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BOUNDS ON THE FITTING LENGTH OP FINITE SOLUBLE
GROUPS WITH SUPERSOLUBLE SYLOW NORMALISERS

R.A. BRYCE, V. FEDRI AND L. SERENA

We prove that, in a finite soluble group, all of whose Sylow normalisers are super-
soluble, the Fitting length is at most 2m + 2, where pm is the highest power of
the smallest prime p dividing \G/GS : here Gs is the supersoluble residual of G.
The bound 2m + 2 is best possible. However under certain structural constraints
on G/Gs , typical of the small examples one makes by way of experimentation, the
bound is sharply reduced. More precisely let p be the smallest, and r the largest,
prime dividing the order of a group G in the class under consideration. If a Sylow
p-subgroup of G/Gs acts faithfully on every r-chief factor of G/Gs , then G has
Fitting length at most 3.

1. INTRODUCTION

We denote by Ns the class of finite groups in which the normalisers of all Sylow
subgroups are supersoluble. The motivation for the study of the class Ns is a result of
Bianchi et al. [1] which says that only nilpotent groups, among all finite groups, have
nilpotent Sylow normalisers.

The study of soluble groups in Ns was begun in [3]. Several of the results proved
there indicate a close connection between the structure of a soluble group G in Ns

and that of its supersoluble co-radical G = G/Gs. The aim of the present paper is to
investigate this connection more closely. More precisely we investigate bounds on the
Fitting length of a soluble group in Ns in terms of the structure of G. While there are
groups G in Ns of arbitrarily large Fitting length with given isomorphism type of G
(see Theorem 3.3 of [3], for example) we show that such groups necessarily involve just
two primes in their order. For soluble groups in Ns involving at least three primes we
show that Fitting length is bounded by a linear function of a certain invariant.

THEOREM 1 . 1 . Let G be a soluble group in Ns involving at least three distinct

primes in its order. Let pm be the highest power of the smallest prime p dividing |G?|.
Then the Fitting length of G is at most 1m •+• 2, and this bound is best possible.

Other more technical results show that under certain restrictions on G this bound
can be sharply reduced (see Theorem 4.1).
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20 R.A. Bryce, V. Fedri and L. Serena [2]

2. STATEMENT OF PRELIMINARY RESULTS AND NOTATIONS

All groups treated in this article will be finite, and usually they are soluble as well.
Most notation is standard. We list some here that may not be so standard.

• VK, S and 91* denote respectively the saturated formations of soluble
groups, supersoluble groups and groups of Fitting length i.

• G a denotes the 2t-residual of the group G, where 21 is a formation.
• G is the supersoluble co-radical G/Gs for a group G.

• T ( G ) denotes the set of different primes dividing \G\.

• l(G) is the Fitting length of the group G.

The results which follow will be quoted in the sequel. Some are given with reference,
but no proof. Others are so easy or so well-known as to require no proof here.

RESULT 2 .1 . ([5, Lemma 1.6 of Chapter X]) Let P be a Sylow subgroup of a p-soluble
group G. Then Op,(Na{P)) s£ Op,(G).

RESULT 2.2. If r is the largest prime dividing the order of a supersoluble group G
then G has a normal Sylow r-subgroup.

RESULT 2.3. If 5 is a Sylow subgroup of G and M is a normal subgroup of G then

Na/M{SM/M) = Na(S)M/M.

RESULT 2.4. Let G € Ns D 9t and let M be a normal subgroup of G.

(a) If M is minimal normal in G then either G is supersoluble or 7r(G) =
TT(G/M).

(b) If ir(G) ^ ir(G/M) then G/M is supersoluble.

PROOF: In case (a) M is a p-group for some prime p. If G is not supersoluble then
M is not a Sylow p-subgroup of G. Hence p G TT(G/M) and therefore TT(G) = n(G/M).

In case (b) let 1 = Mo < Mi < . . . < Mn = M be part of a chief series of G. Let
i be minimal with respect to the property 7r(G) ^ 7r(G/M<). Note that 0 < i ^ n.
By (2.6) below and (a), G/Mi-i is supersoluble; and therefore so is G/M. D

RESULT 2.5. Let G € Ns be a group of p-length 1 for some prime p. Then Gs ^
OP,(G).

