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Abstract. We introduce and describe thkaracteristic clasef a difference operator over the differ-
ence fieldk((¢)), 7). Herek is an algebraically closed field of characteristic zero amthek-linear
automorphism ok((z)) defined byr (¢) = /(1 + t). The approach is based on the characterization
of simple difference operators in terms of their eigenvalues.
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1. Introduction

Letk be afield of characteristic @ the ring of formal power series imwith coeffi-
cients ink andK the field of fractions of9. In many respects differential operators
and difference operators with coefficients &h resemble linear transformations
in finite dimensional vector spaces. For instance such operators have eigenvectors
# 0 over a finite extension df. In case of linear transformations the existence of
eigenvectors is proved by means of the characteristic polynomial. However, for lin-
ear differential and difference operators, the existence of eigenvectors is proved in a
different way, because there is no good replacement for characteristic polynomials.
In his thesis, R. Sommeling [4] has introduced a natural formal invariant called
the characteristic clasof a differential operator over a differential field of char-
acteristic zero. This characteristic class is not an element of a polynomial ring
but of a newly constructed characteristic ri@iglt has a certain number of useful
properties:

(i) It classifies semi-simple differential operators up to equivalence.

(i) The characteristic of the sum of two differential operators equals the sum of
the characteristic classes of the operators.

(iii) The characteristic class of the tensor product of two differential operators
(more precisely: differential modules) equals the product of their character-
istic classes.

* The final version of this paper was prepared during a stay at the University of Angers, France.

** Partially supported by the EEC within the framework of the Human Capital and Mobility
Program, Project EXB-CHB-GCT 93-0416.
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224 A. H. M. LEVELT AND A. FAHIM

This paper presents the study of the analogous notion for difference operators.
We shall define characteristic classes for difference operators with the properties
(1), (i), (ii)). The theory is similar to the one for differential operators, though the
treatment of normalized eigenvalues is more complicated.

In order to make the subject as transparent as possible we have made one con-
cession: the basic field of constarktss assumed to be algebraically closed. This
assumption is not essential and we know how to handle the general case. Since the
technicalities of the general case would eclipse the intuitive ideas, we believe that
our concession is justified.

2. Definitions and Notations
Throughout this paper we shall use the following notations and definitions.

e k is an algebraically closed field of characteristic 0.

e K = k((1)), the field of fractions ok[[¢]], the ring of formal power series in
¢ with coefficients ink.

o Let K = U2, k((¢¥")) be the field of Puiseux series overk is the algebraic
closure ofK . Moreover, for any € N* the only subfield oK of degred over
K is K(t*"). In the sequel finite field extensioks C L will often appear.
By the foregoing for such an extension there exisk-somorphismg of L
onto the subfieldk (+/%) of K, wherel = [L : K] is the degree of. over
K. HenceL = K(s), whereg(s) = ! ands’ = ¢. Identification ofL with
K (+*") doesn't lead to confusion in most cases. Note #at L is a Galois
extension with (cyclic) Galois group Gdl/K) generated by :s — ¢s,
where¢ is a primitivelth root of 1.

e T isthek-algebra automorphisiki — K such that (r) = ¢/(1+¢) and which
is continuous in the-adic topologyzr extends (uniquely) to an automorphism
on K by definingu; = (1 + )™V, T i tY!) = u;t¥/! for all I € N*.

e End.(K) has aK -vector space structure defined ay/)(w) = z f(w) for all
z,w € K, f € End.(K). Let D be the smallesK-subalgebra generated by
K andt. D is called thering of difference operatoraith respect tak andr.

e V is a K-vector space of finite dimension. éifference operator oV with
respect tok, t is ak-linear map®: V — V satisfying®(a v) = t(a)®(v)
foralla e K, ve V.

¢ In the above situation one can define = ®(v) for all v € V. This makes
V into a left ©-module. Conversely, iV is a left D-module and a finite-
dimensionalK -vector space, then b (v) = r v for all v € V a difference
operator orV is defined.

e Let ® be a difference operator ovi and (vy, ..., v,) a K-basis ofV. Then
there existz; ; € K such thatd (v;) = Zf}:laj,ivj foralli € {1,...,n}.
Mat(®, (vy, ..., v,)) denotes the matrig; ;).

e Tensor product. LetV, ®) and (W, ¥) be two £H-modules. Then the map
v w > &(v) ® ¥(w) defines a difference operator ¥ x W which will
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be denoted bp @ W. (VR W, PR W) is called thaensor producof (V, &)
and(W, v),

e D;, the ring of difference operators with coefficients fin can be defined
in an obvious way. The above correspondence between difference operators
with respect tok and (finite-dimensional)D-modules can be generalized to
a correspondence between difference operators with respédctatad D; -
modules.

e G = Gal(L/K) operates oV, by p:a® v +— p@) Qv forall p € G,a €
L,v € V. Note thatr; is G-equivariant, i.epot, = 1,0 pforall p € G.

e When Z is a G-invariant L-subspace o¥;, then there exists a (uniqué)-
subspacéV of V such that the multiplication map®x W — V; defined by
a®@w > aw (a € L,w e W) is anL-isomorphism ofL ®x W onto Z. If,
moreover®,(Z) C Z then® (W) C W. This means thab,y is a difference
operator oriv.

