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Abstract. We introduce and describe thecharacteristic classof a difference operator over the differ-
ence field(k((t)), τ ). Herek is an algebraically closed field of characteristic zero andτ is thek-linear
automorphism ofk((t)) defined byτ(t) = t/(1+ t). The approach is based on the characterization
of simple difference operators in terms of their eigenvalues.
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1. Introduction

Letk be a field of characteristic 0,O the ring of formal power series int with coeffi-
cients ink andK the field of fractions ofO. In many respects differential operators
and difference operators with coefficients inK resemble linear transformations
in finite dimensional vector spaces. For instance such operators have eigenvectors
6= 0 over a finite extension ofK. In case of linear transformations the existence of
eigenvectors is proved by means of the characteristic polynomial. However, for lin-
ear differential and difference operators, the existence of eigenvectors is proved in a
different way, because there is no good replacement for characteristic polynomials.

In his thesis, R. Sommeling [4] has introduced a natural formal invariant called
the characteristic classof a differential operator over a differential field of char-
acteristic zero. This characteristic class is not an element of a polynomial ring
but of a newly constructed characteristic ringC. It has a certain number of useful
properties:

(i) It classifies semi-simple differential operators up to equivalence.
(ii) The characteristic of the sum of two differential operators equals the sum of

the characteristic classes of the operators.
(iii) The characteristic class of the tensor product of two differential operators

(more precisely: differential modules) equals the product of their character-
istic classes.
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224 A. H. M. LEVELT AND A. FAHIM

This paper presents the study of the analogous notion for difference operators.
We shall define characteristic classes for difference operators with the properties
(i), (ii), (iii). The theory is similar to the one for differential operators, though the
treatment of normalized eigenvalues is more complicated.

In order to make the subject as transparent as possible we have made one con-
cession: the basic field of constantsk is assumed to be algebraically closed. This
assumption is not essential and we know how to handle the general case. Since the
technicalities of the general case would eclipse the intuitive ideas, we believe that
our concession is justified.

2. Definitions and Notations

Throughout this paper we shall use the following notations and definitions.

• k is an algebraically closed field of characteristic 0.
• K = k((t)), the field of fractions ofk[[t]], the ring of formal power series in
t with coefficients ink.
• Let K̄ = ∪∞l=1k((t

1/ l)) be the field of Puiseux series overk. K̄ is the algebraic
closure ofK. Moreover, for anyl ∈ N∗ the only subfield ofK̄ of degreel over
K is K(t1/ l). In the sequel finite field extensionsK ⊂ L will often appear.
By the foregoing for such an extension there exists aK-isomorphismφ of L
onto the subfieldK(t1/ l) of K̄, wherel = [L : K] is the degree ofL over
K. HenceL = K(s), whereφ(s) = t1/ l andsl = t . Identification ofL with
K(t1/ l) doesn’t lead to confusion in most cases. Note thatK ⊂ L is a Galois
extension with (cyclic) Galois group Gal(L/K) generated byσ : s 7→ ζ s,
whereζ is a primitivelth root of 1.
• τ is thek-algebra automorphismK → K such thatτ(t) = t/(1+t) and which

is continuous in thet-adic topology.τ extends (uniquely) to an automorphism
on K̄ by definingul = (1+ t)−1/ l, τK(t1/l)(t

1/ l) = ult1/ l for all l ∈ N∗.
• Endk(K) has aK-vector space structure defined by(z f )(w) = z f (w) for all
z,w ∈ K, f ∈ Endk(K). Let D be the smallestK-subalgebra generated by
K andτ . D is called thering of difference operatorswith respect toK andτ .
• V is aK-vector space of finite dimension. Adifference operator onV with

respect toK, τ is ak-linear map8:V → V satisfying8(a v) = τ(a)8(v)
for all a ∈ K, v ∈ V .
• In the above situation one can defineτv = 8(v) for all v ∈ V . This makes
V into a left D-module. Conversely, ifV is a left D-module and a finite-
dimensionalK-vector space, then by8(v) = τ v for all v ∈ V a difference
operator onV is defined.
• Let 8 be a difference operator onV and(v1, . . . , vn) aK-basis ofV . Then

there existai,j ∈ K such that8(vi) = ∑n
j=1 aj,ivj for all i ∈ {1, . . . , n}.

Mat(8, (v1, . . . , vn)) denotes the matrix(ai,j ).
• Tensor product. Let(V ,8) and (W,9) be twoD-modules. Then the map
v⊗w 7→ 8(v)⊗9(w) defines a difference operator onV ⊗K W which will
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CHARACTERISTIC CLASSES FOR DIFFERENCE OPERATORS 225

be denoted by8⊗9. (V ⊗KW,8⊗9) is called thetensor productof (V ,8)
and(W,9).
• DL, the ring of difference operators with coefficients inL, can be defined

in an obvious way. The above correspondence between difference operators
with respect toK and (finite-dimensional)D-modules can be generalized to
a correspondence between difference operators with respect toL and DL-
modules.
• G = Gal(L/K) operates onVL by ρ: a ⊗ v 7→ ρ(a) ⊗ v for all ρ ∈ G, a ∈
L, v ∈ V . Note thatτL isG-equivariant, i.e.ρ ◦ τL = τL ◦ ρ for all ρ ∈ G.
• WhenZ is aG-invariantL-subspace ofVL, then there exists a (unique)K-

subspaceW of V such that the multiplication mapL⊗K W → VL defined by
a ⊗ w 7→ a w (a ∈ L,w ∈ W ) is anL-isomorphism ofL⊗K W ontoZ. If,
moreover,8L(Z) ⊂ Z then8(W) ⊂ W . This means that8|W is a difference
operator onW .

