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1. Introduction

Let Ω ⊂ R
n be a subdomain. The local Hardy–Littlewood maximal operator MΩ is

defined for measurable f : Ω �→ R by

MΩf(x) = sup
0<r<d(x,Ωc)

−
∫

B(x,r)
|f(z)| dz. (1.1)

In the case where Ω = R
n it is understood that the supremum above is taken over all

r > 0, and in this case we denote MRn = M .
The maximal operator is one of the most important tools in modern harmonic analysis.

Often it is used to estimate the absolute size of functions, but it is also natural to inquire
how the maximal operator preserves the differentiability properties of functions. As a first
step in this direction, Kinnunen observed [6] that M is bounded on W 1,p(Rn). Several
articles have since been dedicated to this issue. Korry proved in [10] that M is also
bounded on the Triebel–Lizorkin spaces F p

s,q(R
n) when 1 < p, q < ∞ and 0 < s < 1. The

fractional maximal operator was studied in [8]. The study of the local operator brings in
new difficulties, and its boundedness was proved by Kinnunen and Lindqvist [7]. Later,
Hajlasz and Onninen [5] found a simpler proof of this result.

For nonlinear operators it is important to note that continuity is not implied by bound-
edness. An important example is provided by the symmetric decreasing rearrangement
on W 1,p(Rn), as was shown by Almgren and Lieb [1]. Accordingly, it was asked in [5]
(the authors attribute the question to Tadeusz Iwaniec) whether the maximal operator
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M is continuous on W 1,p(Rn) when 1 < p < ∞. This question was answered by the
author in [12]. The proof of the positive answer required the development of new tech-
niques which allow more careful analysis of the radii for which the supremum is attained
in (1.1).

Our main result, Theorem 2.12, establishes the continuity of the local maximal operator
MΩ on the Sobolev spaces W 1,p(Ω) when 1 < p < ∞. The proof starts along the
same lines as in [12], but the case of subdomains introduces new fairly subtle difficulties
arising from the boundary effects (see Remark 2.13). This accounts for the length of the
argument. The result is actually formulated more generally for Orlitz–Sobolev spaces,
but the main difficulties are already present in the Sobolev space case.

We also extend the works of Korry [10] and Kinnunen and Lindqvist [7] by establishing
the boundedness and continuity of MΩ on the Triebel–Lizorkin spaces F p

s,q(Ω). As in the
case of Sobolev spaces, the known arguments for M do not transfer easily for MΩ . The
basic obstacle is that in the local case the maximal operator does not commute with
translations. However, the fact that we deal with smoothness s ∈ (0, 1) makes the proof
of continuity somewhat easier than in the case of standard Sobolev spaces.

The structure of paper is as follows. In § 2 we first recall the definitions of the Orlitz–
Sobolev spaces and extend several auxiliary results introduced in [12] to the case of
subdomains. We have included complete proofs for the sake of readability. The remaining
lemmas in this section are specific to the local case and allow us to complete the proof
of the continuity of MΩ in Sobolev spaces. In § 3 we recall the definition of Triebel–
Lizorkin spaces and prove the boundedness of MΩ on these spaces. Finally, § 4 treats the
continuity of MΩ on Triebel–Lizorkin spaces.

2. Continuity of the maximal operator in W 1,ψ(Ω)

Let us first introduce some notation. If A ⊂ R
n and r ∈ R

n, we define

d(r, A) := inf
a∈A

|r − a| and A(λ) := {x ∈ R
n : d(x, A) � λ} for λ � 0.

When Ω ⊂ R
n, we denote d(x, Ωc) by δ(x). The notation K ⊂⊂ Ω means that K is open

and bounded and K̄ ⊂ Ω.
As mentioned in § 1 we consider the main question in a more general setting of Orlicz–

Sobolev spaces. The kind of Orlicz spaces in which MΩ is bounded is well known (see, for
example, [9, § 1.2]). We will see that if ψ is such that MΩ is bounded in Lψ(Ω), then the
boundedness in Orlicz–Sobolev space W 1,ψ(Ω) (see Lemma 2.1) is an easy corollary of the
result of [5]. As our first main theorem, we prove the continuity of the maximal operator
in these spaces. Of course, this also proves the continuity of the maximal operator in
W 1,p(Ω), 1 < p < ∞, which corresponds to the case when ψ(t) = tp. This case also
includes all the real difficulties, and the reader, if desired, may assume that we are
working with Sobolev spaces.

Let us now define the Orlicz–Sobolev spaces. To this end, let us assume that ψ is an
increasing convex function on [0,∞) such that

lim
t→0+

ψ(t)
t

= lim
t→∞

t

ψ(t)
= 0.
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The Orlicz space Lψ(Ω) (see [9, § 1.1]) consists of those measurable functions f : Ω �→ R

such that ∫
Ω

ψ

(
|f(x)|

λ

)
dx < ∞ (2.1)

for some λ > 0. This expression does not give us the norm, but, setting

‖f‖Lψ = inf
{

λ > 0 :
∫

Ω

ψ

(
|f(x)|

λ

)
dx � 1

}
, (2.2)

we get a norm (the so-called Luxemburg norm) on Lψ(Ω). The Orlicz–Sobolev space
W 1,ψ(Ω) (see, for example, [11, § 7.1]) consists of functions f ∈ Lψ(Ω) for which the
weak partial derivatives Dif ∈ Lψ(Ω) for all i � n. We define the norm by setting

‖f‖1,ψ = ‖f‖Lψ + ‖∇f‖Lψ ,

where ∇f is the weak gradient of f . Let us also denote by ‖f‖ψ,A the Lψ-norm of χAf

for all measurable sets A ⊂ Ω.
The boundedness of the maximal operator in Orlicz space Lψ(Ω) holds if and only if

the function ψα is quasiconvex for some α ∈ (0, 1) [9, § 1.2.1]. In this case, for simplicity,
we say that ψ satisfies property (Q). Here quasiconvexity means that there exists a convex
function w such that

w(t) � ψα(t) � cw(ct) (Q)

for some constant c > 0. In particular, when (Q) holds, we can exploit in proofs the fact
that

Lψ(Ω) ⊂ Lp
loc(Ω) (2.3)

for some p > 1, where p depends on α. This follows from the fact that if w is convex,
then, for some c > 0, w(t) � ct when t > 1. Therefore, quasiconvexity of ψα says that
ψ(t)α � w(t) � ct, implying that ψ(t) � (ct)1/α.

