s(Df(x),u)
lim = 0.

A real-valued function / : O —> K is called C u if / is Gateaux differentiable on
O and the gradient function is locally Lipschitz on O. In this case, the gradient of /
is denoted as V/ . Let x e O. The generalized second-order directional derivative
/°°(jt; u, v) of / at x in the direction (u, V) e X x X is defined by

f (x; u,v) = suphmsup ,

and the corresponding generalized Hessian of / at x e O is defined for each u e X
by

(II) = {x* € X* : /~(JC; u, v) > (x*, v),Vv e X}.

The function / is called twice semi-regular at x € O if for every u, v € X the limit

ft ^ i- f(x+su+tv)-f(x+su)-f(x+tv)
f (x; u, v) = hm

no
n st
no

exists and is equal to f°^{x; u,v).
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It is easy to see that a second-order necessary condition of / at a local minimum
a G O is

/o<>(a; u, u) > 0, VM e X.

The following useful chain rule for composite C11 functions was established in [16].
Let F = fog, where / : 1" —• R, g = ($ , , . . . ,&) : O C X —• 01",
/ , # ! , . . . , gn are C u functions. Then for each u, v e X, x € O, we have

/^Ot; ii, u) < /"(*(*); Vg(jc)ii, V«(jr)«) + /»,(«, u),

where

x(u, v) = max { } — (x*, v) : x* e 3 O O ^ , ( X ) ( M ) , / = ! , . . . , «

2. A generalized smoothing problem

In this section, we introduce a smoothing approximation problem to study a gen-
eral nonsmooth composite model problem which covers, for example, exact pen-
alty function problems and nonlinear l\ -minimization problems (see, for example,
[2, 5, 6, 7, 9, 11, 16]). We then compare the smoothing approximation problem with
other smoothing problems given recently in [1] and see that our approximation prob-
lem does not depend on a recession function that is used in [1]. We begin by giving
some examples.

EXAMPLE 2.1. Let ht : X —• W (i = 1 , . . . , m) be differentiable functions. The
following nonsmooth problem

||/*,(*) ||

can be approximated by the smooth problem

where ||y|| is a norm in Kp. For the case p = 1 and X = R", this is the nonlinear
/i-minimization problem considered in El-Attar, Vidyasagar and Dutta [6]. Ben-Tal
et al. [2] studied the case when h, (x) = Qtx — r,, X = W and the norm \\y\\ is chosen
as ||;y|| = *JyTDy, where D is an p x p diagonal positive definite matrix, Q, is a
p x n matrix and r, e Kp.
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EXAMPLE 2.2. The (nonsmooth) exact penalty problem for the nonlinear programming
problem:

(where A = {x e X : x e C, gt(x) > 0, / = 1 , . . . , m}, C is a subset of X and
gi : X —> R (/ = 0, 1, . . . ,m) are differentiable functions) is (for example,
see [16])

I
min go(x) + M ) max{g,(*)> 0} + dc(x)

where M > 0 is the penalty constant and the distance function dc(x) is defined by

dc(x) = inf{\\x-y\\:yeC}.

This problem can be approximated by the smooth problem (see Yang [16])

( m \

Y) v/[max{g, (*), 0}]2 + e2 + Jd2
c (x) + e2)

,=. /
We now consider the nonsmooth optimization problem of the form:

ming(jc), where g(x) = f(x) + G( / , (x ) , . . . , fm(.x)), (P)
xeX

where X is a Banach space, and / , /,, : X —> R, / = 1 m, G : Rm —> R. This
type of nonsmooth problem has been studied in [1, 2, 3, 7] under various conditions
on the functions involved. In this paper, we suppose that the nonsmoothness of the
problem (P) is, in general, due to the terms ft(x). Hence we assume that the functions
satisfy the following conditions:

(Al) / : X —y R is differentiable;
(A2) G : R" —• R is differentiable;
(A3) fi : X —• R+, / = 1 , . . . , m are not, in general, differentiable, but for

some a > 1, the functions f?,i = 1 , . . . , m, are differentiable, where R+ = {x e

These assumptions are used to smooth the original problem (P). For instance, the
function G may take the form J™=\ P<y>- Some examples of the functions f-s are
max{g,(jc),0}, and \gi(x)\, where the functions gi : X —> R, i = l , . . . , m are
differentiable.