3. Eigenvectors and SimpleD-Modules
Our analysis is based upon the following theorem of Turrittin [1, 3, 5]:

THEOREM 1.To any difference operatcb on a K -vector spacé/ there exists a
finite field extensiork C L,a € L andv € V; such that®; (v) = av andv # 0.

DEFINITION 1. Fora, b € K one defines

a ~ b Z There existg € K \ {0} such thau = @ b.

z

Remarkl. ~ is an equivalence relation as can easily be shown.
PROPOSITION 1Let(V, ®) be aD-module andk C L a Galois extension with
groupG. Letv € V; \ {0} satisfy the following conditions

() ®;(v) =av forsomea € L.
(Ih Forall p € G p(a) ~ aimpliesp = 1.
() Ve =3, Lo).
Then the following statements are valid
0] Zpec Lp(v) is a direct sum
(i) TheD,-modulesLp(v) are non-isomorphic
(i) (V, @) is a simpleD-module

Proof. (i) We shall prove thatp (v)),e¢ is anL-basis ofV,. If not, (o (v)) e
is linearly dependent ovdr. Let S C G, S # @ be minimal with the property that
there exist, € L, not all= 0, such that

Z by (v) = 0. 1)

oces
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We may assume thatd S andb, = 1. By applying®; one gets

Y o @t (by)o(v) = 0. 2)

oes

Multiplying (1) by a and subtracting from (2) one checks that

Y (@(by)o (@) —aby)o(v) = 0.

oeS\{1}

Because of the minimality of one now has (b,)o (a) — ab, = 0 forallo € S.
Hence for somer € S\ {1} one haso(a) ~ a. This is a contradiction. This
completes the proof of the fact thgd(v)) e is anL-basis ofV.

(iii) Let W a ®-invariant K -subspace o¥/. AssumeW # {0}. We shall prove
thatw = V and it will follow that (V, ®) is simple. There exists a Galois extension
K c M such thatL ¢ M and W, contains a nonzero eigenvectar of ®,,,
&y (w) = cw for somec € M. There exisb, € M such that

w :pr,o(v). (3)
peG

Apply @, to both sides of (3)

cw =) 1(by)p@p(). (@)

peG

Multiply (3) by ¢ and subtract from (4Zp€G(r(bp)p(a) —cb,)p(v) = 0. Since
(p(v))pec Is anM-basis ofVy, it follows that

t(b,)p(a) —cb, = 0forall p. (5)
Assume that there exigt,c € G such thatp # o, b, # 0,b, # 0. Then (5)
implies

(b T (b,

p(a) 7 =o(a) a)

b, be

Hencep(a) ~ o(a) for p # o. This contradicts (I1). We have proved that in (3)
only oneb,, differs from O, i.e.w = bp(v) for someb € M \ {0}. It follows that
Vy = ZpeG Mp(w). On the other hand, the right-hand side is containe® jn
We conclude thatv,, = V), henceW = V. So we have shown thav/, ®) is a
simple module.

(i) For p,o € G let¢: Lo(v) — Lo (v) be an isomorphism af; -modules.
Then there exists € L* such thaty (o (v)) = zo (v). The relationpo ®; = ®; 0¢p
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applied top (v) yields p(a)zo (v) = T(z)o (a)o (v). Hence,p(a) ~ o (a). Now (II)
givesp =o.

PROPOSITION 2\ith the notations and hypotheses of the preceding propokition
Writed = [L : K] = ord(G), L = K(s) wheres = ¥4, Then there exist

ag,...,a4-1 € K, v, ..., v4_1 € V such that
a ag—
a=ag+— -+ + -1, 6)
N N
V=194 V1S + -+ + vg_1s?7t @)
and the following statements hold
@) (vo,...,v4s_1) iIs a K-basis of V and the matrix of® w.r.t. this basis is
A (1+1)%, where
apg  ag-1/t -+ aift
a=| - : 8)
: ' eag-1/t
aq—1 T az ap

and J, the diagonal matrix

0
d
1
J, = d )
d—1
d
(i) The characteristic polynomial od coincides with the minimal polynomial
ofa overk.

Proof. The existence (and uniquenessygfv; with the required properties is
obvious. For a proof of (i) we express the relatidigv) = a v in terms ofq; and
v;. One has on the one hand

d-1 d-1
P(v) = D (Z v,»s’) = ui o (vy)s' (10)
i=0 i=0

and on the other hand
d—1d-1

i
av = E E ajvps"’

j=0 h=0
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d-1 /d-1 d-1 /i-1
= Z (Z%-ﬂ%) st + Z (Zad+h—i/l‘vh> st

i=0 \ h=i i=0 \ h=0
Comparing equal powers ofin the last member and (10) one finds for alE
{0,...,d — 1}
d-1 i—-1
d(v) = 1+ (Zah—i vy + Zad+h—i/l‘vh>
h=i h=0

from which (i) immediately follows.

