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O N T H E V O L U M E O F L A T T I C E M A N I F O L D S 

KRZYSZTOF KOLODZIEJCZYK 

The volume of a general lattice polyhedron P in M.N can be determined in terms of 
numbers of lattice points from N — 1 different lattices in P. Ehrhart gave a formula 
for the volume of "polyèdre entier" in even-dimensional spaces involving only N/2 

lattices. The aim of this note is to comment on Ehrhart's formula and provide a similar 
volume formula applicable to lattice polyhedra that are iV-dimensional manifolds in 

Denote by ZN the fundamental lattice of points with integer coordinates in RN. 

Elements of ZN are called lattice points. We say that a simplex Д с K N is a lattice 
simplex if all its vertices belong to ZN. A lattice simplex Д is called fundamental if 
Д П ZN consists only of the vertices of Д. A set P с RN is said to be a polyhedron, if P 
is the underlying point set of a simplicial cell complex. A polyhedron P is called lattice 
if all its vertices (0-simplexes) lie in ZN. Any lattice polyhedron P can be represented as 
the union 

( i ) ^ = UA-' 
i=l 

where each Д* is a fundamental lattice simplex and Aj \ Д* ф 0 for j ф к (no Д^ 
is contained in another simplex). Lattice polyhedra in R 2 are called, as usual, lattice 
polygons. A lattice polyhedron P in RN is called proper if every Д* in the union (1) is 
iV-dimensional. 

Reeve [15] introduced additional lattices (often called the rational lattices) 

= {x 6 RN : nxe ZN}, n ^ l . 

Notice that Z f = ZN. 

For a given lattice polyhedron P in RN denote by Bn and / „ , n ^ 1, the numbers of 
points of the lattice Z„ on the boundary and in the interior of P, respectively. Thus 

Bn = Bn(P) = \Z%ndP\ and In = In(P) = |Z^nin tP | . 
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Ehrhart [4] discovered the remarkable fact that the numbers Gn(P) — In(P) + Bn(P) 

of a proper lattice polyhedron P in E N are given by the following polynomial 

(2) Gn(P) = V(P)nN + o 1 v_ 1 (P)n A r " 1 + • • • 4- ai(P)n + x(P) 

in which V(P) is the volume of P, the coefficients a/v_i(P), • • •, ai(P) are some rational 

numbers, and x{X) here and later on denotes the Euler characteristic of the set X. For 

an explicit description of all an's in the case of a lattice simplex we refer the reader to [1] 

and [2]. Also the numbers In(P) and Dn(P) = In(P) + Bn(P)/2 are some polynomials 

in n of degree N with the leading coefficient V(P). These polynomials are now called 

Ehrhart polynomials. 

Using the Ehrhart polynomial describing the numbers Dn(P) Macdonald [12] ob­

tained the following formula for the volume of a proper lattice polyhedron P in RN 

(3) (N - l ) A W ( P ) = Jli-l)'-1 (N

k~l) {BN.K + 2IN_k) 

+ (-l)»-i[2x(P)-x(dP)}. 

The case N = 3 in formula (3) was earlier obtained by Reeve [14, 15]. 

Ehrhart polynomials of lattice polyhedra in R.N satisfy the so-called reciprocity law. 

From among several equivalent formulations of it we present here the following 

In(P) = ( -1)"GL„(P) , 

in which G_ n (P) = V{P){-n)N + a A r _ 1 ( - n ) N - 1 + • • • + al(-n) + x(P) and the coefficients 

a/v-i, • • •, ai are the same as in formula (2). Let us notice that the law does not hold for 

all proper lattice polyhedra in 1R". 

Making use of the reciprocity law Ehrhart [3, 4] derived the following formula for 

the volume of "polyèdre entier" in even-dimensional spaces 

«> - 'IT'-'KT) ( W H +1"""*-') +
 5(-1)W!(4)X(P)' 

(The reader is warned that in both papers the formula was misprinted.) This formula 

employing only lattices Z f , . . . , is compared by Ehrhart to Macdonald's formula (3) 

which uses lattices Z f , . . . However Ehrhart's formula cannot be applied to all 

proper lattice polyhedra. We shall illustrate this by an example below. 

In [3] Ehrhart also gave the following special cases of formula (4) when N = 2 and 

N = 4. They are as follows: 

(5) A{P) = h + \B, - X(P) 

https://doi.org/10.1017/S0004972700022310 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022310


[3] Volume of lattice manifolds 315 

and 

(6) 71 + V ) + 3 X ( P ) 

While formula (5) admits an extension whose range of validity covers all proper lattice 
polygons in R 2 , see [15, 16], the latter cannot be easily modified to be applicable to all 
proper lattice polyhedra in R 4 . In fact, we shall show that there is no linear formula for 
the volume of proper lattice polyhedra in R 4 in terms of B2, B\, I2, h, x{P) a n d x(^P)-

We need the following example. 
EXAMPLE. Take two unit lattice cubes Ci and C2 in R 4 and denote by Pk the union 
Ci U C2 having /c-dimensional, 0 ^ k ^ 2, intersection C\ D C2. One can check that 
B2(Pk) = 2 ( 3 4 - l ) - 3 * , Bx{Pk) = 2 5 -2* , I2(Pk) = 2, h(Pk) = 0, x(Pk) = 1, x(dPk) = -1 
and V(Pk) = 2. 