PROOF: If P is a Sylow p-subgroup of G, then POpi(G)/Opi(G) is normal in
G/Opi{G). However

G/Op,{G) = NG/opl(G)(POp.{G)/Op,(G))

= NG(P)OP,(G)/OP,(G)

which is supersoluble since G G Ns. Hence Gs < Opi{G) as required. D
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RESULT 2.6. ([3, Lemma 1.1]) Ns is closed for factor groups.

RESULT 2.7. ([3, Lemma 4.5]) Let G € Ns. Then ir(G) = ir(G)

RESULT 2.8. ([3, Lemma 4.7]) Let G 6 Ns D 9t and suppose that p, q E TT(G) with
p < q. If P, Q are respectively a Sylow p-subgroup and a Sylow g-subgroup of G with
Q < NQ(P), then G has p-length 1.

RESULT 2.9. ([3, Lemma 4.9]) Let G E Ns HfR. If p, g, r € n(G) with p<q<r and
if q, r € n(G/Op>(G)) then 0 , ' (G) ^ 1.

RESULT 2.10. Let G E JV5 n *H. Then G is nilpotent if and only if G is nilpotent.

PROOF: One direction is easy. So suppose that G is nilpotent. Let r be the largest
prime dividing \G\. By (2.5) and (2.8), Gs ^ Opi(G) for all primes p^r. Hence G s

is an r-group. Then (2.2) ensures that G has a normal Sylow r-subgroup, and so G is
supersoluble. Therefore Gs — 1 and so G is nilpotent. u

RESULT 2.11. Let G € Ns nJR. Then G is metanilpotent if and only if it is supersol-
uble.

PROOF: Again one direction is easy. Suppose therefore that G is metanilpotent.
By way of obtaining a contradiction, suppose that Gs ^ 1, and that G is minimal
with this property. Every proper factor group of G is then supersoluble. It follows that
G has a unique minimal normal subgroup M = Gs which is complemented: here we
use the fact that the class of supersoluble groups is saturated. Now M = F(G) so,
since G is metanilpotent, G = G/M is nilpotent. By (2.10) therefore G is nilpotent, a
contradiction. Hence G is supersoluble. 0

One feature of this proof is worth highlighting for later quotation.

RESULT 2.12. A group G £ Ns nlH, minimal with respect to not belonging to a given
saturated formation, is primitive (meaning here that G has a complemented unique
minimal normal subgroup).

RESULT 2.13. Let G = MH where M is a nilpotent normal subgroup of G. Then if
Ge Ns so is H eNs.

PROOF: Let P be a Sylow p-subgroup of H and MQ a Sylow p-subgroup of
M. Then PM0 is a Sylow p-subgroup of G; and clearly NH(P) ^ NG(PM0), and
therefore it is supersoluble. Hence H £ Ns. D

RESULT 2.14. Let G be a group in which, for some prime r , Or(G) is cyclic and
Ori(G) = 1; and let H be a complement for Or(G) in G. If M is a faithful irreducible
module for G over a field, then MJJ is a direct sum of regular modules.
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PROOF: Write R = OT(G). Let k be the ground field of M. We may suppose
that k is algebraically closed since, if k* is the closure of k, then k* ®M is a direct sum
of faithful irreducible modules for G over k* ([2, 70.15]). If each of these irreducible
summands is a direct sum of regular modules for H, then so is k* ® M and therefore
so is M. So suppose that k is closed. Let M\ be an irreducible component of MR
with inertia subgroup U. Then R = U; for, if not, we have some h £ H f)U, h ^ 1
and [h, R] ^ 1. Therefore Mi •/ Mi h since R acts by scalars on M. It follows that
R = U and hence that M = M p whence Mu is a direct sum of regular modules. D

3. PROOF OF THEOREM 1.1

Let A be a sub-class of Ns D1H with the following properties:

(i) for all G G A either |TT(G)| ^ 3 or G is supersoluble;

(ii) QA = A;

(iii) whenever IT is a Hall {p, q, r}-subgroup of an ,4-group G where p, q, r

are distinct primes, respectively the smallest, second largest and largest

in TT(G), for which Hs = H D Gs then H e A.

THEOREM 3 . 1 . Let A satisfy the properties listed above, and let d be an integer

greater than or equal to 3. Suppose that A ^ Md and let G have minimal order with

respect to G G A\M"d.

