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UNIQUENESS PROBLEM WITH TRUNCATED
MULTIPLICITIES IN VALUE DISTRIBUTION THEORY

HIROTAKA FUJIMOTO

Abstract. In 1929, H. Cartan declared that there are at most two meromor-
phic functions on C which share four values without multiplicities, which is
incorrect but affirmative if they share four values counted with multiplicities
truncated by two. In this paper, we generalize such a restricted H. Cartan’s
declaration to the case of maps into PN (C). We show that there are at most
two nondegenerate meromorphic maps of C™ into PY(C) which share 3N + 1
hyperplanes in general position counted with multiplicities truncated by two.
We also give some degeneracy theorems of meromorphic maps into P (C) and
discuss some other related subjects.

§1. Introduction

In 1926, R. Nevanlinna showed that, for two distinct nonconstant mero-
morphic functions f and g on the complex plane C, they cannot have the
same inverse images for five distinct values, and g is a special type of linear
fractional transformation of f if they have the same inverse images counted
with multiplicities for four distinct values([10]). In [2] ~ [4], the author gave
several types of generalizations of these theorems to the case of meromor-
phic maps of C" into PV (C). He considered two distinct meromorphic maps
f and g satisfying the condition that v(f, H;) = v(g, H;) for ¢ hyperplanes
Hi, Hy,...,Hyin PN(C) located in general position, where v( f, H;) means
the map of C" into Z whose value v(f, H;)(a) (a € C") is the intersection
multiplicity of the images of f and H; at f(a). He proved that ¢ <3N +1
if either f or g is (linearly) nondegenerate, and ¢ < 2N + 2 if either f or g
is algebraically nondegenerate.

It is reasonable to ask whether these results remain valid regardless of
multiplicity or not. There are several results without multiplicities in some
restricted situations. To state some of them, we take a nondegenerate mero-
morphic map g of C" into PV (C), a positive integer £y and ¢ hyperplanes

Received June 26, 1997.
131

https://doi.org/10.1017/5S0027763000006826 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006826

132 H. FUJIMOTO
Hi, Hy,...,H; in PY(C) located in general position with
dimg ' (H;nH;)<n-2 (1<i<j<q)

and consider the set F(Hj,..., Hg; g;£o) of all nondegenerate meromorphic
maps f:C"® — PV (C) satisfying the conditions;

(a) min(y(f, Hj)ae()) = min(’/(gaHj):KO) for 1 SJ < q,
(b) f=gon Ui, ¢! (H,)).

In [12], L. Smiley gave the following uniqueness theorem.

THEOREM 1.1. ([12]) If ¢ > 3N + 2, then f = g for any map f €
F(Hi,...,Hgg;1).

In 1929, as an improvement of the above-mentioned Nevanlinna’s re-
sults, H. Cartan declared that there are at most two meromorphic functions
on C which have the same inverse images regardless of multiplicities for four
distinct values ([1]). However, in [13], N. Steinmetz gave examples which
show that H. Cartan’s declaration is false. In relation to this, S. Ji obtained
the following result by the use of H. Cartan’s original idea.

THEOREM 1.2. ([9]) Assume that ¢ = 3N+1. Then, for arbitrary three
maps f°, fi, f?2 € F(Hu,...,Hyg;1), the map F := (f°, f1, f3):C" —
PN(C) x PN(C) x PN(C) is algebraically degenerate, namely, the image
F(C") is included in a (special) proper subvariety of PN(C) x PN(C) x
PN (C).

We can easily show that H. Cartan’s declaration is affirmative if we
assume that meromorphic functions on C share distinct four values counted
with multiplicities truncated by 2. The main purpose of this paper is to gen-
eralize such a restricted H. Cartan’s declaration to the case of meromorphic
maps into PV (C).

Our main results are stated as follows:

THEOREM 1.3.  Suppose that ¢ > 2N + 2 and take arbitrary N + 2
maps f°,...,fN*l in F(Hi,...,Hy;9; N(N +1)/2 + N). Then, there are
N + 1 hyperplanes Hj,, H;,,...,H;, among H}s such that, if we choose
homogeneous coordinates (wo : -+ : wy) on PN(C) with Hj, = {w; = 0}
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(0 < i < N) and take representations f* = (f§ : ---: f&) with nonzero

holomorphic functions f;c , then

1 0 f2 0 N+1 0
. 5 T i i [

1 07 2 0°°" eN+1 0
TR/ A R AR
are linearly dependent over C for each pair (i,j) with 0 <1, 7 < N.

THEOREM 1.4. Ifq = 3N + 1, then F(H,...,Hg; 9;2) contains at
most two maps.