Let y be the column vector with entries, ..., y,_1 which will be interpreted
as coordinate vectors with respectug ..., v,_1. In terms of coordinate vectors
the applicationd; is y — A(1+ 1)’z (y). Now v is an eigenvector ob; with
eigenvaluea and has coordinates 4, ..., s~ It follows that this eigenvector
is also an eigenvector oi. Hence,a is a zero of the characteristic polynomial
pa. a has at least! different conjugates ovek and degp,) = d. Hence,p,
is the minimal polynomial of: over K. This completes the proofs of (ii) and the
proposition.

DEFINITION 2. Forc € k the D-moduleE (¢) is defined as the one-dimensional
K -vectorspace generated by (the symlzdt) such thatr (e(c)) = (1 + 1) e(c).

PROPOSITION 3Let (V, ®) be aD-module,L. = K(s) wheres = ¢! and
G = Gal(L/K) with generatofo. Leta € L, v € V \ {0} satisfy

@ o) =av.

(b) For all p € G the relationp(a) ~ a impliesp = 1.
Finally, defineV as theL-subspace o¥, generated byp(v)),ec, h =1/d, where
d =[K(a): K],andag, ...,a;_1 € Kbya = ag+ar/s" + - +ay_1/s¢ D",
Then there exis; ; € V forall i € {0,...,h —1}andj € {0,...,d — 1} such
that the following statements hold

(i) (V, ®,)is aD-submodule ofV,, ®,) and (p(v))pec is an L-basis ofV.

(i) {wi;|ie€f{0,...,h—1},j€{0,...,d —1}} is an L-basis ofV.

(iii) W,»d:efzf;é Kw;  is a simpleD-submodule ofV, ®).

(iv) Mat(®, (w;, ..., Wig-1) = Au§(1+t)fd whereA is given by(8). Moreover,
the characteristic polynomial oA equals the minimum polynomial af
overk.

V) w; = w; o+ wi,lsh + o+ Wig-1 s@=Dh ¢ Vi@ satisfiesd (w;) = u; a w;
and{c/(w;) | i € {0,...,h —1},j € {0,...,d — 1}} is an L-basis ofV
consisting of eigenvectors df; .

(vi) Foreachi € {0, ..., h — 1} there exists an isomorphism &f-modules

¢ E (%) ®x Wo— W,. (11)
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(viiy Definew = YI_0 W;. ThenW is a D-submodule oV such thatw,—V
and the map

(@E(l)) o Wo s W

induced by the; is an isomorphism af>-modules

Proof. Let ¢ € k be a primitivelth root of 1.K(a) C L is a Galois extension
with groupH. We haveH = {¢° o¢,0%, ..., 0" Y4} andK (a) = K (s").

Let us prove (i). When the (v) are linearly dependent ovér, then there exist
0L, ..., on € Gandly, ..., I, € L, notall= 0, such that

i=1
Now take suchp;, I; with » minimal. We may supposg = 1. Applying ®; we
find

> t)pi@)pi(v) =0. (13)

i=1

Now multiply (12) by p1(a) and subtract from (13). The result is

> (@) pi(a) — lipr(a)pi(v) = O,

i=2

This is anL-linear relation between the(v) with less terms. Hence, it must be
the trivial relation, i.ex ;) p; (@) — I; p1(a)) = 0 for all i. Since alll; are different
from O it follows thatp;(a) ~ p1. Hence,p; = p1, implyingn = 1. Thisis a
contradiction. So we have proved that {h@) are linearly independent ovér.

(i) In order to prove the existence of the, ; with the stated properties, we
defineH = {p € G | p(a) = a} (SOK (a) = L) and

w,~d=EfZ p(siv). (14)

peH

Then one readily checks thatw;) = w;, ®.(w;) = ujaw; forall p € H

andi € {0,...,h — 1}. It follows that all w; are in Vg, and so there exist
w;o, ..., W41 € V satisfying
wi = w0+ wias" + - 4 wig_1s YN (15)

Note that thew; ; are uniquely determined hy;.
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In order to show that thev; ; are linearly independent over we first prove
the same property for the/ (w;). From (14) we derive for all € {0, ..., — 1},
jef0,....d -1}

h—1
Gj(wi) — Zsié—i(rdﬂ)grdﬂ'(v).

r=0

For fixed j this shows thab/(wyo), ..., o/ (w,_1) are L-linear expressions in
ol (v), 0/t (), ..., o/T"=Dd(y) and that the connecting matrix is of Vander-
monde type, constructed fromg/, s¢/*4, ... s¢/+=D4_Since the latter matrix
is invertible we see that/(wo), ..., o/ (w,_1) are linearly independent ovér.
Note that forr € {0,...,h — 1} andj € {O,...,d — 1} the expressiomd + j
assumes as values all numbergdn. . . , [ —1} just once. Hence, the’?*/ (v) form

a L-basis ofV and so the same holds for thé(w;). From (15) we get

Uj(w[) = wl"() + wi,laj(sh) + . + wi,d—la'j(s(d_l)h).