Then

(a) G is a primitive group;
(b) |TT(G)| = 3 ;

and if ir(G) = {p, q, r } , where p < q < r, and T is a Hall {q, r}-subgroup of G and

P a Sylow p-subgroup of G, then

(c) G = PT and T < G;

(d) GS = TS;

(e) Gs/G^ is a q-group.

PROOF: By (2.12) G is a primitive group so (a) is satisfied. We write M for the
unique minimal normal subgroup of G, and H for a complement for M in G. Note
that M is a q-group for some prime q. It will be convenient to denote by p, r the
smallest and largest members respectively of ir(G). Denote

7T = {t e ?r(G) : t> q}.

Of course if may be empty. One goal on the way to a proof of (3.1) is to prove

(3.2) |Sf| ^ 1.
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Let Q be a Sylow g-subgroupof G and consider Na{Q). By (2.1) Oq>(NG(Q)) ^
Ogi(G) = 1, so Q is the Fitting subgroup of NG(Q). Since NG(Q) is supersoluble,
Na(Q) is a 7r'-group. Also NG{Q)/Q is abelian. By (2.3) we see that

Na/as(QGs/Gs)

is also a Tr'-group. Since G/Gs = G is supersoluble it follows that Ow(G) is a nilpotent
(Hall) 7r-subgroup of G. (To see this suppose that s, t E 7f with s < t. If S,T, Q

are respectively Sylow a-, t- and g-subgroups of G, we can choose them so that Q

normalises S. Then [Q, S] centralises every i-chief factor of G since G is supersoluble,
and therefore centralises T. But under the condition that NQ-(Q) is a 7r-group we have
that [Q, S] = S. That is [5, T] = 1. It follows that O*(G) is nilpotent.) Now by (2.5)
and (2.8) we have that

(3.3) Gs ^ 0t,(G), t prime , q < t < r.

On the other hand if t is a prime satisfying t £ ft(G), t < q < r, then since
Oqi(G) = 1 we conclude from (2.9) that 0t>(G) contains a Sylow subgroup U of G

(either a Sylow q-, or a Sylow r-, subgroup). By the Frattini argument therefore
G = NG(U)O«(G) whence G/Ot>(G) is supersoluble since NG(U) is. We deduce that

(3.4) Gs ^ Ot>(G), t prime, t < q < r.

It then follows from (3.3) and (3.4) that

(3.5) either q = r or Gs is a {q, r}-group.

In the first case it is empty, so (3.2) certainly holds. Consider the case q ̂  r ,

and suppose, in contradiction to (3.2), that |TT| > 2. We claim first that Gs/G^ is a

g-group. For, let X/G^ = Oq(G
s/G^. Then G/X has normal Sylow r-subgroup

and so G/X is supersoluble, whence

so Gs = X, as required.

Now G91* ^ 1 since d ^ 3 . Let G ^ / K be a chief factor of G; it is an r-chief

factor since Gs is a {q, r}-group and otherwise G < Y. Let Z be a normal subgroup

of G containing Y and maximal with respect to not containing G5"3. Then G/Z has

nilpotent length 4 exactly and G Z/Z is its unique minimal normal subgroup.
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Let Go = G/Z. By (2.4), TT(G0) = TT(G) and therefore TT(G) = TT(G0). NOW

O P / (GO) = 1 so, by (2.1), if RQ is a Sylow r-subgroup of Go then Ro is the Fitting
subgroup of Nao(R0). Therefore NG0(RO)/RO is abelain.

Also

Go = GfNGo(Ro)

so Go/RoGf = SS

which is abelian.
However the assumption that \w\ ^ 2 and the fact that ?r(G) = 7r(Go) means

that there is a prime s satisfying q < s < r and there are commuting q- and s- Sylow
subgroups of Go. By (2.8) and (2.5) therefore

Gf < O,,(G0).

However

Gt/Gf = {GSZ/Z)/G*?Z/Z

which is a 9-group. Being also a g'-group it is 1. That is

whence GQ" = 1, a contradiction to the assumption |TT| ^ 2.
When q ^ r we have shown above that Gs is a {q, r}-group and that q is the

second largest prime in 7r(G). In the case q = r we have a similar result in that Gs

still involves only two primes, r and the next largest. To see this let us re-define q in
this case to be the second largest prime in T ( G ) ; since we shall not need again in this
section the particular prime dividing \M\ this will not cause confusion. Let R be a
Sylow r-subgroup of G. Then the argument above involving G/Z shows that G/RGS

is abelian (we can formally set Z = 1 in the penultimate paragraph). Hence (2.8) and
(2.5) show that

Gs ^ Ot.(G)

for every prime t < q. Therefore Gs is again a {q, r}-group. To sum up we have in
all cases:
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RESULT 3.6. Let q, r be the two largest primes dividing \G\. Then Gs is a {q, r } -
group.