There are several open problems related to the above results. It is desir-
able to be shown that the condition (b) for the definition of F(Hj,..., Hg; g;
£y) is omitted or replaced by a weaker one and that the number ¢ = 3N+1 in
Theorem 1.4 is replaced by a smaller one. As related matters to uniqueness
problem in value distribution theory for meromorphic maps into PN (C),
there are some similar results for the Gauss map of complete minimal sur-
faces in R™ (cf., [6], [7] and [8]). It is an interesting problem to get more
precise results for the Gauss map of a complete minimal surface which are
analogous to Theorems 1.3 and 1.4.

In [5], the author introduced the notion of k-nondegeneracy for mero-
morphic maps into PV (C) (cf., Definition 2.8). We prove Theorems 1.3 and
1.4 in more precise forms for k-nondegenerate meromorphic maps in §5 (cf.,
Theorem 5.1). We give also a degeneracy theorem of meromorphic maps
into PV(C) in §4 (cf., Theorem 4.9).

§2. Preliminaries from Nevanlinna theory
Let F' be a nonzero holomorphic function on a domain D in C". For
a set & = (aq,...,a,) of nonnegative integers, we set |a| :== a1 + -+ + a,

]
and D°F := o F

= Fais G We define the map v%: D — Z by

V% (2) := max {m; D*F(z) = 0 for all a with |a| < m} (z € D).

We mean by a divisor on a domain D in C" a map v of D into Z such
that, for each a € D, there are nonzero holomorphic functions F' and G on
a connected neighborhood U (C D) of a such that v(2) = v%(z) — v&(2)
for each z € U outside an analytic set of dimension < n — 2. Two divisors
are regarded as the same if they are identical outside an analytic set of
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dimension < n — 2. For a divisor v on D we set |v| := {z: v(z) # 0}, which
is a purely (n — 1)-dimensional analytic subset of D or empty.

Take a nonzero meromorphic function ¢ on a domain D in C™. For each
a € D, we choose nonzero holomorphic functions F and G on a neighbor-
hood U (C D) of a such that ¢ = F/G on U and dim F~1(0) N G~1(0) <
n — 2, and we define the divisors v by v = V%_ oc for a € C and by

Va

¢ ‘= Vg for a = oo, which are independent of choices of F' and G and so
globally well-defined on D.

Let f be a meromorphic map of C" into P (C), which is nondegenerate,
namely, whose image f(C") is not included in any hyperplane in PV (C). We
take holomorphic functions fo, fi,..., fn such that Iy := {z € C"; fo(z) =
-+ = fn(2) = 0} is of dimension at most n — 2 and f(z) = (fo(z) : ---:
fNn(2)) on C™ ~ I in terms of homogeneous coordinates on PV (C). We call
such a representation f = (fo: -+ : fn) a reduced representation of f.

For z = (21,...,2n) € C" we set ||z]| ;== (3_7_, |2j|2)'/? and define

B(r):={z€C% |lzll <r}, S(r) :={z€C% |lz|| =},
c -1 = c n—
=Y 2(5-9) v o= (P,

o :=d°log ||z||* A (dd®log || z[|?)"1.

Set || £l := (|fol® + - - - + | f~|?)!/2. The order function of f is given by
70,) = [ toglflo - [ togllfle
5(r) 5(1)

For a divisor v on C", we define the counting function of v by

" t
N(r,v) := /1 tZ;E—)l dt (1<r<+00),

where n(t) := f|u]ﬂB(t) vv for n > 2 and n(t) 1= 32, <, v(2) forn =1.
Consider a hyperplane

H:apwg+ - +anywy =0
in PN(C), where A := (ag,...,an) # (0,...,0). We set Fy := aofp +

-+-+anfn and define the divisor v(f, H) by v(f, H)(2) := V%H (2) (z € C)
which is rephrased as the intersection multiplicity of the image of f and H
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at f(z). For a positive integer m or m = +oo we define the (truncated)
counting function of H for f by

Npn(r, H) = NI (r, H) := N(r, min(v(f, H), m)).
For brevity, we set N(r, H) := Niw(r, H). Setting

() (z) = ”—%ﬁ—”

we define the proximity function of H by
my(riB)i= [ toghg(H)lo — [ loglus(ED)o
S(r) 5(1)

We now state the first main theorem in Nevanlinna theory.
THEOREM 2.1. T(r,f) = N(r,H)+ mg(r, H) for all hyperplanes H.

We may identify C := C U {oo} with P}(C) and, in another situa-
tion, with the set P1(C)* of all hyperplanes in P!(C). For a nonconstant
meromorphic function ¢ on C and every a € C, my(r, @) means the prox-
imity function of @ € P}(C)" for p: C™ — P(C). On the other hand, the
proximity function of a meromorphic function ¢ is classically defined by

m(r; ) 1= /S( )10g+ lplo,

where logt z := max(log z,0) for z > 0. As is easily seen, we have
(22) m(r;0) = my(r,00) + O(1).