For fixedi we getw;, o (w;), ..., c% 1(w;) linearly expressed in

h d—1)h
wi0, s"wig, ..., sV g

and the connecting matrix is again of Vandermonde type, based now on the se-
quence 1", ..., ¢@=Y |t follows that

d-1
wi, o (w;),...,0 “(w;)) and w;o, wi1,..., Wig—1

span the samg-subspace of’. Since thes/ (w;) form anL-basis ofV, the same
holds for thew; ;.

Itis clear now that (v) holds. Definé = Gal(K (a)/K). (iii) follows by apply-
ing Proposition 1 with. replaced byk (a), G by G, V by W;, a by uia andv by
w;. (iv) follows from Proposition 2 when we moreover repladay s”.

Finally we shall prove (vi) and (vii). LeW; be the difference operator on
E(i/1) ® Wo. One hasy;(e(i /1) ® w) = ule(i /1) ® ®(w). Hence the matrix of
W; with respect to the basig(i /) @wo o, - . ., e(i/1)Q@wo4-1) Of E(i /1)@ Wy iS
just u! times that of ® with respect to the basis(wop,...,wos 1)
of Wo, i.e.ulA(1 + t)%. This is also the matrix ofd with respect to the basis
(wi0, ..., w;q—1) Of W;. Define theK-linear isomorphism (11) by, (e(i/]) ®
Wo,j) = Wi, ;.

We must showp; o ¥; = ®o¢;. Or, itis an immediate consequence of the above
matrix description of the two difference operators. (vii) is a trivial consequence.

DEFINITION 3. An elementz € K is said to ban normal formor normalizedif
eithera = 0 ora can be written as

a=apt’(1+ 1) exp(t(q) — q), (16)
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whered = [K(a) : K], a9,a1 € k, i € Z and

. I, L
9= 14 +oo Tt (d-Dyd
with g1, ...,q94-1 € k (¢ = 0if d = 1). The set of elements in normal form will

be denoted byw. N* = N \ {0}. &* is a group under multiplication.

PROPOSITION 4. (iyFor anya € K \ {0} there existg € K (a) \ {0} such that
b =getf a T(z)/z is in normal form. Here is in K (a).

(i) Forall a,b € N one hasz ~ b if and only if there existg € Z such that
a = ujb.

Remark2. In (i) of the above propositioh € K(a) may not be replaced by
K (a) = K (b) as is evident from the example

14
14 uos’

s = /1, a

Z=1+S.

ThenK(a) = K(s) # K,z € K(a) \ {0} andb = at(z)/z = 1.

Remark3. Note that the relatiom = uﬁb in (ii) of the proposition implies
K(a) = K(b).

The proof is based on the next two lemmass 1'/¢ in both lemmas.

LEMMA 1. Foranyb =Y "° ., b;s' € k[[s]] there existy = >".°, yis’ in k[[s]]

satisfyingr (y) — y = b.
Proof. Define

B _ baga T(s) — s
yl__dbd+lv 8(1)__ s +yl Sd+2

Then one easily checks thatl) € k[[s]] and
T(y15) — 15 = bay1s/ Tt + e(D)s T2

Now suppose that for some e N* we have found(m) =get Y-, vis' ande(m)

satisfying
d+m '
T(y(m) — y(m) = Y bis' +e(m)s™" L, s(m) € k[[s]]. (17)
i=d+1

Then we try to findy(m + 1), e(m + 1) satisfying (17) withwz replaced byn + 1.
An easy computation shows that it is sufficient to find ; ande (m + 1) such that

e(m) — baymy1 T(smt) — gt
e(m+1) = % LIRS ey
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with e(m + 1) € k[[s]]. Using the relation

1
T(Serl) — gmtl — _m; gmtd+l + O(sm+d+2)’

one checks that

Ym+1 = (e(m)o — bgym-1)

m+1

solves the problem. Hergm)o denotes the constant termegin).

LEMMA 2. Foranyc = > 2, ¢;s' € kl[s]] there existy € k,y = > o yis' €
k[[s]1andg = g1/s + - -- + qq4_1/s?71, whereg; € k, verifying

c=ylogl+t)+1(q) —g+7(y) —y. (18)

Proof. For allgy, ..., g4_1 the following relation holds

1
g 9418 +--+ Eled_l + O(s%)
as one easily sees. Definigg= dc,_;/i, we getc — t(q) + g = ¢, wherec¢ =
Y 2, ¢is'. Choosey = ¢,;. Thenc — ylog(1+t) — t(q) + ¢ = b, whereb =
Y2 e bis'. By virtue of Lemma 1, there exists = Y .2, y;s' such thath =
7(y) — y. Putting the above relations together, we get a proof of (18).