3. Eigenvectors and SimpleD-Modules

Our analysis is based upon the following theorem of Turrittin [1, 3, 5]:

THEOREM 1.To any difference operator8 on aK-vector spaceV there exists a
finite field extensionK ⊂ L, a ∈ L andv ∈ VL such that8L(v) = av andv 6= 0.

DEFINITION 1. Fora, b ∈ K̄ one defines

a ∼ b def= There existsz ∈ K̄ \ {0} such thata = τ(z)

z
b.

Remark1.∼ is an equivalence relation as can easily be shown.

PROPOSITION 1.Let (V ,8) be aD-module andK ⊂ L a Galois extension with
groupG. Letv ∈ VL \ {0} satisfy the following conditions:

(I) 8L(v) = av for somea ∈ L.
(II) For all ρ ∈ G ρ(a) ∼ a impliesρ = 1.

(III) VL =∑ρ∈G Lρ(v).

Then the following statements are valid:

(i)
∑

ρ∈G Lρ(v) is a direct sum.
(ii) TheDL-modulesLρ(v) are non-isomorphic.
(iii) (V ,8) is a simpleD-module.

Proof. (i) We shall prove that(ρ(v))ρ∈G is anL-basis ofVL. If not, (ρ(v))ρ∈G
is linearly dependent overL. Let S ⊂ G, S 6= ∅ be minimal with the property that
there existbσ ∈ L, not all= 0, such that∑

σ∈S
bσσ (v) = 0. (1)
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226 A. H. M. LEVELT AND A. FAHIM

We may assume that 1∈ S andb1 = 1. By applying8L one gets∑
σ∈S

σ (a)τ(bσ )σ (v) = 0. (2)

Multiplying (1) by a and subtracting from (2) one checks that∑
σ∈S\{1}

(τ (bσ )σ (a)− abσ )σ (v) = 0.

Because of the minimality ofS one now hasτ(bσ )σ (a)− abσ = 0 for all σ ∈ S.
Hence for someσ ∈ S \ {1} one hasσ (a) ∼ a. This is a contradiction. This
completes the proof of the fact that(ρ(v))ρ∈G is anL-basis ofVL.

(iii) Let W a8-invariantK-subspace ofV . AssumeW 6= {0}. We shall prove
thatW = V and it will follow that(V ,8) is simple. There exists a Galois extension
K ⊂ M such thatL ⊂ M andWM contains a nonzero eigenvectorw of 8M ,
8M(w) = cw for somec ∈ M. There existbρ ∈ M such that

w =
∑
ρ∈G

bρρ(v). (3)

Apply 8M to both sides of (3)

cw =
∑
ρ∈G

τ(bρ)ρ(a)ρ(v). (4)

Multiply (3) by c and subtract from (4)
∑

ρ∈G(τ(bρ)ρ(a) − cbρ)ρ(v) = 0. Since
(ρ(v))ρ∈G is anM-basis ofVM it follows that

τ(bρ)ρ(a)− cbρ = 0 for all ρ. (5)

Assume that there existρ, σ ∈ G such thatρ 6= σ , bρ 6= 0, bσ 6= 0. Then (5)
implies

ρ(a)
τ(bρ)

bρ
= σ (a)τ(bσ )

bσ
.

Henceρ(a) ∼ σ (a) for ρ 6= σ . This contradicts (II). We have proved that in (3)
only onebρ differs from 0, i.e.w = bρ(v) for someb ∈ M \ {0}. It follows that
VM = ∑ρ∈GMρ(w). On the other hand, the right-hand side is contained inWM .
We conclude thatWM = VM , henceW = V . So we have shown that(V ,8) is a
simple module.

(ii) For ρ, σ ∈ G let φ:Lρ(v) → Lσ(v) be an isomorphism ofDL-modules.
Then there existsz ∈ L∗ such thatφ(ρ(v)) = zσ (v). The relationφ◦8L = 8L◦φ
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applied toρ(v) yieldsρ(a)zσ (v) = τ(z)σ (a)σ (v).Hence,ρ(a) ∼ σ (a). Now (II)
givesρ = σ .

PROPOSITION 2 (with the notations and hypotheses of the preceding proposition).
Write d = [L : K] = ord(G), L = K(s) where s = t1/d . Then there exist
a0, . . . , ad−1 ∈ K, v0, . . . , vd−1 ∈ V such that

a = a0+ a1

s
+ · · · + ad−1

sd−1
, (6)

v = v0+ v1s + · · · + vd−1s
d−1 (7)

and the following statements hold:

(i) (v0, . . . , vd−1) is a K-basis ofV and the matrix of8 w.r.t. this basis is
A(1+ t)Jd , where

A =


a0 ad−1/t · · · a1/t

a1
. . .

...

...
. . .

. . . ad−1/t

ad−1 · · · a1 a0

 (8)

andJd the diagonal matrix

Jd =



0

d

1

d

. . .

d − 1

d


. (9)

(ii) The characteristic polynomial ofA coincides with the minimal polynomial
of a overK.

Proof. The existence (and uniqueness) ofai, vj with the required properties is
obvious. For a proof of (i) we express the relation8(v) = a v in terms ofai and
vj . One has on the one hand

8(v) = 8
(
d−1∑
i=0

vis
i

)
=

d−1∑
i=0

uid8(vi)s
i (10)

and on the other hand

a v =
d−1∑
j=0

d−1∑
h=0

ajvhs
h−j
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228 A. H. M. LEVELT AND A. FAHIM

=
d−1∑
i=0

(
d−1∑
h=i

ah−ivh

)
si +

d−1∑
i=0

(
i−1∑
h=0

ad+h−i/tvh

)
si .

Comparing equal powers ofs in the last member and (10) one finds for alli ∈
{0, . . . , d − 1}

8(vi) = (1+ t)i/d
(
d−1∑
h=i

ah−i vh +
i−1∑
h=0

ad+h−i/tvh

)
from which (i) immediately follows.