(2.3) For nonzero meromorphic functions p1, 2 with o1+ pg Z 0, we
set Y1 1= 19 and Py 1= @1 + @3. Then,

m(r; ¥Yk) < m(rje1) +m(r;2) + O0(1) (b =1,2),
T(Ta "/Jk) < T(Ta ‘Pl) + T(’l‘, 902) + 0(1) (k = 1’2)'

Now, take two distinct hyperplanes
Hj:ajowo + ajiwy + -+ +ajywy =0 (1=1,2)

and consider a meromorphic function

pHUH aofo+---+ainfn
f

2.4 = .
(2.4) agofo+ -+ asnfn

We can easily prove
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@5) T (r ") <T(rf)+0().

As usual, by the notation “|| P” we mean the assertion P holds for
all r € [0,+00) excluding a Borel subset E of the interval [0,+00) with
/] g dr < +oo. The following so-called logarithmic derivative lemma acts
essential roles in Nevanlinna theory.

THEOREM 2.6. For any a = (ay,...,an), we have
Da (Ff}II)H2)
I\ =g | = T 1)

For the proof, refer to [5] and [11, Lemma 3.11].

Consider a vector-valued meromorphic function F = (fy,..., fn). For
each a € C*, we denote by M, the set of all germs of meromorphic functions
at a and, for k = 1,2,..., by F* the M,-submodule of MY*! which is
generated by the set {D*F := (D®fo,---,D*fn); |a| < &}. Set £p(k) :=
rankag, F*, which does not depend on each a € C*. For a meromorphic
map f = (fo: fi:---: fn): C* = PN(C), we set £s(x) = Liso e ) (K-

By [5, Proposition 4.3], we have the following:

(2.7) A meromorphic map f:C"* — PN(C) is nondegenerate if and
only if there is some Kk such that £¢(k) = N + 1.

DEFINITION 2.8. A nondegenerate meromorphic map f: C* — PV (C)
is said to be k-nondegenerate if £7(k) = N + 1.

We can show the following:
PROPOSITION 2.9. Every nondegenerate meromorphic map of C™ into
PN(C) of rank k (< min(N,n)) is (N — k + 1)-nondegenerate.

Proof. By the assumption, we have £¢(1) = k + 1. Set ko := min{k;
£s(k) = N+1}. Since £y(k—1) < £f(x) for each & (< ko) by [5, Lemma 4.6],
we see

N+1= ff(li‘,o) = Z(ff(li) — Zf(rc - 1)) +ff(1) > (ko — 1) + (k + 1).

k=2

This gives kg < N — k + 1.
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DEFINITION 2.10. Assume that meromorphic functions fy,..., fy are
linearly independent over C. For N +1 vectors of := (41, ..., ) (0 <i <
N) composed of nonnegative integers a;;, we call a set a = (a0, al,...,a")
an admissible set for F = (fo, ..., fn) if {D°°F,...,D*T" F} is a basis of

F* for each k = 1,2,..., ko := min{x’; £p(x') = N +1}.

! N) we have

By definition, for an admissible set (a, al,...,
det (Da"F, . ,D"‘NF) £ 0.

As was shown in [5], we have the following:

ProPosITION 2.11. ([5, Proposition 4.5]) For arbitrarily given linearly
independent meromorphic functions fo,...,fn on C", there erists an ad-
missible set o = (a°,..., o) with |a| < N(N +1)/2.

PROPOSITION 2.12. ([5, Proposition 4.9]) Let a = (a2,...,a!V) be an
admissible set for F = (fo,...,fn) and let h be a holomorphic function.
Then,

det (Da°(hF), .. .,D"‘N(hF)) = KN+ det (D"‘OF, . ,D"‘NF) .

We now state the second main theorem for meromorphic maps into

PN(C).

THEOREM 2.13.  Let f:C" — PN(C) be a k-nondegenerate meromor-
phic map of C" into PV (C) and Hy, . .. , Hy hyperplanes in general position.
Then,

L~

(g = N —1)T(r, f) < Z Hj) + o(T(r, f)).

For the proof, refer to [5, Proposition 6.2].

§3. Cartan’s auxiliary functions

Let Fy, Fi,...,Fp be nonzero meromorphic functions on C", where
M > 1. Take a set o := (a,al,...,aM™1) whose components o are

composed of n nonnegative integers, and set |a| = || +|at|+- -+ |aM 1.
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DEFINITION 3.1. We define Cartan’s auxiliary function by
®* = ®*(Fy,...,Fy)

1 1 1
(3.2) D*(1/Fy)  DV(1/F) - D¥(1/Fy)
Y =Fy---Fy| D*(1/F) D*(1/F) --- D*(1/Fy)
DN (1/Fy) DM TN(1/F) - DYMTN(1/Fy)

For the particular case n = 1, M = 2 and o = ((0),(1)), Cartan’s
auxiliary function is given by
G H H F F' G
FGH =F|— -2 )+c(E - )+H(Z-=Z
e =r(G-5) o (7 -%)n(7-5)
which was introduced by H. Cartan in [1].
Since we can rewrite ®* as
i f 1 1 1=0,1,...,. M -1
(o 2 . o — . ) Y
O = Foly .- Fyy det (D (Fg FO)’ 0=1,2,....M )

we easily have the following proposition in view of Proposition 2.11.

