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Recently M. Ikeda [1] succeeded in determining the structure of absolutely
segregated algebras, i.e. algebras whose 2-cohomology groups all vanish. His
beautiful result reads: an algebra A, of finite rank over its ground field, is
absolutely segregated if and only if i) the residue-algebra A/N modulo the
radical N is separable and, moreover, ii) the A-left-module iVis an (Mo)-module.1}

A* simplification was given by H. Nagao [5], who obtained, besides an interesting-
result on algebras with vanishing 3-(or higher) cohomology groups, an elegant
short proof to the fact that under the assumption of i), the property ii) is
necessary, and sufficient, for the absolute segregation of A2 )

In the present paper we shall show that, in an absolutely segregated algebra
A, not only the radical N, but every left-ideal of A is an (MoHeft-module of
A (and every right-ideal of A is an (Mo)-right-module of A). Besides that
this property of absolutely segregated algebras is rather striking, as it seems
to the writer, our approach to it, which we shall present in the foϊlowings, seems
to be of some interest for itself, as there come into context a certain modifica-
tion of cohomology groups (which we may call relative cohomology groups) and
certain 3-cocycles (in the modified, relative sense), yielding thus a new significance
of 3-cohomology.3) We want also to note that, although our method is closely
related with Nagao's one, we start independently of the condition i). Further,
our approach is free from the finiteness of algebras and can be applied to general
algebras of infinite rank with vanishing 2-cohomology groups, to yield some
informations about them, though we have to leave, in this paper, their complete
structural characterization open.

Received July 10, 1953.
χ) A left-module m of an algebra A is called an (Mo)-module, if it has the following pro-

perty : if a left-module 3D? of A contains an A-submodule n such that -ϊft/n is A-isomorphic
to m, then 30ΐ possesses a second ^4-submodule nt' (necessarily Λ-isomorphic to m,) such
that 3DΪ is the direct sum 3D? = m'®n. For its structural characterization: Cf. Nagao-Naka-
yama [6].

2) Once this is shown, also the necessity of i) can easily be shown by Ikeda's argument of
ground field extension.

3> This significance of our I-relative 3-cohomology is in a sense similar to the significance
of '* obstruction 3-cocycles" of Hochschild [3]. but is different.
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The writer wishes to thank H. Nagao and M. Ikeda for their friendly
cooperation for the present work.

§ 1. A modified cohomology theory
Let A be an algebra, of finite or infinite rank, over a field Ω. Let ί be

a left-ideal of A, and consider an A-double-module m satisfying

(1) mί = 0.

Denote by Cχ(A9 m) the group (in fact an J2-module) of those fl-cochains / of
A in m, which possess the property: f(aί9 a>, . . . 9an) depend only on ai9 a29

. . . ,an-i and on the residue-class of an modulo ί, or, what amounts to the
same thing, f(aί9 a2, . . . , an) = 0 whenever α«eί.

We verify readily that the coboundary operation δ maps Cχ(A9 m) into the
similarly defined subgroup C|+1(A, m) of the (n + l)-cochain group Cn+1(A, m).
Denoting by Zχ(A9 m) the intersection of Cχ(A9 m) with the group Zn{A9 m)
of ft-cocycles* we get thus a residue-group

(2) H?(A, m) =Z\(A9 m)ldC\~\A9 m),

which we wish to call the {-relative /2-cohomology group of A in m (an A-double-
module satisfying (1)); we shall also speak of ί-relative cochains and (-relative
cocycles.

(More generally, we may consider, besides our ί, a series of two-sided) ideals
i, 3a, . . . of A satisfying

and confine our consideration to those ?rcochains and ̂ -cocycles which depend
only on the residue-class of the last argument modulo ί, the residue-class of
the last-but-one argument modulo 3i, the residue-class of the last-but-two
argument modulo fa, and so on, to get a further modified cohomology group.
And Hochschild's [1] reduction theorem, for instance, can be given in such
generalized setting. But in this note we shall confine ourselved to the above
ί-relative cohomology theory which is sufficient for our present purpose.)