Let y be the column vector with entriesy0, . . . , yd−1 which will be interpreted
as coordinate vectors with respect tov0, . . . , vd−1. In terms of coordinate vectors
the application8L is y 7→ A(1+ t)Jd τ (y). Now v is an eigenvector of8L with
eigenvaluea and has coordinates 1, s, . . . , sd−1. It follows that this eigenvector
is also an eigenvector ofA. Hence,a is a zero of the characteristic polynomial
pA. a has at leastd different conjugates overK and deg(pA) = d. Hence,pA
is the minimal polynomial ofa overK. This completes the proofs of (ii) and the
proposition.

DEFINITION 2. Forc ∈ k theD-moduleE(c) is defined as the one-dimensional
K-vectorspace generated by (the symbol)e(c) such thatτ(e(c)) = (1+ t)−c e(c).
PROPOSITION 3.Let (V ,8) be aD-module,L = K(s) wheres = t1/ l and
G = Gal(L/K) with generatorσ . Leta ∈ L, v ∈ VL \ {0} satisfy

(a) 8(v) = a v.
(b) For all ρ ∈ G the relationρ(a) ∼ a impliesρ = 1.

Finally, defineṼ as theL-subspace ofVL generated by(ρ(v))ρ∈G, h = l/d, where
d = [K(a) : K], anda0, . . . , ad−1 ∈ K by a = a0 + a1/s

h + · · · + ad−1/s
(d−1)h.

Then there existwi,j ∈ V for all i ∈ {0, . . . , h − 1} andj ∈ {0, . . . , d − 1} such
that the following statements hold.

(i) (Ṽ ,8L) is aD-submodule of(VL,8L) and(ρ(v))ρ∈G is anL-basis ofṼ .
(ii) {wi,j | i ∈ {0, . . . , h− 1}, j ∈ {0, . . . , d − 1}} is anL-basis ofṼ .

(iii) Wi
def=∑d−1

j=0Kwi,j is a simpleD-submodule of(V ,8).
(iv) Mat(8, (wi,0, . . . , wi,d−1)) = Auil (1+t)Jd whereA is given by(8).Moreover,

the characteristic polynomial ofA equals the minimum polynomial ofa
overK.

(v) wi = wi,0 + wi,1sh + · · · + wi,d−1 s
(d−1)h ∈ VK(a) satisfies8(wi) = uil a wi

and {σ j(wi) | i ∈ {0, . . . , h − 1}, j ∈ {0, . . . , d − 1}} is anL-basis ofṼ
consisting of eigenvectors of8L.

(vi) For eachi ∈ {0, . . . , h− 1} there exists an isomorphism ofD-modules

φi :E
(
i

l

)
⊗K W0

∼→Wi. (11)
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(vii) DefineW = ∑h−1
i=0 Wi . ThenW is a D-submodule ofV such thatWL

∼→Ṽ
and the map(

h−1⊕
i=0

E

(
i

l

))
⊗K W0→ W

induced by theφi is an isomorphism ofD-modules.

Proof. Let ζ ∈ k be a primitivelth root of 1.K(a) ⊂ L is a Galois extension
with groupH . We haveH = {σ 0, σ d, σ 2d, . . . , σ (h−1)d} andK(a) = K(sh).

Let us prove (i). When theρ(v) are linearly dependent overL, then there exist
ρ1, . . . , ρn ∈ G andl1, . . . , ln ∈ L, not all= 0, such that

n∑
i=1

liρi(v) = 0. (12)

Now take suchρi, li with n minimal. We may supposel1 = 1. Applying8L we
find

n∑
i=1

τ(li)ρi(a)ρi(v) = 0. (13)

Now multiply (12) byρ1(a) and subtract from (13). The result is

n∑
i=2

(τ (li)ρi(a)− liρ1(a))ρi(v) = 0.

This is anL-linear relation between theρ(v) with less terms. Hence, it must be
the trivial relation, i.e.τ(li)ρi(a)− liρ1(a)) = 0 for all i. Since allli are different
from 0 it follows thatρi(a) ∼ ρ1. Hence,ρi = ρ1, implying n = 1. This is a
contradiction. So we have proved that theρ(v) are linearly independent overL.

(ii) In order to prove the existence of thewi,j with the stated properties, we
defineH = {ρ ∈ G | ρ(a) = a} (soK(a) = LH ) and

wi
def=
∑
ρ∈H

ρ(siv). (14)

Then one readily checks thatρ(wi) = wi, 8L(wi) = uilawi for all ρ ∈ H
and i ∈ {0, . . . , h − 1}. It follows that all wi are in VK(a) and so there exist
wi,0, . . . , wi,d−1 ∈ V satisfying

wi = wi,0+ wi,1sh + · · · + wi,d−1s
(d−1)h. (15)

Note that thewi,j are uniquely determined bywi .
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In order to show that thewi,j are linearly independent overL we first prove
the same property for theσ j(wi). From (14) we derive for alli ∈ {0, . . . , h − 1},
j ∈ {0, . . . , d − 1}

σ j (wi) =
h−1∑
r=0

siζ i(rd+j)σ rd+j (v).

For fixed j this shows thatσ j (w0), . . . , σ
j (wh−1) are L-linear expressions in

σ j(v), σ j+d(v), . . . , σ j+(h−1)d(v) and that the connecting matrix is of Vander-
monde type, constructed fromsζ j , sζ j+d , . . . , sζ j+(h−1)d . Since the latter matrix
is invertible we see thatσ j (w0), . . . , σ

j (wh−1) are linearly independent overL.
Note that forr ∈ {0, . . . , h − 1} andj ∈ {0, . . . , d − 1} the expressionrd + j
assumes as values all numbers in{0, . . . , l−1} just once. Hence, theσ rd+j (v) form
aL-basis ofṼ and so the same holds for theσ j(wi). From (15) we get

σ j (wi) = wi,0+ wi,1σ j(sh)+ · · · + wi,d−1σ
j (s(d−1)h).