PRroOPOSITION 3.3. If ®*(Fy,...,Fu) =0 for all o with |o| < M(M —
1)/2, then 1/Fy — 1/Fy,...,1/Fy — 1/ Fy are linearly dependent over C.

For the particular case M = 2, we have the following:

ProrosiTION 3.4. If ®*(F,G,H) = 0 and ®*(1/F,1/G,1/H) =0
for all o with |a| < 1, then one of the following assertions holds;

(i) F=G,G=H orH=F.
(i) F/G, G/H and H/F are all constants.

Proof. Assume that the assertion (i) does not hold. By Proposition 3.3,
we can find some nonzero vectors (A, u,v) and (N, pu/,v') with A+ pu+v =
XN+ p' + v/ =0 such that

A u v

FTaTH

Then, A # 0 and X # 0, because otherwise we have G = H. By the same
reason, up'vy' # 0. Here, we may assume A = X' = 1. Then, we get

NF+4y/'G+VH=0.

pvG? + (Vv +p'u - 1)GH + V' pH? = 0.

https://doi.org/10.1017/5S0027763000006826 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006826

UNIQUENESS PROBLEM IN VALUE DISTRIBUTION THEORY 139

This concludes that G/H is a constant, and F/G and H/G are also con-
stants.

PROPOSITION 3.5. Assume that 1/Fy — 1/Fy,...,1/Fp — 1/Fy are

linearly independent over C and take an admissible set o = (a2, ...,aM™1)
for them. If
ylbl = min(vy,, £o) = min(vy, fo) = -+ = min(l/%M,Eo)

for some £y > |a|, then v3a(20) > min (I/VO](zo),EO —|a|) for every z €
Fy(0).

Proof. By the assumption, F; '(0) = --- = F;;*(0), which we denote
by A. Since the set of all singularities of A is an analytic set of dimension
at most n — 2, we may assume that zp is a regular point of A. We choose a
nonzero holomorphic function k on a neighborhood U of 2 such that dh has
no zero and ANU = {z € U; h(z) = 0}. Set my, := y%k(zo) and oy :=1/Fy
for 0 < k < M. We can write ¢ = h™™k @y on a neighborhood V (C U) of
zg9, where @y, are nowhere vanishing holomorphic functions on V.

We first consider the case V[ZO](Z()) = {y. We rewrite ®¢ as

M
(3.6) * = (-1)'Fuy,
=0
with meromorphic functions
£ . .
i 1= det D*or k=0,...,i-1,i+1,...,.M
v or  £=0,1,...,M -1 ‘
Here, as is easily seen by the induction on |of|, we can write each Do’ VK] Pk
as .
D" ok _ Y
Pk hle|
with a holomorphic function g ¢, and each ; as
ith a hol hic function vy, d each
'Dall 'Dali . 'Dali+1 . rDa’M
Wy = Z e(0) Yo Pi—1 Pit1 YM
(2 b)
0=(81,ta1) Yo Pi—1 Pi+1 M

where £ = ({1,...,£p) runs through all permutations of 0,..., M — 1 and
e(¢) denotes the signature of a permutation £. These imply Vg, < |-
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Therefore, by the assumption l/?;-i(ZO) > u[e"](zo) = £y we have vga(z9) >
Lo — |a.
We now assume that (1 <) vll(z) < £5. Then, by the assumption,

mfi=mg=my = =my = V[e"](zo).

In this case, we write

1
= ——  det (D “(r

k=1,...,.M )
Lo PM

—90l g0, M1
and @ —@o = h~™ (Pr — Po) with holomorphic functions @ — Go. We now
apply Proposition 2.12 to show

hm"‘(M+1) 1 5 5
™ = — — ——7 det (Do‘l(cpk - 0);

"£=0,1,...,M -1

k=12,....M
" L=0,1,. M—l '

k=1,2,....M )
Po---@mh

= T—h—T— det (Dal(cfbk — (,50)
o - ¥PM

These conclude v3a(20) > m*. The proof of Proposition 3.5 is completed.

ProOPOSITION 3.7. Let Fy, Fi,...,F)p and « satisfy the same as-
sumption as in Proposition 3.5. If Fo = --- = Fyy £ 0, 0o on a purely
(n — 1)-dimensional analytic subset A of C", then v3.(20) > M for every
zg € A.