For (P), we introduce the following approximation problem:

x), where g({x) = f(x) +
xeX

where e > 0 is a fixed smoothing parameter and or > 1 is fixed. This is a smooth
problem. This smooth problem may be solved by conventional methods, see [4]. The
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use of a shows that our model is more useful than the ones given in [2, 6, 16] (with
a = 2), for example, let / , (x) = x?, then f\ (x)2 is not differentiate, but /i (x)3 (with
a = 3) is differentiable.

It is worth recalling that Ben-Tal and Teboulle [1] considered the following
nonsmooth problem:

inf g(x), where g(x) = F( / , (JC) fm(x)),

where g(x) = F(f\(x), ..., fm(x)), / : R" —• K are real functions (for / =
1, . . . , m) and F : Km —> R is the function of the form:

F{y) = sup{h(x + y ) - h(x) : x e dom(A)},

where h is a proper convex function and dom(h) = ^ e 8* : /j(x) < +oo}. In fact,
F is called the recession function of h. Their method is to approximate the nonsmooth
problem by smoothing the function F using h since frequently h is smooth, but F is
not. Hence this problem is approximated by the following smoothing problem

inf gf(x), where g((x) = eh (fi(x)/e,..., fm(x)/e),
;reR"

where e > 0 is a parameter.
For example, if F(y) = Yl?=i l^'l. then it is easy to see that for / = 1 , . . . , m

and

Thus F is the recession function of h(y) = ^J"=1 y/l + yf. This coincides with
the smooth approximation methods given in [6, 16] and the one that we propose
here. If F(y) = maxi<,•<„;)>,•, then h(y) = log^r=i y>- Th's ^s different from our
method. We note that the approach of Ben-Tal and Teboulle depends on the recession
function. In our method we assume that G is smooth and that the functions /• satisfy
some conditions, however these conditions are easily satisfied in many practical
optimization problems.

We conclude this section by mentioning that in [3, 4], Bertsekas examined a two-
parameter approximation for a nonsmooth minimization problem with kinks {0, g, (x))
and that Teo and Goh [13], Jennings and Teo [10] and Teo et al. [14] studied a class of
nonsmooth optimization problems by smoothing the nondifferentiable cost functional
and nondifferentiable functional inequality constraints with parameter approxima-
tions.
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3. Error analysis

In this section under various conditions on the function G we present error analysis
and obtain estimates of the error g(x*) — g(x*), where x* is the optimal solution of
(P) and x* is the optimal solution of (P(e)). It is worth noting that error estimates are
not related to the constant a.

To study error analysis, we first assume some conditions on the function G which
are easily verified in many practical problems.

(A4) The function G(yu ..., ym) is monotone in the sense that if y{ >
zu...,ym > zm,then

G(yu...,ym) >G{zu...,zm);

(A5) There exists K > 0 such that

G(yu ...,ym) + K€> G(yx +€,..., ym + e), Vy = (yu • • •, ym) e Km,

where e > 0 is a smoothing parameter.
The assumption (A5) indicates that the function G increases at least as an affine

function. For example, the function G(yu • •-, ym) = Yl?=i AO'. satisfies conditions
(A4) and (A5) if £, > 0, i = 1 , . . . , m and if AT > £*=1 ft. It is clear that G(x) = x2

is differentiable and monotone but it does not satisfy (A5). However this case will be
included in Theorem 3.2.

We use the following special case of the Minkowski inequality to derive bounds on
the error g(x*) - g(x*).

For a, b > 0, p > 1, we have (ap + bp)^ <a + b.