The proof of (e) of Theorem 3.1 now follows as in the paragraph following (3.5).

Finally let T be a Hall {q, r}-subgroup of G. Then Gs < T < G. Moreover if R
is a Sylow r-subgroup of G then TSR < G and therefore G/Ts is supersoluble. Hence
Gs < Ts < Gs so Gs = Ts, as required by (d). Let P be a Sylow p-subgroup of G
and put L = PT. Then Ls = Gs and £ is a Hall subgroup of G, so L G A. Moreover
L and G have the same Fitting length since by (2.11), L^ = G*1'. If L ^ G the
minimality of G means that L £ Afd and therefore G G -A/"**, a contradiction. Hence
L — G. This completes the proof of (b) and with it the proof of the theorem. D

We are now in a position to establish Theorem 1.1

PROOF OF THEOREM 1.1: Let m be a positive integer. Let A be the subclass of
Ns ("11R of all groups G for which either G is supersoluble, or |TT(G?)| ^ 3 and if p*
is the largest power of the smallest prime dividing \G\, then t ^ m. Let d = 2m + 2
and, on the assumption that A ^ Afd, choose a minimal group G in A \ Afd.

We observe that this class A satisfies the properties postulated at the start of this
section. Hence G has the structure described in Theorem 3.1. We now invoke the
Kurzweil result [6] to conclude that

i(G) = l(T) ^ l(CT(P)) + 2m

^ 2 m + 2

since CT(P) ^ NG{P) which is supersoluble. This contradiction concludes the proof

of (1.1), apart from giving an example to show that 2m+ 2 is the best possible bound.

Let p, q, r be primes with p\q — l,p\r — 1 and q \ r — 1. For a group H in

which Oq(H) = 1 we define a group H as follows. Let P be cyclic of order p and M a

faithful irreducible module for P x H over F, . Then let N be faithful and irreducible

for the semi-direct product M(P x H) over F r . Denote by H the semi-direct product

NM(P x H). Of course H is not uniquely determined by this description, but any of

the groups which satisfy it will do for H.

Now let Hi be the Frobenius group of order qr. If Hi has been defined for t ^ 1
define

Jfi+i = Hi.

We leave it as an exercise for the reader to check that for all m ^ 1, Hm E

\Hm\ is divisible by pm and by no larger power of p , and l(Hm) = 2m + 2. Therefore

the bound on Fitting length determined in the proof of Theorem 1.1 is best possible. D
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4 . A PARTICULAR BOUND

In the example just given the p- and r-Sylow subgroups of the supersoluble co-
radical centralise one another. The aim of this section is to show that groups in Ns fl £H
which satisfy an extreme opposite of this condition have very much more rigidly bounded
Fitting length.

THEOREM 4 . 1 . Let G G Ns n 9t with \n(G)\ ^ 3 and suppose that in G

a Sylow p-subgroup of G acts faithfully on every r-chief factor of G: here p, r are

respectively the smallest and largest primes dividing \G\.

Then £(G) < 3 .

The proof begins by defining the following sub-class Ao of Ns l~l fft: G G Ao if and
only if either G is supersoluble, or |TT(G)| ^ 3 and G has the property described in the
statement of the theorem, that is if p, r are respectively the smallest and largest primes
dividing \G\ then a Sylow p-subgroup of G acts faithfully on every r-chief factor of G.

Observe that Ao satisfies the properties (i), (ii), (iii) at the head of Section 3.

Now on the assumption that the result is false we choose a minimal group G in
Ao \Af3 . Then Theorem 3.1 yields a description of its structure, and we use the notation
of that theorem in the sequel without further comment. However some more notation
will be necessary. G has a unique minimal normal subgroup M with complement H.

Set K — Hs and note that if is a g-group and M an r-group.

We begin now a lengthy further reduction of the structure of G, ending eventually
with a proof that it cannot, in fact, exist. This reduction will be broken up into a
number of steps.

RESULT 4.2. K has nilpotency class at most 2 and K/K' is a chief factor of H.