Proof. By the same reason as in the proof of Proposition 3.5, we have
only to show that vga (29) > M for all regular points zg of A with Fy(z9) # 0,
oo (0 £ k < M). Taking a holomorphic function h on a neighborhood U
of zp such that dh has no zero and ANU = {z € U; h(z) = 0}, we write
Y =1/F,—1/Fy = Ry (1 € k £ M) with nonzero holomorphic functions
¥ on a neighborhood of z5. Then, by Proposition 2.12 we have

<I>“=F0F1---FMdet( t=0,1,. M_l)

e k=1,2,....M

=0,1,. M—l)

= FoFy -+ Fprh™ det (D“ Di; k_l Y,

Thus, we obtain v3a(z0) > M.
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84. Generalizations of Nevanlinna’s results

Let g be a k-nondegenerate meromorphic map of C* into PY(C) and
consider hyperplanes

(4.1) Hj:ajowo—i-----}-ajN'wN:O (1 S]Sq)
in PNV(C) which are located in general position and satisfy the condition
dimg ™ '(H;nH;)<n—-2 (1<i<j<gq).

For a given positive integer £y, we denote by F, (Hx,...,Hg; g;4o) the
set of all k-nondegenerate meromorphic maps f satisfying the conditions;

(4.2) min(v(f, H;),%) = min(v(g, H;),4) for 1 < j < g and
(4.3) f=gonlUj_, g7 '(H))

We note that Fn(Hy,...,Hg; g;4) coincides with F(Hy, ..., Hy; g;4) de-
fined in §1 because of Proposition 2.9.

Take M + 1 maps f°, f1,..., fM € Fo(Ha,..., Hy; g;40) with reduced
representations f¥ := (f§ :---: f¥) and set T(r) := ZkMzo T(r, f*). With
each ¢ = (cp,...,cy) € (CNHL), := CN*1 — {0} associating a hyperplane

He:={(wo:+ - :wn);cowo + -+ + eywy = 0},
we define
C := {c € (C"™),;dim(f*)"}(H.NH;) <n—-2for 1<j<q, 0< k< M}
LEMMA 4.4. The set C is dense in (CVT1),.

For the proof, refer to [9, Lemma 5.1].
Now, taking an arbitrary ¢ € C, we define

ajof§ + -+ a;n SR

45) FM .=
( ) C Cof(l)c—‘—"-—*—CNfIk\:j’
. 1 1 .
ol = 5~ 0 (1<k<M, 1<j<g),
C [+
and assume that ¥2%°, ..., M7 are linearly independent for some jo and
c€eC.
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PROPOSITION 4.6.  Taking an admissible set o = (v, ..., anr) for the
functions 1, ..., 2 we consider ®* ;= ®*(F°, ... FMP) (% 0) and
assume that £y > |a|. Then, for 0 < k < M,

k k
INE oy (rs Hjio) + M Y~ NI (r, Hj) < N(r,v32) < T(r) + o(T(r)).
J#7Jo

Proof. The first inequality is a direct result of Propositions 3.5 and
3.7. To show the second inequality, we apply Theorem 2.1 and (2.2), which
give

N(r,v3s) < T(r,®*) + O(1) = N(r,v$) + m(r; ®*) + O(1).

We easily see that a pole of ®* is a zero or a pole of some F* j°, and ¢
is holomorphic at all zeros of Fc’c 70 hecause of Proposition 3.5. These show
that

z
=
33
S
'9'
Q
1M
P
=
:
Q
H‘
S

On the other hand, using (2.3) and the representation (3.6), we have

M Do ‘(pk]()
m(r; %) < Z ry FRoYy 4 m T’_k'jc_ +0(1),
k=0 0<k<M,0<e<M—1 ¥e

where @0 = 1/Fckj°. By virtue of Theorems 2.1, 2.6 and (2.5), we conclude

M
N (r,v8a) < 3 (N(r,vihsy) + mlrs FE)) + o(T(r)

k=0

M
<Y T(r, F¥) + o(T(r)) < T(r) + o(T(r)).

k=0
In the above situation, we can prove the following:

PRrROPOSITION 4.7. (i) For arbitrary M > 1 and £y > |/,

(@ = N = DT, £*) < T=1(r) + NI (r, Hyy) + o(T(r).
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(ii) For arbitrary M > 1 and £y > |a| + 1,

q
(g =N = 1)T(r, ) < 6 3 NI (r, Hj) + o(T(r, f*))
i=1

1
< —A'}T(r) tk (1 - 7\2) N{*(r, Hjy) + o(T(r)).
(ii) If M > & and £y > |a| + &, then

(g = N = 1)T(r, f*) < > NI*(r, Hy) + o(T(r, f*))

M=

i=1
K K k
< T + (1= 57 ) ML (r, Hyy) + o(T(r).
Proof. For M > 1 and 4y > |a|, Theorem 2.13 and Proposition 4.6

yield

(g =N = DT(r, %) < w3 N (r, Hy) + NI (r, Hyp) + o(T(r, £5)
J#Jo
< = T(r) + N{* (r, H) + o(T(r)),

which gives (i).
Assume that £y > |a| + 1. In this case, we have

g k
(g =N =1)T(r, %) < &3 NI (r, Hy) + o(T(r, f¥))
j=1

= ’1% (lek("" Hjo) + M Z lek(r’Hj))
J#Jjo
tx (1 - XZ‘) NE (r, Hjg) + o(T(r, £¥))

< ST+ (1 57 ) ) ol

which gives (ii).
Under the assumption M > « and £ := £y — |a| > &, we have

q
(g = N = DT(r, f*) < S" NI*(r, Hj) + o(T(r, £*))

=1
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< |\ N H) + MY N (r, )

AR
MA e i#do
(N8 (r, Hi) = =L, H,)) + o(T(r, 1)
K » £+Jo M ZO »++Jo )

+
< 3770 + (1= 52) NI Hyy) + o(T(1),

which gives (iii). The proof of Proposition 4.7 is completed.