(q) —q =

Proof of Propositiord. (i) Fora € K \ {0} defined = [K (a) : K] ands = /<.
There existip € k, i € Zanda = 1+ays+azs?+- - - € k[[s]] such that: = aps’a.
Definec = c15 + 5% + - - - by ¢ = log(a). Next takey, ¢ andy as in Lemma 2
and defineg = €. Then one has

4= ags' & = ags' @10IHNFT@ g+t _ |, (Z 1
T(Z

where
b=aos'(1+1) €D c K(s) = K(a). (19)

Let H be the Galois group oK (s)/K (b). If h = orderH), thenK (b) = K(v)
wherev = s". Definem = d/h € N*. Thenv = t¥" and[K(b) : K] =m. H is
generated by:s — ¢s where¢ is a primitiveith root of 1.

From (19) and> (b) = b, we derive

o(sHo (€W =g @4, (20)
Hence
gia(er(q)fq) — gf@—aq (21)
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Note that

d-1 d-1 .
qj i J !
) —g=) @+ - =3 “q—f (22)
j=1 j=1

wheref; = 14-0(z), O(z) denoting an element ok[[]]. Consequently, &)~ =
1+ O(s), where Qs) stands for an element ok[[s]]. Now it follows that¢’ = 1
in virtue of (21). Hences’ € K (b), s' = v/, say. Because (' 9~9) = e *@~9),
we derive from (21) by taking logarithms(z (¢) — g) = t(q) — g which implies

d-1 j ¢
T _Dilg. —f =
;@ V2a; £ =0

Such a relation can only hold éf; = 0 whenj is not a multiple ofz. This means
that

-1 -1
q= djh _ qjh
sJ L yh

j

3
3

=

~.
Il
=
||
-

From this relation and (19) we derive
m—1 q
jh
b = agv' (1 + 1) Z ﬁ
j=1
Since[K(b) : K] = m andv = t¥™, we see thab is in normal form. This
completes the proof of (i). .
(ii) Sinceu; = (s’)/s’, itis evident that = u} b impliesa ~ b. Conversely,
leta ~ b, i.e.a = bt(z)/z for somez € K \ {0}. Then there existd € N*

such thatk (a, b, z) = K (s), wheres = ¥4, We can writez in the form (16) and
b = bot//4(1+ t)lrexp(t (r) —r), wherebg, by € k, i € Z,

ri rg—1

r=m++m,

andz in the formz = 7,8 + Zpp1s” ™t + - - - with z,, # 0. Writec = b/a. The

reader can check thatz)/z = 1 — (m/d)s? + O(s*1). Here Qs?*1) stands for
an element of?*1k[[s]]. Hence, we have

Col‘l/d(l + t)cl er(w)fw =1-— (m/d)sd + O(sd+l)’ (23)

wherecg = ag/bo,l =i — j,c1 = a1 — by, w = g — r. Similar to (22) we have

d-1 .
] .
Tw)—w=3) Jwis'g,
j=1
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wherew; = ¢; —r; andg; = 1+ O(z). Also € ¥~ = 1+ O(s) and so it follows
from (23) thatco = 1 and! = 0. This provesiy = by, i = j and

L+ )™ ™% =1 — (m/d)s? + O(s?*).
Taking the logarithms at both sides yields
c1log(l+ 1) + (t(w) — w) = —gsd + O(sHhy.

Hence

d-1
; m
D Zwst g = —Esd + O™y — c1(t + O(t?)).

j=1

&=

From this relation ang; = 1+ O(z) it now follows that allw; vanish. This proves
q =r,c1 = —m/d, hencea = u’} b, and terminates the proof of (ii).

COROLLARY 1.LetK c L be a finite Galois extension with a Galois groGp
Then for anya € L in normal form andp € G the relationp(a) ~ a implies
p=1

Proof. We may assume # 0. Let/ = [L : K] andd = [K(a) : K]. Then
p(a) = u,’ a for somej € Z in virtue of Proposition 4. One has = p'(a) =
u;"” a. Sinceu;” = 1it follows thatj = 0, i.e.p(a) = a. Hence,p = 1.

DEFINITION 4.a €  is callednormalized eigenvalui there existsv € Vg ),
v # 0, such thatbg ) (v) = av.

PROPOSITION 5Let (V, ®) be aD-module,K C L a finite field extension,
a € L,v € V;\{0} such that®; (v) = av. ThenK(a) contains a normalized
eigenvalue

Remarkd. In conjunction with Theorem 1 this proposition shows the existence
of normalized eigenvalues for ay-module.