For fixedi we getwi, σ (wi), . . . , σ d−1(wi) linearly expressed in

wi,0, s
hwi,1, . . . , s

(d−1)hwi,d−1

and the connecting matrix is again of Vandermonde type, based now on the se-
quence 1, ζ h, . . . , ζ (d−1)h. It follows that

wi, σ (wi), . . . , σ
d−1(wi) and wi,0, wi,1, . . . , wi,d−1

span the sameL-subspace of̃V . Since theσ j (wi) form anL-basis ofṼ , the same
holds for thewi,j .

It is clear now that (v) holds. DefinẽG = Gal(K(a)/K). (iii) follows by apply-
ing Proposition 1 withL replaced byK(a), G by G̃, V byWi, a by uila andv by
wi. (iv) follows from Proposition 2 when we moreover replaces by sh.

Finally we shall prove (vi) and (vii). Let9i be the difference operator on
E(i/ l)⊗K W0. One has9i(e(i/ l)⊗w) = uil e(i/ l)⊗8(w). Hence the matrix of
9i with respect to the basis(e(i/ l)⊗w0,0, . . . , e(i/ l)⊗w0,d−1) of E(i/ l)⊗KW0 is
just uil times that of 8 with respect to the basis(w0,0, . . . , w0,d−1)

of W0, i.e. uilA(1 + t)Jd . This is also the matrix of8 with respect to the basis
(wi,0, . . . , wi,d−1) of Wi . Define theK-linear isomorphism (11) byφi(e(i/ l) ⊗
w0,j ) = wi,j .

We must showφi ◦9i = 8◦φi . Or, it is an immediate consequence of the above
matrix description of the two difference operators. (vii) is a trivial consequence.

DEFINITION 3. An elementa ∈ K̄ is said to bein normal formor normalizedif
eithera = 0 ora can be written as

a = a0 t
i/d (1+ t)a1 exp(τ (q)− q), (16)
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whered = [K(a) : K], a0, a1 ∈ k, i ∈ Z and

q = q1

t1/d
+ · · · + qd−1

t (d−1)/d

with q1, . . . , qd−1 ∈ k (q = 0 if d = 1). The set of elements in normal form will
be denoted byN . N ∗ = N \ {0}. N ∗ is a group under multiplication.

PROPOSITION 4. (i)For anya ∈ K̄ \ {0} there existsz ∈ K(a) \ {0} such that
b =def a τ(z)/z is in normal form. Hereb is inK(a).

(ii) For all a, b ∈ N one hasa ∼ b if and only if there existsj ∈ Z such that
a = ujdb.

Remark2. In (i) of the above propositionb ∈ K(a) may not be replaced by
K(a) = K(b) as is evident from the example

s = √t , a = 1+ s
1+ u2s

, z = 1+ s.

ThenK(a) = K(s) 6= K, z ∈ K(a) \ {0} andb = aτ(z)/z = 1.

Remark3. Note that the relationa = u
j

db in (ii) of the proposition implies
K(a) = K(b).

The proof is based on the next two lemmas.s = t1/d in both lemmas.

LEMMA 1. For anyb =∑∞i=d+1 bis
i ∈ k[[s]] there existsy =∑∞i=1 yis

i in k[[s]]
satisfyingτ(y)− y = b.

Proof. Define

y1 = −d bd+1, ε(1) = −bd+1

s
+ y1

τ(s)− s
sd+2

.

Then one easily checks thatε(1) ∈ k[[s]] and

τ(y1s)− y1s = bd+1s
d+1 + ε(1)sd+2.

Now suppose that for somem ∈ N∗ we have foundy(m) =def
∑m

i=1 yis
i andε(m)

satisfying

τ(y(m))− y(m) =
d+m∑
i=d+1

bis
i + ε(m)sd+m+1, ε(m) ∈ k[[s]]. (17)

Then we try to findy(m+ 1), ε(m+ 1) satisfying (17) withm replaced bym+ 1.
An easy computation shows that it is sufficient to findym+1 andε(m+1) such that

ε(m+ 1) = ε(m)− bd+m+1

s
+ ym+1

τ(sm+1)− sm+1

sd+m+2
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with ε(m+ 1) ∈ k[[s]]. Using the relation

τ(sm+1)− sm+1 = −m+ 1

d
sm+d+1 +O(sm+d+2),

one checks that

ym+1 = d

m+ 1
(ε(m)0− bd+m−1)

solves the problem. Hereε(m)0 denotes the constant term ofε(m).

LEMMA 2. For any c = ∑∞
i=1 cis

i ∈ k[[s]] there existγ ∈ k, y = ∑∞
i=1 yis

i ∈
k[[s]] andq = q1/s + · · · + qd−1/s

d−1, whereqi ∈ k, verifying

c = γ log(1+ t)+ τ(q)− q + τ(y)− y. (18)

Proof. For allq1, . . . , qd−1 the following relation holds

τ(q)− q = d − 1

d
qd−1 s + · · · + 1

d
q1s

d−1+O(sd)

as one easily sees. Definingqi = dcd−i/ i, we getc − τ(q) + q = c̃, wherec̃ =∑∞
i=d c̃is

i . Chooseγ = c̃d . Thenc − γ log(1+ t) − τ(q) + q = b, whereb =∑∞
i=d+1 bis

i . By virtue of Lemma 1, there existsy = ∑∞
i=1 yis

i such thatb =
τ(y)− y. Putting the above relations together, we get a proof of (18).