As a consequence of Proposition 4.7, we can prove the following im-
provement of Theorem 1.1.

COROLLARY 4.8. Ifq > N + 2k + 2, then f = g for any map f €
Fe(Hy,...,Hg;9;1).

Proof. Assume that there is some f € F,(Hy,...,Hg; g;1) with f # ¢
and set f0 := f and f! = g. Then, for the functions FI (k = 0,1,
j = 0,...,N) defined by (4.5), Cartan’s auxiliary function is given by
<I>°(Fcoj ,Fclj ) = coj — clj . By the assumption, there is some jo such that
@O(ngo, cljo) # 0. Setting M =1 and ¢y = 1, we add the inequalities of
Proposition 4.7 (ii) for the case k = 0,1 to see

(g = N = 1)T(r) < 26T (r) + o(T(r)).

Divide both sides by T'(r). We then obtain ¢ — N —1 < 2k as r tends to
400, which contradicts the assumption.

We can also prove the following degeneracy theorem.

THEOREM 4.9. Take maps f°, fl,...,f*t! € Fu(Hi,...,Hy; 9;40)
for by =k(k+1)/2. If ¢ > N + £+ 2, then

N N N
Ei=0 cf, io YisoGif, il Y im0 Gif, iKH

N 0’ =N 1Y _N R+l
Zi:Oaﬁfi Y im0 @jif; im0 @jifi

are linearly dependent over C for eachj =1,...,q andc = (cy,...,cn) € C.

Proof. Assume that the conclusion is not valid. Then, there are some

jo and ¢ € C such that ®*(FY%°, ... Frt10) £ 0, where a is an admissible
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set with |o| < &(k +1)/2 for (¥&%°,...,%5+19°). We apply Proposition 4.7
(i) for the case M := k + 1 to see

K+1
(@ =N = DT(r) < (5 +2)—T(r) + 3 NI (r Hyo) + o(T(r))

k=0
< (3’%%2115 + 1) T(r) + o(T(r)).

In the same manner as in the proof of Corollary 4.8, we can conclude ¢ <
N +2+ k+ k/(k+1). Since ¢ is an integer, we get ¢ < N + 2 + k. Thus,
we have Corollary 4.9.

Now, we give a generalization of Nevanlinna’s results ([10, Satz 3].

THEOREM 4.10. Let fO,---, fM € Fo(Hy, -, Hy; g;4o). Assume that
M>k,bg>M(M-1)/2+k and w0, .. M0 gre linearly independent
for some jo and c € C. Then, ¢ < N + k + 2.

Moreover, if ¢ = N + k + 2, then there is a set E (C [0,+00)) with
fE dr < +o00 such that

i Nkfk<'raHj)

(4.11) Mloion:@ j=}(r Ay =R 1 (0<k<M),
k
(4.12) im L0F) ) g<k<e<m)

7‘—*00,7‘¢E T(T7 fe)
and, under the additional condition M > k,

k
N'{ ("" Hjo) _

(4.13) ng?@ Tor = ! (0< k< M).
Proof. Since Ni'(r,H;) =---= N!" (r, H;), Proposition 4.7 (iii) gives
(g —N-1)T(r)
<(M+1) Xq:N,{k (r, Hj) + o(T(r))
j=1
< MT(T) + (1 - i) ‘f: NE¥ (v, Hjy) + o(T(r))
M M

k'=0
< (M+ 1)%T(r) +(1- XNZ) T(r) + o(T(r))
< (k4 DT(r) + o(T(r))
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for k=0,1,---, M. By the same argument as in the proof of Corollary 4.8,
we have ¢ < N + k + 2.
Assume that ¢ = N + k + 2. Then, by the above inequalities,

g
(e DT() < (M +1)S" NE* (r, Hy) + o(T(r) < (5 + DT(r) + o(T().
i=1
This concludes that, for a subset E of [0, +00) with [ dr < 400,
T(r) M+1
im 7 = B
et SN (rHy) R

On the other hand, as is easily seen from Theorem 2.13,

T(r, f* 1
(4.14) limsup g (r, /%) < .
r—oo,r¢E 2ij=1 N (r, Hj) k+1

Therefore, for each k we obtain

M+1 < liminf T(r, /) lim sup T(r, fkl)
K+l 7 rocordB P ni* (r,Hj)  przpr—oordE 374, Ni* (r, Hj)
M