Proof. From Lemma 4 we know thate K (a)* exists such thak =get at(z)/z
is in normal form. Definew = zv. Then®(w) = bw. So we have obtained a
nonzero eigenvector and an eigenvalue in normal form. This doesn’t guarantee that
b is a normalized eigenvalue, because we don’t know whetheelongs toV ).
We shall complete our proof by a Galois argument. Hebe the Galois group of
K(b) C L,h =[L:K()]l,d =1/h,s =t ¢ a primitive hth root of 1 ando a
generator of. Fori € {0, ..., h — 1} define

h—1 h—1
wi= 3 005wy = 5 S ¢ .
j=0 j=0
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Obviously w; is fixed by the operations a and so belongs t¥x ;. Using the
fact that the matrix¢; ;), i, j running througho, ..., & — 1}, is nonsingular, one
sees that not ally; can vanish. Because otherwigewould vanish. On the other
hand one has

h—1 h—1
O(w;) = ()Y ¢V pl (@(w)) = W) Y ¢V pl (bw)
j=0 j=0
h-1
= uilbsid Z ¢V pl(w) = uﬁlbw,-.
j=0

Note thatu! b is in normal form and thaK (u)b) = K(b). This terminates the
proof.

PROPOSITION 6Let (V, ®) be a simpleD-modulea € & a normalized eigen-
value,v € Vg )\{0} such that®(v) = a v and G the Galois group oK (a)/K.
Then the following statements hold

() (p(v)),ec is @K (a)-basis ofVig (4.
(i) dimg (V) = [K(a) : K].
(i) Foranyb € N bis anormalized eigenvalue ¢¥, ®) if and only ifb ~ p(a)
for somep € G.

Proof. (i) This is an immediate consequence of Proposition 3(i) applied with
L = K(a). Note thatVg(a) is the direct sum of th& (a)-subspaceX (a)p (v),
p € G, invariant unde®x (a), and thatd g ,) (o (v)) = p(a)v. Moreover,p(a) ~
o(a)ifandonlyifp = 0.

(i) Trivial consequence of (i).

(iii) If b ~ p(a) then obviously is a normalized eigenvalue foV, ®).

Now letb be a normalized eigenvalue. We may assumeih@ab andK (b) are
both subfields ofk . Because both have the same degree @&veviz. dimg (V),
we haveK (a) = K(b). Let L denote the latter field. There exists € V; \
{0} satisfying®(w) = bw. Becausep(v)),ec IS an L-basis ofV,, there exist
l, € Lsuchthatw = > _;l,0(v). Applying @, we getbw = ®(w) =
Zpec 7(l,)p(a)p(v). On the other hand one has) = Zpec bl,p(v). The latter
two relations yieldr (/,)p(a) = b1,. Since not all, vanish, one has ~ p(a) for
somep € G.

DEFINITION 5. Let (V, ®) be a simpleD-module. LetL be a finite extension
field of K. Note thatL is called asplitting fieldfor (V, ®) if

(i) There existsr € L andv € V; \ {0} such thatd (v) = av.
(i) L is minimal with respect to the above property.

Obviously, any simpleD-module has a splitting field.
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PROPOSITION 7Let (V, ®) be a simpleD-module,K c L and L splitting
field for (V, ®). ThenL contains a normalized eigenvalue fdr, ®) and for any
normalized eigenvalug € L one hasl. = K (b).

Proof. In virtue of Proposition 3. contains a normalized eigenvalueBecause
of the minimality of L it follows that L = K(a). Now let b be a normalized
eigenvalue. We may suppo&&a) C K andK (b) C K. Then by Proposition 6(ii)
we havelK (a) : K] = [K(b) : K]. HenceL = K (a) = K (b).

PROPOSITION 8For all a € N there exists a simpleD-module having: as
normalized eigenvalue

Proof. DefineL = K(a),d = [L : K], s = t*/?. The idea of the proof is to re-
verse the constructions in the proof of Proposition 2. For this define ., a,_; €
K by (6), the matrixA by (8) and the matrix/, by (9). Moreover, puty = K¢
with canonical basigug, . . ., vs_1) and define a difference operatbron V by the
action of A(1 + )77 on the basigvy, ..., vs_1). Finally, definev € V; by (7).
An easy computation shows th@t (v) = a v. The only thing we must still prove
is that (V, ®) is a simpleD-module. Well, this is an immediate consequence of
Proposition 3. The hypotheses of that proposition are satisfied

(a) by the above construction,
(b) because € N.

In our situationL. = K (a), henceh = 1 andV = V, and from (vii) we conclude

that W, — V, for a simpleD-submoduleW of V. Hence(V, ®) itself is simple.
The H-module constructed in the above proof will be called damonical

module associated te € . It will be denoted by(V (a), ®) (or, shortly, by

V(a)).

PROPOSITION9Fori = 1, 2let (V;, ®;) be a simpleD-module with normalized
eigenvaluey;. Let p; € K[T] be the minimal polynomial af; over K. Then the
following statements are equivalent

(i) TheD-moduleg(Vy, ®1) and (V,, ®,) are isomorphic
(ii) a1 ~ ap, wherea, is conjugated withi, over K.
(i) There existsi e Z satisfying po(T) = (1 + 1)/ p1(u, T) whered is the
degree ofi; (= degree ay) overk.