Proof of Proposition4. (i) Fora ∈ K̄ \ {0} defined = [K(a) : K] ands = t1/d .
There exista0 ∈ k, i ∈ Z andã = 1+a1s+a2s

2+· · · ∈ k[[s]] such thata = a0s
i ã.

Definec = c1s + c2s
2 + · · · by c = log(ã). Next takeγ, q andy as in Lemma 2

and definez = e−y . Then one has

a = a0s
i ec = a0s

i eγ log(1+t )+τ (q)−q+τ (y)−y = b z

τ(z)
,

where

b = a0s
i(1+ t)γ eτ (q)−q ∈ K(s) = K(a). (19)

Let H be the Galois group ofK(s)/K(b). If h = order(H), thenK(b) = K(v)

wherev = sh. Definem = d/h ∈ N∗. Thenv = t1/m and[K(b) : K] = m. H is
generated byσ : s → ζ s whereζ is a primitivehth root of 1.

From (19) andσ (b) = b, we derive

σ (si)σ (eτ (q)−q) = si eτ (q)−q. (20)

Hence

ζ iσ (eτ (q)−q) = eτ (q)−q. (21)
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Note that

τ(q)− q =
d−1∑
j=1

qj

sj
((1+ t)j/d − 1) =

d−1∑
j=1

j

d
qj
t

sj
fj , (22)

wherefj = 1+O(t), O(t) denoting an element oftk[[t]]. Consequently, eτ (q)−q =
1+O(s), where O(s) stands for an element ofsk[[s]]. Now it follows thatζ i = 1
in virtue of (21). Hence,si ∈ K(b), si = vl, say. Becauseσ (eτ (q)−q) = eσ(τ(q)−q),
we derive from (21) by taking logarithmsσ (τ(q)− q) = τ(q)− q which implies

d−1∑
j=1

(ζ−j − 1)
j

d
qj
t

sj
fj = 0.

Such a relation can only hold ifqj = 0 whenj is not a multiple ofh. This means
that

q =
m−1∑
j=1

qjh

sjh
=

m−1∑
j=1

qjh

vh
.

From this relation and (19) we derive

b = a0v
l(1+ t)γ

m−1∑
j=1

qjh

vh
.

Since[K(b) : K] = m andv = t1/m, we see thatb is in normal form. This
completes the proof of (i).

(ii) Sinceujd = τ(sj )/sj , it is evident thata = ujd b impliesa ∼ b. Conversely,
let a ∼ b, i.e. a = b τ(z)/z for somez ∈ K̄ \ {0}. Then there existsd ∈ N∗
such thatK(a, b, z) = K(s), wheres = t1/d . We can writea in the form (16) and
b = b0t

j/d(1+ t)b1 exp(τ (r)− r), whereb0, b1 ∈ k, i ∈ Z,

r = r1

t1/d
+ · · · + rd−1

t (d−1)/d
,

andz in the formz = zmsm + zm+1s
m+1 + · · · with zm 6= 0. Write c = b/a. The

reader can check thatτ(z)/z = 1− (m/d)sd + O(sd+1). Here O(sd+1) stands for
an element ofsd+1k[[s]]. Hence, we have

c0t
l/d(1+ t)c1 eτ (w)−w = 1− (m/d)sd +O(sd+1), (23)

wherec0 = a0/b0, l = i − j, c1 = a1− b1, w = q − r. Similar to (22) we have

τ(w)− w =
d−1∑
j=1

j

d
wjs

d−jgj ,
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wherewj = qj − rj andgj = 1+O(t). Also eτ (w)−w = 1+O(s) and so it follows
from (23) thatc0 = 1 andl = 0. This provesa0 = b0, i = j and

(1+ t)c1eτ(w)−w = 1− (m/d)sd +O(sd+1).

Taking the logarithms at both sides yields

c1 log(1+ t)+ (τ (w)− w) = −m
d
sd +O(sd+1).

Hence

d−1∑
j=1

j

d
wjs

d−jgj = −m
d
sd +O(sd+1)− c1(t +O(t2)).

From this relation andgj = 1+O(t) it now follows that allwj vanish. This proves
q = r, c1 = −m/d, hencea = umd b, and terminates the proof of (ii).

COROLLARY 1. LetK ⊂ L be a finite Galois extension with a Galois groupG.
Then for anya ∈ L in normal form andρ ∈ G the relationρ(a) ∼ a implies
ρ = 1.

Proof. We may assumea 6= 0. Let l = [L : K] andd = [K(a) : K]. Then
ρ(a) = u

−j
d a for somej ∈ Z in virtue of Proposition 4. One hasa = ρl(a) =

u
−lj
d a. Sinceu−ljd = 1 it follows thatj = 0, i.e.ρ(a) = a. Hence,ρ = 1.

DEFINITION 4. a ∈ N is callednormalized eigenvalueif there existsv ∈ VK(a),
v 6= 0, such that8K(a)(v) = av.

PROPOSITION 5.Let (V ,8) be a D-module,K ⊂ L a finite field extension,
a ∈ L, v ∈ VL \{0} such that8L(v) = a v. ThenK(a) contains a normalized
eigenvalue.

Remark4. In conjunction with Theorem 1 this proposition shows the existence
of normalized eigenvalues for anyD-module.

Proof. From Lemma 4 we know thatz ∈ K(a)∗ exists such thatb =def aτ(z)/z

is in normal form. Definew = zv. Then8(w) = bw. So we have obtained a
nonzero eigenvector and an eigenvalue in normal form. This doesn’t guarantee that
b is a normalized eigenvalue, because we don’t know whetherw belongs toVK(b).
We shall complete our proof by a Galois argument. LetH be the Galois group of
K(b) ⊂ L, h = [L:K(b)], d = l/h, s = t1/ l, ζ a primitivehth root of 1 andρ a
generator ofH . For i ∈ {0, . . . , h− 1} define

wi =
h−1∑
j=0

ρj (sidw) = sid
h−1∑
j=0

ζ ij ρj (w).