K M+1
< Z lim sup T(T’{, ) < 1
fpsor=eordB Y4 NI (r Hy) T AT

In view of (4.14), we can conclude (4.11) for each k. Therefore, for all &
and £,

T(r, f*)

i _
roangE T(r, f7)

{4
rof . B
r—oo,r¢ E Zg:l Nf{k (7"7 HJ) r—oo,r¢E T(’r’ fl)

Proposition 4.7 (iii) gives also

M+ 1)k K k
s+ 070) < PRy 4 (v 1) (1= ) ML, Hp) 4 o(T0).
Under additional condition M > k, we have
. N H) | k1 - M 1
lim inf > = .
r—oo,r¢ E T(’I‘) (M + 1) (1 - 'I\%) M+1
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By (4.12), we conclude

(1>) liminf N (r, Hy) > (M +1) liminf N (r, Hy) >1
T r—oo,r¢E T(T‘, fk) - r—o00,r¢ E T('I‘) =
This completes the proof of Theorem 4.10.

We can prove also the following improvements of [9, Corollary 4.5]:

THEOREM 4.15.  Assume that ¢q = N + 2k + 1. Then, for each map
f € Fu(Hi,...,Hg; g;1) with f # g, there exists a set E with finite measure

such that
lim ;:1 le("" H;) _
r—o0,r¢ E T(r, f)
and
(4.16) lim M =1

r—o0,r¢ E T(?‘, g) B

Proof. As in the proof of Corollary 4.8, we set f0 := f and f! := g.
By the assumption, there is some ¢ € C and jpo with <I>0(Fcoj°,Fclj°) =
FY° _ Fl° % 0. Then, we can apply Proposition 4.7 (ii) for the case
M =1and £y =1 to get

126T(r) < 263" N{* (r, Hj) + o(T(r)) < 26T (r) + o(T(r))
j=1

for k = 0,1. This gives

T(r, f°) + T(r, 1) _

z 1
et 1 N (o, )

for a set E with finite measure. On the other hand, Theorem 2.13 yields

T k k
lim sup (r,f{ ) < limsup KT(?kf )
r—oo,r¢F Eg-:l Nl (’I‘, Hj) r—oo,r¢E 23:1 Ng (r, Hj)

1
S§7

whence

0 1
im ;1’:1 le (r, Hj) —  lim g’:l le (r, Hj) —
r—oo,r¢ E T(Ta fO) r—oo,r¢E T(Ta fl)
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and

T )
r—oo,r¢ E T(’I‘, fl)

1
- T(r, £°) - N I (v, Hj)
S8 T, NI ) ees TG )

For three meromorphic maps, we have the following:

THEOREM 4.17.  In the situation stated at the beginning of this section,
consider the case M =2 and £y = 2 and assume that  := <I>°‘(FCOJ°, FCIJO,
FEJO) Z 0 for some c € C, jo and o with |a| =1. If g= N + 2k + 1, then

k
lim le (ra Hjo)
r—oo,r¢ E T(r, fk)

Proof. We apply Proposition 4.7 (ii) for the case M = 2, £ = 2 and
qg= N + 2k + 1. Then, we have

=1 fork=0,1,2.

| 26T(r) < —T(r ZN 7y Hjo) + o(T (7)),

whence
N
liminf Zk =0 (T’ ]0) > 1.
r—oo,¢ E T('r)
By the help of (4.16), we have the desired conclusion.

§5. Degeneracy theorems for some sets of meromorphic maps

As in the previous section, taking a k-nondegenerate meromorphic map
g, a positive integer £ and hyperplanes Hi,..., H, in general position with
dimJ;; g~ (H; N Hj) < n —2, we consider the set F(Hj,...,Hg;g;4o).

We now give the following theorem, which yields Theorem 1.3 as k = N.

THEOREM 5.1.  Suppose that ¢ > N +k+2 and {y = k(k +1)/2 + &,
and take arbitrary maps f°,.. ,f"‘+1 in Fo(Hy,...,Hg g;4y). Then, there
are N +1 hyperplanes H;y, H;,,...,H;, among H;’s such that, if we choose
homogeneous coordinates (wo : -+ : wy) on PN(C) with Hj, = {w; = 0}
(0 <i < N) and take reduced representations f¥ = (f& :---: f&), then

2.1 sz fi2 in fils+l f()

1 0’ 72 02" ertl ~ £0
R/ A SR A A
are linearly dependent over C for each pair (i,5) with 0 <4, j < N.
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Proof. We set M := k+1 and use the same notation as in the previous
section. Consider the subset

(5.2) J:= {j; L .., wMI are linearly dependent for every c € C}.

of {1,2,...,q}. We take a subset E of [0,+0c0) with finite measure such
that Theorems 2.6 and 2.13 hold for all meromorphic maps f*. By (4.13),
if jo ¢ J, then liminf, o ,¢g N1(r, Hj,)/T(r, f¥) = 1 and, by (4.11), the
number of indices not contained in J is at most k+ 1. Therefore, J contains
at least N + 1 indices. Let {jo,J1,...,7n} and we choose homogeneous
coordinates (wg : -+ : wy) on PY(C) so that Hj, = {w; =0} (0 <i < N).
Then, for each 7 € J and ¢ € C,

(5.3)  ®*(FY,...,FMi)=0 for all a with |a|] < M(M +1)/2.