Proof. (i) = (ii). Let f:(Vi, ®1)— (Va, ®,) be a D-isomorphism. Since
dimg(V;) = [K(a;) : K] and f induces an isomorphism o€ -vector spaces
Vi— Vs, one hask (a;) and K (a») have the same degree ov&r and so they
can be identified. We shall writé instead ofK (a4;). Letv € (V1) \ {0} verify
®1(v) = ayv. Then it follows that®,(f (v)) = a1 f (v). Proposition 6 leads now
to (ii).

(ii) = (iii) Note thata, also belongs toV. Applying Proposition 4 we see that
a, = (14 t)//?a, for some; e Z and (iii) follows.
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(iii) = (i). We now know thats, is conjugated tar,’a;. Proposition 6 shows
thata, is also a normalized eigenvalue ®f. Letv; € (V;);\{0} satisfy®; (v;) =
arv;. Defined = [K(a1) : K],s = tY? andv;o, vi1,...,vig1 € V; byv; =
Vi 0+vi18+ - -+v;4-15971. Then Proposition 2 shows that Mdty, (v1o, v1.1, ...,
v1.4-1) coincides with that ofb, with respect to(vy0, v21, - - -, V2.4-1). It IS NOW
clear how to make am-isomorphism as needed in (i).

COROLLARY 2.Let(V, ®) be a simpleD-module. Then there exisise & such
that (V, @) is isomorphic to the canonicad-moduleV (a).

4. Characteristic Classes

In the sequel we will denote hfthe monoid of monic irreducible polynomials of
K|[T1], whereasmM denotes the monoid of all monic polynomialskiT].

DEFINITION 6. The equivalence relatioty on { is defined by as follows. For
f, g € 4 one hasf ~ g if the following hold:

(1) deg f) = degg). Hence,f andg have the same splitting field.
(2) There existg € Z such thatf (T) = (1+ 1)/ g(u}, T) whered = deq f).

For f, g € M the relationf ~ g means the following. Wherf = [];_, fi, g =
]_[j.:1 gj, Where f;, g; € [, thenr = s and there exists a permutation of
{1,...,r} such thatf; ~ g, for all i.

M/ ~ is an Abelian monoid. The associated Abelian group is denoted.by
The operation is written as an addition. For ghy M the image inC is denoted

by [f1.

DEFINITION 7. Let (V, ®) be a simpleD-module. Thecharacteristic class
c((V, ®)) is defined by p.1, wherep, is the minimal polynomial of a normalized
eigenvaluez of (V, ).

For an arbitraryD-module (V, ®) letV = Vg D Vy D --- D V, = {0} be
a Jordan—Holder sequence in the sens@®eahodules. This means thdt(V;) C
V; and that the quotient®;_,/V; with the induced difference operatdr; are all
simple. Then

def

c(V, @NZY " e((Viea/ Vi, @1)).

i=1

That the characteristic class of a simple module is well-defined follows from
Proposition 9. The correctness in the general case follows from the well-known
properties of Jordan—Hdlder sequences.

Let us denote byiff the category ofD-modules of finite dimension ak -
vector space and by (D) the corresponding Grothendieck group. That is the
free Abelian group generated by all isomorphism clagggdsf objectsV in Diff
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modulo the subgroup generated %] — [V'] — [V"], where 0— V' — V —
V” — 0is an exact sequence &f-modules.

PROPOSITION 10The mape: (V, ®) — ¢((V, ®)) can be extended in a unique
way to an injective group homomorphismJ&f{D) into C.

Remark5. The image ot will be called thecharacteristic groupand denoted
by Co.

Proof. The injectivity ofc follows from Proposition 9.

5. Tensor Product and Characteristic Ring

In this section(Vy, ®,) and (V,, ®,) are simpleD-modules with splitting fields
M., resp.M,. M1, M, are finite extensions ak and will be identified with sub-
fields of K. We denote byn; (resp.m») the degreéM; : K] (resp.[M, : K1), by
L the composition of1, M- (subfield ofK), by G the Galois group of. overk,
by the degreg¢L : K] (note that = l.c.m.(m1, my)), by o a generator o€, by s
anith root ofr and by¢ € k a primitive/th root of unity.

We know that there exist; € (V1) u,\{0}, a1 € M1 (resp.vz € (Vo) u,\{O}, a2 €
M>) such that®,(vy) = ay vy, (resp.®2(v2) = ar vp) With a; anda, normalized
eigenvalues. It follows thato (v;)) pecaim; k) iS linearly independent ovevl; for
i=1,2.

Let Z be the tensor product of the-modules(Vy, @) and(V,, ®,). In general
(Z, ®) is not simple. In this section an explicit decomposition(df ®) will be
described as a direct sum of simple modules.

First note thatZ; can be identified witlfV1); ®; (V). Next define elements
zi.j of Z, by

Zij =o'(v) ®c’/(vy) for 0<i <mq1, 0<j < mo.