LEMMA 3.1. Assume that (A4) and (A5) hold. Then for every e > 0 and for any
xeX,

0 < gt(x) - g(x) < Ke.

PROOF. Using the Minkowski inequality and noting that /•(*) > 0 for all x € X, we
get

€, for i = l,...,m,VxeX.

Thus by (A4) and (A5), we get

gt(x) = f(x) + G((Mx)a + ea)° (/*(*)" + ett)»)
< fix) + G(/, (x) + €,..., fm{x) + €)

= g(x) + Ke, Vx € X.
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On the other hand, using (A4), we have

< f{x)

= gt(x), Vx e X.

Thus 0 < gt(x) - g(x) < Ke, Vx e X.

We now obtain bounds for the functional values of the original objective at the
approximate optimal solution and at the optimal solution under the assumptions (A4)
and (A5).

THEOREM 3.1. Assume that (A4) and (A5) hold. For any e > 0, we have

0 < g « ) - g(x*) < Ke,

where x* is a solution of(P), x* is a solution of(P(e)).

PROOF. It follows from Lemma 3.1 that

g(.x)<gt(x), VxeX.

Then
gtf) - g(x*) < gt(x*) - g(xm).

Since x* is a solution of (P(e)), we have

8Ax:) < gAx), Vx e X.

Thus gAx^) < 8e(x*)- Then from Lemma 3.1 and x* being a solution of (P) we have

0 < g(x:) - g(x*) < ft(jc;) - g(x*) < gAx*) - g(x*) < Ke.

Now we derive more bounds on the error g (x *) — g (x*) by relaxing the assumptions
(A4) and (A5). We assume that the function G is Lipschitz. It is easy to see that a
Lipschitz function may not satisfy the condition (A4). On the other hand, for a fixed
parameter e > 0, a function satisfying (A4) and (A5) may not be Lipschitz, or even
continuous.

LEMMA 3.2. Let G : Km —> K be Lipschitz with the Lipschitz constant L. Then

\gAx) - g(x)\ < Ljm~e, Wx e X.
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PROOF. From the proof of Lemma 3.1, we obtain

0 < ( / / (* ) "+ € " ) - - / , ( * ) < € , for i = l,...,m,VxeX.

It follows from the Lipschitz condition on G that

\g*(x)-g(x)\

€2 < Ly/hle, VxeX

Then the conclusion is proved.

THEOREM 3.2. Let G : Km —> K be Lipschitz with the Lipschitz constant L. Then

0 < g(x*) - g(x*) < 2LV^e.

PROOF. It follows from Lemma 3.2 that

g(x)<gt{x) + Ljme, Vx € X.

Then

Since JC* is a solution of (P(e)), we have

Thus ge(x*) < g((x*)- Then from x* being a solution of (P) and Lemma 3.2 we have

0 < * « ) - g(jf*)

< gAx*) - g(x*) + Ljhle

< L-Jme + L-Jme = 2L*/me.

The proof is complete.
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4. Second-order necessary conditions for (P(e))

In this section, we derive a general second-order necessary condition for the smooth
approximation problem (P(e)) by strengthening the assumptions (A1HA3). These
conditions may be used to obtain second-order necessary conditions for the original
problem (see [3]). We use the generalized second-order directional derivative and
generalized Hessian recently introduced in [16, 17].

For simplicity, we consider the following special case (a = 2) of the smooth
approximation problem

minge(x), where g((x) = f(x) +

where e > 0 is a smoothing parameter. We still call it (P(e)). The results obtained in
this section hold for the case a > 1 with modified versions. To obtain second-order
necessary conditions of (P(e)), we strengthen the conditions (A1)-(A3) by assuming:

(Al)' f:X—•RisC1-1;
(A2)' G:Rm—•RisC1-1;
(A3)' fi : X —• R, i = 1 , . . . , m are not, in general, C11, but the square of the

functions /) , ff, i = 1 , . . . , m, are C11.
It is well-known that the square of the maximum of two twice differentiable

functions may not be twice differentiable, but is C11 under some conditions. Let
F{x) = (F.OO, . . . . Fm(x)) = (/,(;c)2, . . . , fm(x)2) : X —• W" and

e2) :OcT^K,

where O is an open subset of W". Then ge{x) = f(x) + (ho F)(x).