Since C is dense in (CV*1), by Lemma 4.4 and <I>°‘(Fc0j, e FCMJ) depends
continuously on parameters c, (5.3) holds for every ¢ € (C"*1),, partic-

-th
ularly, for ¢; = (0,...,0,J 1,0,...,0). By Proposition 3.3 we can easily
conclude that f}/ f} - £/ fJQ, L Y j’J'-‘Jrl S id) fJ(-) are linearly dependent
over C for 0 <4, 5 < N.

We next study the case {p = 2.

THEOREM 5.4. Suppose that ¢ > N + 2k + 1 and take three maps f°,
fY, % in Fo(H,. .., Hy; g;2) with reduced representations f*¥ = (fk....:
fX). Set

i Gof§ 4 tanfy
Xpe = ettt anfl
ajofs + +a;nfr
Then, after a suitable change of indices, for each ¢, 7 with 1 < ¢, 7 <

N + 2k — 1 there exist some nonzero constatnts c;; such that
X?o = Cin}Jla X}Jl = Cinzsz or X?2 = cin?oa
where c;; = 1 for each ¢, j in the case k > 2.
For the proof, we first give the following lemma.

LEMMA 5.5. Under the same assumption as in Theorem 5.4, if & > 1
and X}]o / X}Jl is a constant for some 1, j, then X}JO = X}jl.
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Proof. By the assumption, there is a nonzero constant C with Xj,jl =
Cx}]o, where X;Jo # 0 because f° is nondegenerate. Assume that C #
1. By the assumption f© = f! on ngl(fo)“l(Hj), we have X}JO = 0 on
Uj,#(fo)‘l(er). It follows that

I (25 = DT (r, f%) < 37 N (r, Hy) + o(T(r, £°))
J'#3
<Y N (r,Hy) + o(T(r, {°))
J'#5
< h:N('r, U(X);’O) + O(T(r’ fO))
< KT(r, f°) + o(T(r, f°)).

We then have k < 1, which contradicts the assumption. This concludes
C=1

Proof of Theorem 5.4. As in the proof of Theorem 5.1, we consider the
set J defined by (5.2). In this case, by Theorems 4.15 and 4.17 J contains
at least N + 2k — 1. After a suitable change of indices, we may assume
{1,2,...,N 4+ 2k — 1} C J. By the same reason as in the proof of Theo-
rem 5.1, there are some nonzero vectors ()\?j, )\}j, )\fj) such that

Since X?k =1/ Xifj,c, we can apply Proposition 3.4 to show that there are
some nonzero constants ¢;; (1 < ¢, j < N + 2k — 1) such that

XFo = cijXF1, Xf = cijXfe or Xfz2 = cijXFo-

Here, by Lemma 5.5 ¢;; = 1 for each 4, j if K > 1. These conclude Theo-
rem 5.4.

Proof of Theorem 1.4. Assume that there exist three distinct maps f°,
fl, f2 € F(H,...,Hy; g;2), where we may take k = N. First, we consider
the case N = 1 and so ¢ = 4 in Theorem 1.4. After a suitable change of
indices, X}% / X}%, X}% / X}% and X}% / X}% are all constants. Then, there is a
Mobius transformation w' = L(w) with f! = L(f°). In this situation, since
the number of fixed values for L(w) are at most two, each f* omits two of
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Hj’s, and L(w) interchanges them with each other and fixes others, whence
L(w) is unique. Since the same conclusion holds for the maps f2 and f°.
These give an absurd conclusion f! = f2 = L(f°).

For the case N > 2, by Lemma 5.5, c;; = 1 for all constants c;; men-
tioned in Theorem 5.4. Therefore, either x}]o = X}’l X4 = xzf]2 or X% = x'%
holds for each ¢ and j with 1 < ¢, j < 3N —1. Particularly, for L := 3N —1,
x;ﬁ = X]ff, X;f = X;ﬁ or X;ﬁ’ = x]fﬁ for 1 < j < 3N — 2. Consider the
subset

. ) L j L . j L j L . j L jL
I = {j; xjo = xp'h L= {5 X =xp} L= {45 x5 = xJo}

of {1,2,...,3N — 2}. One of these contains at least N indices. In fact, if
all of I1, Iy and I3 contain at most N — 1 indices, then we have an absurd
conclusion

3N—2§#(I1 UI2UI3) S#Il+#I2+#13§3(N—1).

This gives the desired conclusion fO = f1, f! = 2 or f2 = fO.
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