The following lemma will be useful in proving this.

LEMMA 4 . 3 . Let KQ be a non-trivial normal subgroup of H properly contained

in K. If R is a Sylow r-subgroup of H then [KQ, R] = 1.

PROOF: Choose a supplement 5 of K in H as follows. Since K/$(K) is abelian

and K/$(K) = {H/^K))"2 there is by [4, Lemma] a complement S0/${K) for

K/$(K) in H/$(K). Choose 5 to be a minimal supplement for K in H with S ^ So-

This means that SDK ^ $(S)> since otherwise a proper subgroup of S would do

as well: and therefore 5 is supersoluble because S/S f) K = SK/K is supersoluble,

and the class of supersoluble groups is saturated. Note that KoS ^ H since otherwise

K = K0(K nS) = K0, KDS being Frattini in K.

Define Go — MKQS. We prove that Go £ Ns. Since Go contains a Sylow p-

subgroup and a Sylow r-subgroup of G it suffices to show that NG0(QO) is supersoluble
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whenever QQ is a Sylow g-subgroup of Go. Now

[NGo(Q0) n M, Qo] < M D Qo = 1.

However this means in particular that Ko centralises Na0(Qo) 0 M , a contradiction
unless Na0(Qo) n M = 1 (by Fitting's Lemma M can have no non-trivial fixed points
for KQ ). consequently

No0(Q0) 3 Nao(Qo)/NGo(Qo) D M

S NGo{Q0)M/M

= NGo/M(Q0M/M)

which is supersoluble by (2.13) because H E Ns. Therefore Go £ Ns.
We now suppose, contrary to the statement of Lemma 4.3, that K\ = [Ko, R] ̂  1

where we choose R to be a Sylow r-subgroup of 5 , and therefore of H: observe that
K\ is independent of the choice of this Sylow r-subgroup. Note that K\ < KoS and
that [M,K!]^1.

A simple calculation shows that GQ ^ [M, Ki] > 1. However note that
CAf(-K"i) < Go and that

M = CM(Ki) * [M, Id].

If we define G\ — GO/CM(KI), it is in AQ. It is in Ns because Go is; and

Gx/Gf 3 (Go/CMi

which is a factor group of Go/M since [M, /ifi] < Gtf < GQ • In Go/M a Sylow
p-subgroup is represented faithfully on every r-chief factor. It follows that G\ 6 Ao •

By the minimality of G, G\ £ Af3 . Hence

[M, Kx\ ^Gf ^ CM{K{)

a contradiction. We have proved therefore that K\ = 1 and so the proof of Lemma 4.3
is complete. U

One immediate consequence of Lemma 4.3 is that K/K' is a chief factor of H
and that [K\ R] = 1. To prove (4.2) we may as well suppose that K' ^ 1. Suppose,
contrary to the statement of (4.2), that K has class c ^ 3. Consider the function
0: K/K1 -» yc{K) defined, for y G 7c- i (#) , by

(xK')0 = [x, y}.
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This is a well-defined .R-homomorpnism into fc(K). Now K/K' is an i2-module with
no non-trivial fixed points, and fc(K) is a trivial ii-module. Hence [K, y] = (K/K')6 —

1, and this for every y in yc~i(K). However this means that yc(K) = [K, *fc-i(K)] —

1, a contradiction to K having class c. Therefore K has class 2, completing (4.2).
Next we show that

RESULT 4.4. K' < Ci(J7).

We may suppose K' ^ 1. Let X be a Hall {p, g}-subgroup of S. Then MK'X ^

NQ(MR) which is supersoluble. Also M = F(MK'X) since M is self-centralising.

We deduce that K'X a MK'X/M is abelian and therefore [K\ X] = 1. However

[K1, RK] = 1 so [if1, H] = 1 as required by (4.4).

We now see at once that

RESULT 4.5. K is extra special.

For, since H is represented faithfully and irreducibly on M, K' cyclic. Also

£i(K) — K' since K/K' is a chief factor, and we have assumed that K' ^ 1. It follows

that K is extra-special.

This now leads to a proof that

RESULT 4.6. if is a minimal normal subgroup of H.