If there existed a linear formula for the volume of proper lattice polyhedra in R 4 in 
terms of B2, Bi, I2, Ilt x(P) a f l d x(dP) then it would be of the form 

V(P) = aB2(P) + bI2(P) + cBx{P) + dh{P) + eX(P) + fx(dP). 

By substituting the numbers from Example 1 in the above we would obtain 

which, as is easy to check, is an inconsistent system. 
An immediate consequence of the above considerations is the fact that formula (6) 

is not applicable for all proper lattice polyhedra in R 4 . This also implies that formula (4) 
cannot be used for all proper lattice polyhedra in RN. It can be shown, however, that 
formula (4) is applicable for all lattice polyhedra which are N-dimensional manifolds. 
Indeed, we always have 

In view of [13, Corollary 1.6 and Theorem 4.6] one can see that the reciprocity law 
is satisfied for such polyhedra. So we have In(P) — (—l)NG-n(P). This implies that 
a2j-i = —cij-\ for j = 1,..., Af/2. Consequently, it follows that the numbers Dn(P) of 
a lattice polyhedron P that is an Af-dimensional manifold in an even-dimensional space 
R^ are given by a polynomial of the form 

2 = 159a + 26 + 31c + e - / 
2 = 157a + 26 + 30c + e - / 
2 = 151a + 26 + 28c + e - / 

G„(P) = V(P)nN + a ^ P ) ^ - 1 + ••• + ai(P)n + X(P) 

and 

In(P) = V{P)nN + CN.iiP)^-1 + ••• + c,(P)n + x(P) - x(dP). 

Dn(P) 
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By substituting the values 1,2,. . . , N/2 for n in the above polynomial we obtain a system 
of N/2 linear equations. Solving for V(P) in that system results in formula (4). 

Now we shall comment on the case when N is an odd number, N = 2k — 1. Again 
from [13, Corollary 1.6 and Theorem 4.6] it follows that the reciprocity law is satisfied for 
any lattice polyhedron P in №N that is an N-dimensional manifold. Proceeding similarly 
as above we can show that in this case 

Dn(P) = In(P) + 2Bn(P) = V(P)nN +bN-2nN-2 + bN^nN~4 + ••• + b3n3 + bin. 

When we allow n to assume values 1,2,..., k = (N + l ) /2 in the above polynomial 
then it generates a system of k independent linear equations. Solving the system for 
V(P) and evaluating the two resulting Vandermonde-type determinants, we obtain 

1 

V(P) = 

2 2 3 

3 3 3 

2 2 f c " 2 I2+--B2 

32fc-2 /3 + 2 8 3 

n ( 2 j - l ) ! ) E ( - l ) * + * (k-j)\(k + j)\ (2/,- + Bj) 

n ( 2 i - l ) ! 

( 2 * ) ! 

Returning now to N = 2k — 1 we get the following formula for the volume of lattice 
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polyhedra that are TV-dimensional manifolds in odd-dimensional space RN; 

(N+l)/2 . 

(JV + 1 ) ! V ( P ) = £ ^ { N + 1 ) / 2 ~ \ { N + i y 2 - j ) i { 2 I j + B j ) -

In the special cases of TV = 3 and TV = 5 the formula reads 

(7) 12V{P) = 2I2 + B2- 2(2/j + Bx) 

and 

2AW{P) = 5(2/! + Bj) - 4(2/ 2 + B2) + (2I3 + B3). 

As we have already mentioned the case JV = 3 in Macdonald's formula (3) was earlier 

obtained by Reeve. Reeve's formula 

12V(P) = 2I2 + B2- 2(2/! + Bi) + 2X(P) - x(dP) 

in the case of lattice polyhedra that are 3-dimensional manifolds coincides with our 

formula (7) since for such polyhedra we have 2x(P) — x(d-P) = 0, see [13, Corollary 1.6]. 

Summarising the observations made in this note we have the following theorem. 

THEOREM. If P is a lattice polyhedron in RN that is an N-dimensional manifold, 

then 

rN/2 
TV! 

-j=i . . . . 

if N is even, 
IWJ.n/5 v(p) = ; 

h [El"')"™-'(pu _ , ) M + *) * ^ ( N

N

/ 2 ) x i P ) 

UN 

(iV + 1)! 

(JV+l)/2 

Y ( - l ) < N + 1 ) / 2 - - > l 
if TV is odd. 

For more lattice polyhedra volume formulae the reader is referred to [7, 8, 9, 10, 11]. 

More information concerning lattice polyhedra can be found in [5, 6]. 
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