After Hochschild [1] we consider the 1-cochain group Cι(A9 m) as an A-
double-module. setting

{fa)(a')=f(aa')-f(a)af

for/eC ι (A, m) and-a, a'&A. We see readily that, with ί satisfying (1), the
submodule C\(A, m) is A-(two-sided-Allowable. (Moreover, it satisfies the con-
dition (1), with m replaced by C\{A, m) (i.e. we have C\^A9 m)ί = 0) if ί is (not
only a left-ideal but) a (two-sided) ideal of A.)

Now, let n^l. With an w-cochain/in C"(A9 m) we associate an (ordinary)
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(w-l>cochain / o f in the A-double-module C\(A, m) such as

() a2, . . . ,an-ι)(an) -f(au a2, . . . ,an).

Conversely, for every element / of CnΉ A, C\{A, m)) we get by (3) an element

/of C\{A, tπ) with which our / is associated, Thus we have

(4) C*(A, m)^Cn'\A9 C\{K, m)) (n*l)

This correspondence is in harmony with the coboundary operation. Hence we

have

(5) ZtiA, va)^Zn~\A, C\(A, m)) (n^l)

and further

(6) H?(A, m)^Hn~l{A, C\(A, m)) {n^2)

which is Hochschild's reduction theorem in our generalized formulation.

§ 2. A significance of the (-relative 3-eohomology

Let, again, A be an algebra, of finite or infinite rank, over a field Ω, and

let ί be a left-ideal of A. Take an j?-submodule A0 of A (which is in general

neither a subring nor a left-ideal) such that is the direct sum of A* and ί:

(7) A = ylo®ί,

With an element a of A, we denote by a0 the uniquely determined element of

A satisfing a = a° mod ί. Put, for a,

(8) 6β = (ftβ)° + A(6, a), λ(b,

Considering the product cba we get

(9) λ(cb, a) = λ(c, (baf) -f-cλ(b, a).

Further

(10) λ{b,l)=bl (/eί)

Now? let 5R be an Λ-left-module and m its i4-(le£t-)submodule. Take an J2-sub-

moduie 3ft1 of Wl such that, similarly as above,

(11) SR^a

Denote the representative in 3)1 * of the class mcdulo m of an element u of

by «\ and put with a£ΞA,

(12) au = iau)1 + μXa, u), μ(a9 «)eiit.

We have

(13) /^(te, M) =/J(6, (β«)1) + ft/i(β, u),
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for a, b A, and

(14) μ(a, m)-am

We assume now that the residue-module 9ft/m is ^4-(3eft-)isomorphic to

our left-ideal I. For /Gί we denote by V the element of TO1 whose class modulo

m corresponds to / by the (once fixed) isomorphism, and we write, for the sake

of brevity, μia, I) in place of μia, V).

On considering m as an (not only A-left but) Λ-double-module by setting

(lδ) nυ4 = 0,

we put

(16) /(r, b9 a)=μ(c, λ(b, a0)),

to get an element of CZ(A, m), in fact of C\(A9 m). We have

(δf)(d, c, b, a)

c, λ(b, a°))-μ(dc, λ(b, a"))

d, λ(cb,a°))-μ(d, λ(c, (ba)0))

= dμ(c, λ(b, a)))~μ(d, cλ(b, a0)) - dμ(c, λ(b, a*))

+ μ(d, λic, (baQ)0) + u(d, cλib, ά}))~μ(d, λ(c, (ba)0))

= 0

by (15), (9), (13) (and the bilinearity of , μ)\ observe that (ba°)° = (ba)° (as

ί is a left-ideal). Thus

117) /(defined in ( 1 6 ) ) e Z i U , m).

Now assume that there exists h&c\{A, m) satisfying

(18) dfc=/,.

i.e.

(180 μ(c, λ(b, a0)) = ch(b, a) - h(cb, a) + He, ba).

With this ί-relative 2-cochain h we put

(19) v(b, a)= -h(b, a) + μ(b9 a-a°)

(a, ί εA) . Then, as h(EC\(A, m),

(20) v{b, l) = μ(b, 1) (/Gί).