Then (z;,j)o<i<my,0<j<m, 1S @n L-basis ofZ,. Clearly o (z; ;) = zit1,j+1 holds.
(Compute modulan, (resp.my) with the first (resp. second) index). Defide=
gcd((my, m2) and

Z=1{z;j10<i<my, 0<j<mp}
andfori € {0,...,d — 1}, Z; = {p(zi0) | p € G}.

PROPOSITION 11The following statements hold
(i) Foralli € {0, ...,d — 1} the mapp — p(z;0) is a bijection ofG onto Z;.

(i) Z =110 2.
Proof. (i) We must prove thap — p(z; ) is injective. Leto” (z;0) = 0" (zi.0)
for somem,n € {0,...,1 — 1}. Then

0" (v1) ® 0™ (v2) = 0" (v1) ® " (v2).
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Consequentlym + i = n + i modm, andm = n modms,. It follows that! divides
m —n and san = n.

(i) We must show that thez; are disjunct. For this assume thatj are in
{0,...,d — 1} and thatZ; N Z; # . Then there exists;,n € {0,...,] — 1}
such thab " (o' (v1) ® v2) = 0" (0’ (v1) ® v2). This leads to the congruences

m+i=n+ jmodm;, m =nmodm,

which implyd | i — j. Hencei = j.

Now for all i € {0, ...,d — 1} definec; = o'(ai)a; andh; = [L : K(c;)].
One hasd, (z;0) = cizi0- Then by virtue of Proposition 3 there exists for every
i €{0,...,d— 1} asimpleD-submodulezZ; of Z such that

1 h; —1
L ®k ((E(O)@E(T)GB@E(T)) Rk Zi) =LZ;

is an isomorphism ofD; -modules.

PROPOSITION 12There exists an isomorphism £f-modules

d—1h;—1 .
Vi ®xk sz@@EG) R Zi.

i=0 j=0

Letg;(T) € K[T] be the minimal polynomial of; overK fori =0,...,d—1.
Note thath; dedq;) = [. g; represents the characteristic cIassZQfThe charac-
teristic class of£ (j/ h;) ®k Z; is represented by, deg(q")q,»(T/u,’). Consequently,

the characteristic class & ® ¢ V> is represented by

d-1h;—1

[111whaT/u). (24)

i=0 j=0

We want to compute the characteristic classVpfR g V, from the polynomials
p1, p2, representing the characteristic classe$Vaf ®,), resp.(Vs, ®,). For this
defineR(T) € K[T] by

R(T) = resultan{(S%97Y p,(T/S), p2(S))

= H(T — (o' (a1)o’ (a2))),
iJ

wherei runs throughO, ..., m; — 1} andj through{0, ..., m, — 1}. Note that

d-1 d-1
R =[] [[ - ro'@a) =] 4" (25)
i=0 peG i=0

by virtue of Proposition 11.
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Note thatR(T) and its prime factorization iK [T'] can be computed (rationally)
from p., p,. However, the right-hand member of (25) is not necessarily the prime
factorization ofR(T) because the; need not be all different. However, when=
q;j, then obviouslyr; = ;. Let us start now from the prime factorization ®B{T)
in K[T]: R(T) =[]}, f;f'. (The f; are monic, irreducible and different). Define

Thenu;v; = ¢; and (24) can be written as

d—1h;—1
[T11 b aT/uly
i=0 p=0
m hi—1 ‘ m vi—1 '
=TITT 1T whacrruh =TTTTTT w2 ficrrud
j=lielj p=0 j=liel; p=0
m vj—1 Hj
=TT\ 1wt s
j=1 \ p=0

We have proved

PROPOSITION 13Let (Vy, ®1), (V,, ®,) be simpleD-modules. Lep,, resp p»

in K[T] represent their characteristic classes and [§f., /" be the prime fac-
torization in K[T'] of resultant (59970 p,(T/S), p2(S)). Then the tensor product
of (V1, ®1)and(V,, ®,) has the characteristic class which is represented by the
polynomial

vi—1 Hi
m J
[Tl ITubricrruly| .
j=1 p=0

v, =1/ded f}). w;=e¢;/v;, |=lecm(deqfy).....dedf,)).

Now usingc the product structure ot (D) can be extented t@. We shall
denote this operation by". To give a direct description of it is sufficient to
define[p1] * [p2] for p1, p € 4.

Let L = K(t¥/") be the common splitting field fop, and p,. Let ], £ be
the prime factorization of resultagits9e97v p,(T/S), p2(S)). Define

m f[vj-1 #
¢(p.p) =[] [Tusriu)y| .
j=1 p=0
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where

I 8/'

Vj:m, /J/]—Uj

Theng (p1, p2) € 4, [¢(p1, p2)] only depends ofip], [p2]. Define

[p1] * [p2] der [¢(p1, p2)].

The operation ‘multiplication’([p1], [p2]) — [pi] * [p2] then makes® into a
commutative ring with unity. The unity i’ — 1].

The next result summarizes the preceding discussion.

COROLLARY 3. The characteristic map: KX (D) — C is an injective ring
homomorphism

Remarks. The image®; = ¢(K (D)) is called thecharacteristic ring
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