163961.tex; 11/05/1999; 11:41; p.12

https://doi.org/10.1023/A:1000914223243 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000914223243


CHARACTERISTIC CLASSES FOR DIFFERENCE OPERATORS 235

Obviouslywi is fixed by the operations ofH and so belongs toVK(b). Using the
fact that the matrix(ζi,j ), i, j running through{0, . . . , h − 1}, is nonsingular, one
sees that not allwi can vanish. Because otherwisew would vanish. On the other
hand one has

8(wi) = τ(sid )

h−1∑
j=0

ζ ij ρj (8(w)) = (uls)id
h−1∑
j=0

ζ ij ρj (bw)

= uihbs
id

h−1∑
j=0

ζ ij ρj (w) = uihbwi.

Note thatuihb is in normal form and thatK(uihb) = K(b). This terminates the
proof.

PROPOSITION 6.Let (V ,8) be a simpleD-module,a ∈ N a normalized eigen-
value,v ∈ VK(a)\{0} such that8(v) = a v andG the Galois group ofK(a)/K.
Then the following statements hold:

(i) (ρ(v))ρ∈G is aK(a)-basis ofVK(a).
(ii) dimK(V ) = [K(a) : K].
(iii) For anyb ∈ N b is a normalized eigenvalue of(V ,8) if and only ifb ∼ ρ(a)

for someρ ∈ G.

Proof. (i) This is an immediate consequence of Proposition 3(i) applied with
L = K(a). Note thatVK(a) is the direct sum of theK(a)-subspacesK(a)ρ(v),
ρ ∈ G, invariant under8K(a), and that8K(a)(ρ(v)) = ρ(a)v. Moreover,ρ(a) ∼
σ (a) if and only if ρ = σ .

(ii) Trivial consequence of (i).
(iii) If b ∼ ρ(a) then obviouslyb is a normalized eigenvalue for(V ,8).
Now letb be a normalized eigenvalue. We may assume thatK(a) andK(b) are

both subfields ofK̄ . Because both have the same degree overK, viz. dimK(V ),
we haveK(a) = K(b). Let L denote the latter field. There existsw ∈ VL \
{0} satisfying8(w) = bw. Because(ρ(v))ρ∈G is anL-basis ofVL, there exist
lρ ∈ L such thatw = ∑

ρ∈G lρρ(v). Applying 8L, we getbw = 8(w) =∑
ρ∈G τ(lρ)ρ(a)ρ(v). On the other hand one hasbw = ∑ρ∈G blρρ(v). The latter

two relations yieldτ(lρ)ρ(a) = b lρ. Since not alllρ vanish, one hasb ∼ ρ(a) for
someρ ∈ G.

DEFINITION 5. Let (V ,8) be a simpleD-module. LetL be a finite extension
field ofK. Note thatL is called asplitting fieldfor (V ,8) if

(i) There existsa ∈ L andv ∈ VL \ {0} such that8(v) = av.
(ii) L is minimal with respect to the above property.

Obviously, any simpleD-module has a splitting field.

163961.tex; 11/05/1999; 11:41; p.13

https://doi.org/10.1023/A:1000914223243 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000914223243


236 A. H. M. LEVELT AND A. FAHIM

PROPOSITION 7.Let (V ,8) be a simpleD-module,K ⊂ L and L splitting
field for (V ,8). ThenL contains a normalized eigenvalue for(V ,8) and for any
normalized eigenvalueb ∈ L one hasL = K(b).

Proof. In virtue of Proposition 5L contains a normalized eigenvaluea. Because
of the minimality ofL it follows that L = K(a). Now let b be a normalized
eigenvalue. We may supposeK(a) ⊂ K̄ andK(b) ⊂ K̄. Then by Proposition 6(ii)
we have[K(a) : K] = [K(b) : K]. HenceL = K(a) = K(b).
PROPOSITION 8.For all a ∈ N there exists a simpleD-module havinga as
normalized eigenvalue.

Proof. DefineL = K(a), d = [L : K], s = t1/d . The idea of the proof is to re-
verse the constructions in the proof of Proposition 2. For this definea0, . . . , ad−1 ∈
K by (6), the matrixA by (8) and the matrixJd by (9). Moreover, putV = Kd

with canonical basis(v0, . . . , vd−1) and define a difference operator8 onV by the
action ofA(1 + t)Jd on the basis(v0, . . . , vd−1). Finally, definev ∈ VL by (7).
An easy computation shows that8L(v) = a v. The only thing we must still prove
is that (V ,8) is a simpleD-module. Well, this is an immediate consequence of
Proposition 3. The hypotheses of that proposition are satisfied

(a) by the above construction,
(b) becausea ∈ N .

In our situationL = K(a), henceh = 1 andṼ = VL and from (vii) we conclude
thatWL

∼→VL for a simpleD-submoduleW of V . Hence(V ,8) itself is simple.
The D-module constructed in the above proof will be called thecanonical

module associated toa ∈ N . It will be denoted by(V (a),8) (or, shortly, by
V (a)).

PROPOSITION 9.For i = 1,2 let (Vi,8i) be a simpleD-module with normalized
eigenvalueai . Letpi ∈ K[T ] be the minimal polynomial ofai overK. Then the
following statements are equivalent:

(i) TheD-modules(V1,81) and(V2,82) are isomorphic.
(ii) a1 ∼ ã2, whereã2 is conjugated witha2 overK.
(iii) There existsj ∈ Z satisfyingp2(T ) = (1 + t)jp1(u

j

d T ) whered is the
degree ofa1 (= degree a2) overK.