Further

cv(b, a) = - chib, a) + cμ(b, a - a0),

v(cb, a) = —h(cb, a) -f μ(cb, a— a0)

= -h(cb, a) + μ{c, b(a- a0)) + cμ(b, a-aQ),

v{c, ba) = v{c, (ba)°+λ(b, a))

= -h(c, .ba) + μ(c, λ(b, a)),
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by (13) and (8), whence

cv(b, a) - vicb, a) -f vie, ba)

= -chib, a) + hicb, a) -/Ac, bia-a0))

-hie, ba) + μ(c, λib, a))

-• — μic, λib. a°)) + μ(c, λλb, a)) — μ(c, bia — a0))

= μ(c, -λib, a) + λ(b9 a)~bia-a°))

by (180. Here the second argument is 0 by virtue of (10), Thus

(21) cvib, a) — viicb, a) -f- vie, ba) — 0,

for every a, b, c G A

Introduce now an i?-rnodule A§ iP-isomorphic to A, by a correspondence
tf<~->a§? and set

We define

(22) b(a* -f m) - ί ba)$ -f / '(^ «) -f bm

(a^EiA^, m&m). Then the relation (21) assures that A becomes an /Heft-

module. Clearly the residue-module A/m is A-(]eft-)isomorphic to the .4-left-

module A. On the other hand, because of (20), the /L-Oeft^submodule ί§ + m

is ./l-(left-)isomorphic to 93L where 0 is the image of ί by our (/2-)isomorphism

of A and Λ§.

Further, for «EΞ?ί we denote by «(//) the (counter-)image in 4̂ of the

class modulo m of u, thus α(«)G/l and

α(«)§ = « mod. m.

For u* vEz*& we define the product nv to be the image of υ by the operation

a(u):

(24) uv^a(u)υ.

Then

uivtv) = w(

(uv)tv$

because of the A-left-isomorphism of A and ?ί/m, among others. So 21 becomes

an algebra, over i?? and A and 91/ tπ are isomorphic also as algebras.

This prove the "if" part of the following theorem, whose "only if" part

can be shown simply by reversing the above argument: 4 3

9ί being given, we decompose SΆ as S2ί = A$ζ&χn, where A§ contains the image in 2 of %Ψ.

Define ι>(bt a) by the case m = 0 of (22). Then we get (20) and (21). Define h(b, a) by

(19). We can verify (18') by virtue of (13) and (10).
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THEOREM 1.5) Let ί be a left-ideal of an algebra A. Let 2ft be a left-module

of A, m an A-(left-)submodule of $R, such that 9JΪ/m is A-(left) isomorphic to

I. Define ftΞZ\(A, m) by ((8), (12) and) (16) {where we put mA = 0 (15)).

If, and only if, the class of f in H\{A, m) is 0, there exists an algebra 91 such

that 1) $ί is an extension of A with the keryiel in (i.e. $ΐ contains m as an ideal,

the residue-algebra 9ί/m is isomorphic to A, and the left and right operations

on in of the elements of 9ί coincide with the corresponding operations of their

images in A) {where we set again IUA = 0 (whence mϊί = 0)), 2) if 2 is the left-

ideal of slί containing m such that 2/m corresponds to ί by the isomorphism of

9(/m and A, then the W/m-left-module^ 2 and the A-left-module W are operator-

isomorphic of second kind (i.e. semϊlinear-isomorphic) for our isomorphism of

?ί/m and A.

Needless to say that the "if" part of our theorem is certainly applicable

when we have

(25) H Ϊ ( Λ , m ) = 0 .

§ 3. Algebras with vanishing 2-cohomology groups

Let A be, again, an algebra of finite or infinite rank over a field Ω, and

suppose now that the (ordinary) 2-cohomology group of A in any A-double-

moάule is 0.7) Then, because of the reduction theorem (6), we have certainly

(25). With our A, let ί, 9Jί and in be as in Theorem 1. There exists, by virtue

of Theorem 1? an extension 9ί of A, with kernel m, satisfying, besides 1), the

condition 2) there. As further H2(A, m) - 0 , 9ί possesses a subalgebra A such

that

(26) %~A®m.

A is evidently isomorphic to A, Let T be the image, by this isomorphism, of

our left-ideal ί of A. Then clearly the left-ideal 2 of S2ί (defined in Theorem 1)

is the direct sum of Γ and m:

C27ϊ S = Γ φ m .