THEOREM 4.1. Assume that (A1)'-(A3)' hold. If z is a local minimum of(P(e)), then
for any u € X

/°*(z; H, u) + h"{F(z); VF(z)u, VF(z)«)

PROOF. It follows from a second-order necessary condition (see Section 1) that

g r ( z ; « , « ) > 0 , VueX.

Thus

/~(z; u, u) + (ho Fnz; u, u) > 0, V« e X.

https://doi.org/10.1017/S0334270000010444 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010444


[10] Smoothing approximations to nonsmooth optimization problems 283

We now calculate (h o F) 0 0 ^ ; u, u) using the generalized chain rule for composite
C11 functions (see Section 1). For any u e X,

(A o F)°°(z; M, «)

); VF(z)u, VF{z)u)

+ max

\ VF{z)u, VF(Z)M)

dh(F(z)) d

(jr.- = y/yt +

); VF(z)u,

Then the conclusion holds.

COROLLARY 4.1. Assume that (A1)'-(A3)' hold and G(yx,... ,ym) = M^f = 1 j , . Ifz
is a local minimum of(P(e)), then for any u € X

PROOF. NOW we have

Then the conclusion follows from Theorem 4.1.

COROLLARY 4.2. If in addition to the assumptions in Corollary 4.1, the functions f
and Fj are twice weakly Gateaux differentiable at z, then for any u e X

2 M ^ 1 2

<V f(z)u, u) + — 2_, -j=== V F,z)u, u) >

PROOF. Since / is twice weakly Gateaux differentiable, we get (see [17])

Hence the result is proved by using Corollary 4.1.
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Note that F°°(z; u, u) may not be easily calculated for general functions /-. In the
following, we give some examples where F^(z; u, u) can be easily calculated. These
functions are dc(x) and max{gi (x), 0).

1. Let f\ (x) = dc (x), where C is a closed convex set of a Hilbert space X. Then
F\(x) = / i(*)2 is C11 (see Holmes [8]). It was shown in [16] that if f\(x) is twice
semi-regular at z € C, then

F~(z; u, u) = 0, V«e cone(C - z).

2. Let fi(x) = maxfgjO:), 0}, where gt(x) is a C11 function on X. Then it is
easy to see that Fi(x) = fi(x)2 is C u . It follows from the chain rule (see Section 1)
that for every u € X

F<y, A- I 2gdx)gr^u,u)+2(Vgl(z),u)2, ifg,(z)>0,
1 Kt ' } i 0, i fg , (z)<0.

This result was given in [16] when ̂ i (JC) is twice differentiable.

5. Conclusion

We have shown that certain types of composite nonsmooth optimization problems
can be approximated by a smooth optimization problem and have provided a unified
study of the smooth techniques presented recently in [2, 6, 16]. We presented error
analysis of the function value at optimal solution and at approximation optimal solution
under various conditions. We also derived second-order necessary conditions for
smooth approximation problems using a recently introduced generalized second-order
directional derivative. These conditions may be useful to study second-order necessary
conditions of the original minimization problems.

We conclude by giving an example to show the usefulness of the results. Consider
the minimization problem:

min/,(;<:),

where f\(x) = \x\1/3. It is clear thatx* = 0 is an optimal solution and the problem is
not smooth. This problem can be approximated by the following smooth problem

min (/i(;t)6 -1- €6)1'6 = (x2 + €6)l/6,

where e > 0 and a = 6. It is easy to see that the approximation problem has optimal
solution x* = 0. Thus the error estimates given in Theorem 3.1 and Theorem 3.2 are
trivially satisfied and second-order necessary condition in Theorem 4.1 also holds.
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