Proof. (i) ⇒ (ii). Let f : (V1,81)
∼→(V2,82) be a D-isomorphism. Since

dimK(Vi) = [K(ai) : K] and f induces an isomorphism ofK-vector spaces
V1
∼→V2, one hasK(a1) andK(a2) have the same degree overK and so they

can be identified. We shall writeL instead ofK(ai). Let v ∈ (V1)L \ {0} verify
81(v) = a1v. Then it follows that82(f (v)) = a1f (v). Proposition 6 leads now
to (ii).

(ii) ⇒ (iii) Note that ã2 also belongs toN . Applying Proposition 4 we see that
ã2 = (1+ t)j/da1 for somej ∈ Z and (iii) follows.
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(iii) ⇒ (i). We now know thata2 is conjugated tou−jd a1. Proposition 6 shows
thata1 is also a normalized eigenvalue of82. Let vi ∈ (Vi)L\{0} satisfy8i(vi) =
a1vi. Defined = [K(a1) : K], s = t1/d andvi,0, vi,1, . . . , vi,d−1 ∈ Vi by vi =
vi,0+vi,1s+· · ·+vi,d−1s

d−1. Then Proposition 2 shows that Mat(81, (v1,0, v1,1, . . . ,

v1,d−1) coincides with that of82 with respect to(v2,0, v2,1, . . . , v2,d−1). It is now
clear how to make anD-isomorphism as needed in (i).

COROLLARY 2.Let (V ,8) be a simpleD-module. Then there existsa ∈ N such
that (V ,8) is isomorphic to the canonicalD-moduleV (a).

4. Characteristic Classes

In the sequel we will denote byI the monoid of monic irreducible polynomials of
K[T ], whereasM denotes the monoid of all monic polynomials inK[T ].
DEFINITION 6. The equivalence relation∼ on I is defined by as follows. For
f, g ∈ I one hasf ∼ g if the following hold:

(1) deg(f ) = deg(g). Hence,f andg have the same splitting fieldL.
(2) There existsj ∈ Z such thatf (T ) = (1+ t)j g(ujd T ) whered = deg(f ).

For f, g ∈ M the relationf ∼ g means the following. Whenf = ∏r
i=1 fi, g =∏s

j=1 gj , wherefi, gj ∈ I, then r = s and there exists a permutationπ of
{1, . . . , r} such thatfi ∼ gπ(i) for all i.

M/ ∼ is an Abelian monoid. The associated Abelian group is denoted byC.
The operation is written as an addition. For anyf ∈M the image inC is denoted
by [f ].
DEFINITION 7. Let (V ,8) be a simpleD-module. Thecharacteristic class
c((V ,8)) is defined by[pa], wherepa is the minimal polynomial of a normalized
eigenvaluea of (V ,8).

For an arbitraryD-module(V ,8) let V = V0 ⊃ V1 ⊃ · · · ⊃ Vr = {0} be
a Jordan–Hölder sequence in the sense ofD-modules. This means that8(Vi) ⊂
Vi and that the quotientsVi−1/Vi with the induced difference operator8i are all
simple. Then

c((V ,8))
def=

r∑
i=1

c((Vi−1/Vi,8i)).

That the characteristic class of a simple module is well-defined follows from
Proposition 9. The correctness in the general case follows from the well-known
properties of Jordan–Hölder sequences.

Let us denote byD iff the category ofD-modules of finite dimension asK-
vector space and byK(D) the corresponding Grothendieck group. That is the
free Abelian group generated by all isomorphism classes[V ] of objectsV in D iff
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modulo the subgroup generated by[V ] − [V ′] − [V ′′], where 0→ V ′ → V →
V ′′ → 0 is an exact sequence ofD-modules.

PROPOSITION 10.The mapc: (V ,8) 7→ c((V ,8)) can be extended in a unique
way to an injective group homomorphism ofK(D) into C.

Remark5. The image ofc will be called thecharacteristic groupand denoted
by C0.

Proof. The injectivity ofc follows from Proposition 9.

5. Tensor Product and Characteristic Ring

In this section(V1,81) and (V2,82) are simpleD-modules with splitting fields
M1, resp.M2. M1,M2 are finite extensions ofK and will be identified with sub-
fields ofK̄. We denote bym1 (resp.m2) the degree[M1 : K] (resp.[M2 : K]), by
L the composition ofM1,M2 (subfield ofK̄), byG the Galois group ofL overK,
by l the degree[L : K] (note thatl = l.c.m.(m1,m2)), by σ a generator ofG, by s
anlth root oft and byζ ∈ k a primitive lth root of unity.

We know that there existv1 ∈ (V1)M1\{0}, a1 ∈ M1 (resp.v2 ∈ (V2)M2\{0}, a2 ∈
M2) such that81(v1) = a1 v1 (resp.82(v2) = a2 v2) with a1 anda2 normalized
eigenvalues. It follows that(ρ(vi))ρ∈Gal(Mi/K) is linearly independent overMi for
i = 1,2.

LetZ be the tensor product of theD-modules(V1,81) and(V2,82). In general
(Z,8) is not simple. In this section an explicit decomposition of(Z,8) will be
described as a direct sum of simple modules.

First note thatZL can be identified with(V1)L ⊗L (V2)L. Next define elements
zi,j of ZL by

zi,j = σ i(v1)⊗ σ j (v2) for 06 i < m1, 06 j < m2.

Then (zi,j )06i<m1,06j<m2 is anL-basis ofZL. Clearly σ (zi,j ) = zi+1,j+1 holds.
(Compute modulom1 (resp.m2) with the first (resp. second) index). Defined =
gcd((m1,m2) and

Z = {zi,j | 06 i < m1, 06 j < m2}
and fori ∈ {0, . . . , d − 1},Zi = {ρ(zi,0) | ρ ∈ G}.