As m2ί = 0, the left-ideal T of 9ί is also a left-ideal of 91, and (27) is a direct

decomposition of 2 into left-subideals Γ and m. In view of the property 2) (in

Theorem 1), this entails a direct decomposition of Ή into tn and a second A-
5> See Footnote 3).
6> Observe that (m2ί = 0 whence) m£=0.
7> This is equivalent to that A is segregated in every extension with nilpotent kernel we

may restrict ourselves to singular extensions, i.e. extensions with kernel f satisfying f2 = 0.
If further A is of finite rank, over Ω, then A is "absolutely" segregated in the sense that
A is segregated in every extension of finite rank ([1]). As, however, we are dealing with
algebras of possibly infinite rank, it is perhaps not appropriate to call our A (with absolute-
ly vanishing 2-cohomology group) absolutely segregated.
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left-submodule, say m,

(28) 3R = ίϊί®m.

Since we have started with an arbitrary A-left-module Wl possessing a residue-
module 5R/m A-isomorphic to ί. this shows that ί is, as an .A-left-module, an
(Mo)-module. Thus

THEOREM 2. Let A be an algebra (of finite or infinite rank over the ground
field) whose 2-cohomology groups all vanish. Then every left-ideal ί of A is an
(Mo)-left-module of A and every right-ideal x of A is an (Mo)-right-module of A.

This theorem is free from any finiteness assumption. Assume now that
our A satisfies minimum and maximum conditions for left-ideals and that A
(or, more generally, its residue-algebra modulo the radical) is algebraic (over
the ground field). Let N be the radical of A. We assert that the center of
any simple component of A/N is separable over the ground field, say Ω as
before. We needs

LEMMA. Let an algebra A with vanishing 2-cohomology groups satisfy
minimum and maximum conditions for left-ideals. Let β be a primitive idem-
potent element in A. Then eAe is a sfield, or, what is the same, eNe - 0, where
N is the radical of A.

Proof. As the assumption and the conclusion remain unaffected by adjunc-
tion of an identity, we may, and shall, assume that A has an identity element

k

1. Let 1 = Σ#κ be a decomposition of 1 into a sum of mutually orthogonal
κ = l

primitive ΐdempotent elements. We may assume, without loss in generality,
that ei, e2, . . . ,e% are so enumerated that with a certain h( ?=k)

i) Aeu Ae2, . . . , Aβh are mutually non-isomorphic,
ii) every Aeκ is isomorphic to one (and only one) of Aeίτ Ae2, . . . , Aβh, and

iii) [AtfJ ?= D4e2] ̂  . - = ZAeπl, where ZAe,3 denotes the composition-length
of the left-ideal Aeκ:

We may suppose further that e is among eί9 e 2, . . , en. Now, each direct
summand Neκ of N is, together with N, an (M>)-(left-)module of A. By [6J,
Theorem 1 (cf. "Remark" there), Neκ is thus directly decomposed into a number
of left-subideals of A each of which is isomorphic to a left-ideal Aeχ (λ = 1, 2,
. . . ,h). Let tiκ be the number of such components of Neκ isomorphic to Ae*.

We have

ZAeJ - 1 = WeJ = Σ hlAeJ.
λ = l

Thus hκ = 0 whenever λ ̂ /c U, A = 1, 2, . . . , h). We want to show that every
composition-residule-module of Neκ is isomorphic to a module AeJNe\ with λ < K
(which entails certainly eκNeκ = 0), Suppose that this is proved for indices younger
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than K. The composition-residue-modules of Aeκ are those of Ne^ each repeated
ίλ« times, and the modules Aeλ/Neχ, again repeated hκ times. Here only Λ's with
λ <κ come into consideration (since tχκ = 0 for λ ̂  /c). It is clear then, by virtue
of our induction assumption, that the composition-residue-modules are isomorphic
to some Ae\!Neκ with λ<tc.

THEOREM 3. Let A be an algebraic algebra over a field Ω, which satisfies
minimum and maximum conditions for left-ideals, and let N be the radical of
A. If the 2-cohomology groups of A all vanish, then the center of each simple
componeni of the semisimple algebra A/N is separable over Ω»

Proof. Suppose that the center of a simple component of AlN is inseparable
over Ω, contrary to the assertion. There exists then, as one readily sees, a
finite (inseparable) extension A of Ω such that the algebra A has a primitive
idempotent element e with eMe ** 0, where M is the radical of A. On the other
hand, AA has, together with A, vanishing 2-cohomology groups.8* Thus we have
a contradiction, in view of our Lemma.