It suffices to show that if1 = 1. On the assumption that it is not (4.5) yields

that |if'| = q. Now, by (2.14), CK/K>(P) ^ 1, and CM(P) ^ l , where P is a Sylow

p-subgroup of X, and therefore of G. Hence

K' < CK{P)

and CM{P)CK(P) < Na(P)

which is supersoluble. It follows that CK(P) is abelian. For, if not, CK(P) — K' and
so [CM(P), K'] = 1, a contradiction since, by Fitting's Lemma, K' has no non-trivial
fixed points in M. However K = [K, P]CK{P)- Consider the function <f>: [K, P] -+ K'
denned, for y £ CK(P), by

x<f> = [x, y).

This is a P-homomorphism, and therefore

[if, P]* = [K, P, P}4>

= 1.

It follows that CK(P) centralises [K, P], and hence that

K'<CK(P) <

https://doi.org/10.1017/S0004972700029427 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029427


[11] Bounds on the fitting length 29

a contradiction. Therefore K' = 1, and the proof of (4.6) is complete.

Our next step is to show that

(4.7) |JZ| = r.

This is accomplished by a rather shorter, but similar method to that which we used
to reduce K. Let RQ be a normal subgroup of 5 properly contained in R. To prove
(4.7) it suffices to show that RQ = 1, and we use an indirect proof, assuming that it is
not. Note that [K, Ro] = K since, indeed, CR(K) = 1.

Consider the subgroup G2 = MKR0X. We claim that G2 € Ns. For this it
suffices to show that NQ2(MRO) is supersoluble. Note that NQ2(MRO) ^ MXRQ

and hence

Na3{MR0) = MXR0{K n NGi{MRo)).

Now [K n NGj {MRo), Ro] < K n MR*

= 1

which means that NQ3(MRO) D K = 1 since Ro has no non-trivial fixed points in K.

Therefore

^ NG(MR)

which is supersoluble. Therefore G2 G Ns. Also G2 € An because since

MK ^ G?f ^ Gf < Gs = MK

so G2/G2 is isomorphic to a subgroup of G/Gs. By the minimality of G, G2 G A/"3.

However C?2 = M which is a contradiction, so the assumption that Ro ^ 1 is wrong.

This completes the proof of (4.7).

Our aim now is to examine the representation of H on M. We need some structural
notation to do this. Note that K is complemented in H since K is abelian, and equal
to E1^ : here using the result [4]. Hence we may take 5 to be a complement for K in
H, containing R. Also R has an abelian {p, g}-complement X in 5 .

Now let Mi be an irreducible component of MK , with kernel D, so that \K : D\ =

q. Let U be the inertia subgroup of Afj . Note that U contains no r-elements since,
were it to do so, D would admit the action of a Sylow r-subgroup of H, and therefore
R would act on K/D, giving fixed points for R in K. Since U — K(U PI S) we may
choose X so that U H S ^ X. Then X normalises U, and we may regard M as
induced from a UX-modvle M2 with Mi ^ M 2 . That is M =
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Write X — PQ0 where P is a Sylow p-subgroup, and Qo a Sylow g-subgroup, of

X. By (2.14), A" is a direct sum of regular modules for X/CX(R) = X/CQo(R). Define

Ko — CK(P)- Then KQ is a direct sum of regular modules for Q0/CQ0(R). Hence

there is a non-trivial element c0 in (KoQo)' which we may choose to be centralised

by Qo- Of course c0 G Ko. Since CG(P) contains CM(P)KQQQ, which is therefore

supersoluble, we have that (KoQo) centralises CM(P)- In particular

(4.8) [co, CM{P)} = 1.

Write P = (x) and suppose \P\ = pm. For 1 ^ m0 G M2 and 1 ^ y G R the

following element,

i=0

is in CM(P): the proof is left as an exercise for the reader. It follows from (4.8) that

= p and this yields that mo = moycoy~1. In other words

(4.9) c» G D for all y G R, y # 1.

Let B = {cj : y G iZ}. Then \B\ = r since c* = cj is equivalent to asking that

y'y~1 centralise Co and this to y = y'. Moreover B admits the action of H and so

(B) < H. This means that (B) = K since K is minimal normal in H. Now dimiiT is

a multiple of \X/Cx(R)\ which is composite, while \B\ is prime, so it follows that B

is linearly dependent. But from a non-trivial linear relation on B we deduce that

co G (c* : 1 ? y G R)

QD

by (4.9). Therefore K = (B) < D, a contradiction. The proof of Theorem 4.1 is

therefore complete. D
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