PROPOSITION 11.The following statements hold:

(i) For all i ∈ {0, . . . , d − 1} the mapρ 7→ ρ(zi,0) is a bijection ofG ontoZi.
(ii) Z = ∐d−1

i=0 Zi .

Proof. (i) We must prove thatρ 7→ ρ(zi,0) is injective. Letσm(zi,0) = σ n(zi,0)
for somem,n ∈ {0, . . . , l − 1}. Then

σm+i(v1)⊗ σm(v2) = σ n+i(v1)⊗ σ n(v2).
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Consequently,m+ i ≡ n+ i modm1 andm ≡ nmodm2. It follows thatl divides
m− n and som = n.

(ii) We must show that theZi are disjunct. For this assume thati, j are in
{0, . . . , d − 1} and thatZi ∩ Zj 6= ∅. Then there existsm,n ∈ {0, . . . , l − 1}
such thatσm(σ i(v1)⊗ v2) = σ n(σ j(v1)⊗ v2). This leads to the congruences

m+ i ≡ n+ j modm1, m ≡ nmodm2

which implyd | i − j . Hencei = j .
Now for all i ∈ {0, . . . , d − 1} defineci = σ i(a1)a2 andhi = [L : K(ci)].

One has8L(zi,0) = cizi,0. Then by virtue of Proposition 3 there exists for every
i ∈ {0, . . . , d − 1} a simpleD-submoduleZi of Z such that

L⊗K
((
E(0)⊕ E

(
1

l

)
⊕ · · · ⊕ E

(
hi − 1

l

))
⊗K Zi

)
∼= LZi

is an isomorphism ofDL-modules.

PROPOSITION 12.There exists an isomorphism ofD-modules

V1⊗K V2
∼=

d−1⊕
i=0

hi−1⊕
j=0

E

(
j

l

)
⊗K Zi.

Letqi(T ) ∈ K[T ] be the minimal polynomial ofci overK for i = 0, . . . , d−1.
Note thathi deg(qi) = l. qi represents the characteristic class ofZi. The charac-
teristic class ofE(j/hi)⊗K Zi is represented byuj deg(qi)

l qi(T /u
j

l ). Consequently,
the characteristic class ofV1⊗K V2 is represented by

d−1∏
i=0

hi−1∏
j=0

u
j

hi
qi(T /u

j

l ). (24)

We want to compute the characteristic class ofV1 ⊗K V2 from the polynomials
p1, p2, representing the characteristic classes of(V1,81), resp.(V2,82). For this
defineR(T ) ∈ K[T ] by

R(T ) = resultantS(S
deg(p1)p1(T /S), p2(S))

=
∏
i,j

(T − (σ i(a1)σ
j(a2))),

wherei runs through{0, . . . , m1− 1} andj through{0, . . . , m2 − 1}. Note that

R(T ) =
d−1∏
i=0

∏
ρ∈G

(T − ρ(σ i(a1)a2)) =
d−1∏
i=0

q
hi
i (25)

by virtue of Proposition 11.
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Note thatR(T ) and its prime factorization inK[T ] can be computed (rationally)
from p1, p2. However, the right-hand member of (25) is not necessarily the prime
factorization ofR(T ) because theqi need not be all different. However, whenqi =
qj , then obviouslyhi = hj . Let us start now from the prime factorization ofR(T )
in K[T ]: R(T ) = ∏m

j=1 f
εj
j . (Thefj are monic, irreducible and different). Define

Ij = {i | qi = fj }, µj = #Ij , νj = hi if i ∈ Ij .
Thenµjνj = εj and (24) can be written as

d−1∏
i=0

hi−1∏
p=0

u
p

hi
qi(T /u

p

l )

=
m∏
j=1

∏
i∈Ij

hi−1∏
p=0

u
p

hi
qi(T /u

j

l ) =
m∏
j=1

∏
i∈Ij

νj−1∏
p=0

upνifj (T /u
j

l )

=
m∏
j=1

νj−1∏
p=0

upνj fj (T /u
p

l )

µj

.

We have proved

PROPOSITION 13.Let (V1,81), (V2,82) be simpleD-modules. Letp1, resp. p2

in K[T ] represent their characteristic classes and let
∏m
i=1 f

εi
i be the prime fac-

torization inK[T ] of resultantS(Sdeg(p1)p1(T /S), p2(S)). Then the tensor product
of (V1,81)and(V2,82) has the characteristic class which is represented by the
polynomial

m∏
j=1

 νj−1∏
p=0

upνj fj (T /u
p

l )

µj

,

where

νj = l/ deg(fj ), µj = εj/νj , l = lcm(deg(f1)), . . . ,deg(fm)).

Now usingc the product structure onK(D) can be extented toC. We shall
denote this operation by ‘∗’. To give a direct description of∗ it is sufficient to
define[p1] ∗ [p2] for p1, p2 ∈ I:

Let L = K(t1/ l) be the common splitting field forp1 andp2. Let
∏m
i=1 f

εi
i be

the prime factorization of resultantS(S
deg(p1)p1(T /S), p2(S)). Define

φ(p1, p2) =
m∏
j=1

 νj−1∏
p=0

upνj fj (T /u
p

l )

µj

,
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where

νj = l

deg(fj )
, µj = εj

νj
.

Thenφ(p1, p2) ∈ I, [φ(p1, p2)] only depends on[p1], [p2]. Define

[p1] ∗ [p2] def= [φ(p1, p2)].
The operation ‘multiplication’([p1], [p2]) 7→ [p1] ∗ [p2] then makesC into a
commutative ring with unity. The unity is[T − 1].

The next result summarizes the preceding discussion.

COROLLARY 3. The characteristic mapc:K(D) → C is an injective ring
homomorphism.

Remark6. The imageC0 = c(K(D)) is called thecharacteristic ring.
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