Considering, finally, an algebra of finite rank, we have the following refine-
ment of ϊkeda's result.

THEOREM 4, Let A be an algebra of finite rank over a field Ω possessing
a unit element. If all the 2-cohomology groups of A vanish {or, ivhat is the
same, A is absolutely segregated), then the semisimple residue-algebra A/N of A
modulo the radical N is separable and every directly indecomposable left-{right-)
ideal of A is (AΊeft-){right-)ismorphic to a leftΛrighi-)ideal direct component
of A, If, conversely, A/N is separable and every directly indecomposable direct
component of the left-ideal N is isomorphic to a direct sum of A-left-subideals
A'isomorphic to left-ideal direct components of A, then A is absolutely segregated*

Proof, The first half is clear from what we have shown. As for the (easier)
second half, we shall give a rephrasement (which is not at all an improvement)
of Nagao's [5] proof to it. Assume namely that A/N is separable and that N
is an (Mo)-left-module of A. There exists a (separable semisimple) subalgebra
AQ of A such that A is the direct sum A0®N As one readily sees from the
argument of ground field extensions, we may, in order to prove our assertion,
assume that Ao{^A/N) is split, i.e. is a direct sum of mutually orthogonal
matric algebras over Ω, say h in number. Let, under this assumption,

<e$ μ, v = 1, 2, . . . , nκ) U = 1, 2, . . . , h)

be the h systems of matric units in those matric algebras. Suppose now that
$ is a singular extension of A with kernel n thus n2 = 0 and the residue-algebra

8> See ϊkeda [4], Lemma 9. It is perhaps of use to note that here we do not need assume
that A is finite over Ω (as we see by modifying Ikeda's proof a little).
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9ϊ/n is isomorphic to A. Let 9?, 5ϊi be the left-ideals of 9ΐ containing n such
h

that 9ϊ/n, 5ϊι/n are mapped onto N, Ni = ΣAr^ίί'( ϋA), respectively, by our
K - ί

isomorphism. There are h systems {e £*} of matric units in 9ί such that e$*
mod n corresponds to e($, by our isomorphism. As Ni is, together with N, an
(Mo)-left-module of A, there exists a left-(?ί-)submodule iVi' of % such that 9^

h 71K. h ΠK

is the direct sum iVίθn. Put now 2V* = Σ ΣNίeίί**. As j\f = Σ ΣMeίΐ',

clearly 9? = iV* -f- n. One sees further that the last sum is direct: 9ί = AΓκ®π. AΓ!ί

is a left-ideal of % and is. further, Ao^-right-allowable. Hence (At®N'*)2<^kA*'1

+ AΓ* +JV*A*i=A*®iV*, and Aί'φiV* is a subalgebra of ?ί. Since evidently
9( ~ (A?®A";Ί@π, A is segregated in the extension ?(. Since % is any singular
extension of A, this proves our assertion.

Addendum: The main result of the present note has recently been ex-
tended, in a certain formulation, to algebras with vanishing cohomology groups
in some dimensions higher than 2. This and further results on algebras with
vanishing cohomology groups will be given in a joint paper to come by M.
Ikeda, H. Nagao and the writer.

REFERENCES

[1] G. Hochschild, On the cohomology groups of an associative algebra, Ann. Math. 46 (1945),

58-67.

[2] , On the cohomology theory for associative a!gebra9, Ann. Math. 47 (1646}t 568-579.

[3J , Cohomology and representations of associative algebras, Duke Math. J. 14 (1947),

921-948.

[4] M. Ikeda, On absolutely segregated algebras, Nagoya Math. J., this number.

[5] H. Nagao, Note on the cohomology groups of associative algebras, Nagoya Math. J., this

number.

[6] H. Nagao-T. Nakayama, On the structure of (Mo)- and (M,-t)-modules, forthcoming in

Math. Zeitschr.

Mathematical Institute,
Nagoya University

https://doi.org/10.1017/S0027763000017104 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017104