The following lemma guarantees that when (Q) holds we also have the boundedness
of MΩ in W 1,ψ(Ω).

Lemma 2.1. MΩ is bounded in W 1,ψ(Ω) if it is bounded in Lψ(Ω).

Proof. Let f ∈ W 1,ψ(Ω). Boundedness in Lψ(Ω) implies that MΩf < ∞ almost
everywhere (a.e.). Moreover, MΩ(∇f) ∈ Lp

loc(Ω), for some p > 1. This follows from the
observation (2.3). Then by [5, Theorem 3] we have that

|∇MΩf(x)| � 2MΩ |∇f |(x) (2.4)

for almost every x ∈ Ω. Now the boundedness in Lψ(Ω) implies the boundedness in
W 1,ψ(Ω). �

Let us then define the sets of the ‘best radii’ for function f ∈ L1
loc(R

n) at point x ∈ Ω.
This useful concept was introduced in [12, § 2.1] in the case of R

n. For the definition for
every x ∈ Ω attach the function ux : [0, δ(x)] �→ R such that

ux(0) = |f(x)| and ux(r) = −
∫

B(x,r)
|f(y)| dy when r ∈ (0, δ(x)], (2.5)
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whence it holds that
MΩf(x) = sup

r∈(0,δ(x))
ux(r),

and simply define
Rf(x) = {r ∈ [0, δ(x)] : MΩf(x) = ux(r)}. (2.6)

In the other words, Rf(x), the set of the best radii at point x, consists of those
r ∈ [0, δ(x)] for which the maximal average is attained. In the above definition the central
fact is that functions ux are continuous for almost all x. The continuity on (0, δ(x)] is
trivial (holds for every x) and at 0 it follows a.e., since almost every x ∈ Ω is a Lebesgue
point for f . Therefore, if x ∈ Ω is a Lebesgue point of f , then function ux reaches its
maximum on a closed interval [0, δ(x)]; thus, Rf(x) is non-empty. Moreover, it is easy
to see that Rf(x) is also closed.

In the next lemma we show how the sets Rf(x) and Rg(x) are close to each other
when ‖f − g‖ψ is small. This lemma is a counterpart for the result in [12, Lemma 2.2]
in the global case. Also, the proof is essentially the same as in the case of Lp(Rn), but
for the reader’s convenience we give here the whole proof (moreover, we need a part of
the proof when proving Lemma 2.3).

Lemma 2.2. Assume that MΩ is bounded in Lψ(Ω) and suppose that fj → f in
Lψ(Ω) when j → ∞. Then for all R > 0 and λ > 0 it holds that

m({x ∈ Ω ∩ BR : Rfj(x) 	⊂ Rf(x)(λ)}) → 0 if j → ∞.

Proof. First we remark that one can verify the measurability of the above set when-
ever fj and f are locally integrable functions (see [12, Lemma 2.2]). We may assume
that the functions f and fj are non-negative, since Rf(x) = R|f |(x). Moreover, assume
that f 	≡ 0, since the case f ≡ 0 is trivial (R0(x) = [0, δ(x)] for all x). Fix λ > 0, R > 0
and ε > 0 and define ΩR = BR ∩ Ω. For almost every x ∈ ΩR we find a natural number
i(x) ∈ N so that

−
∫

B(x,r)
f(y) dy < MΩf(x) − 1

i(x)
, when d(r, Rf(x)) > λ. (2.7)

Let us verify this: if this is not possible, there is a sequence of radii (rk)∞
k=1 with

−
∫

B(x,rk)
f(y) dy → MΩf(x) and d(rk,Rf(x)) > λ.

Since the sequence (rk)∞
k=1 is bounded, by moving to a subsequence, if desired, we may

assume that rk → r as k → ∞. Then it is clear that r ∈ Rf(x). On the other hand, r

satisfies d(r, Rf(x)) � λ, whence we obtain the desired contradiction.
It follows from (2.7) that there exists i ∈ N so that

ΩR ⊂
{

x : −
∫

B(x,r)
f(y) dy < MΩf(x) − 1

i
if d(r, Rf(x)) > λ

}
∪ E =: A ∪ E, (2.8)
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where E is a measurable set with m(E) < ε. Furthermore, when i is fixed, let us define

Aj =
{

x ∈ ΩR : 2MΩ(f − fj)(x) � 1
4i

}
.

The boundedness of MΩ in Lψ(Ω) implies that there exists j0 ∈ N so that m(Aj) < ε,
when j � j0.

Finally, suppose that x ∈ ΩR ∩ (Aj ∪ E)c and r ∈ [0, δ(x)] such that d(r, Rf(x)) > λ.
Then

−
∫

B(x,r)
|fj(y)| dy = MΩfj(x) − (MΩfj(x) − MΩf(x))

−
(

MΩf(x) − −
∫

B(x,r)
|f(y)| dy

)

−
(

−
∫

B(x,r)
|f(y)| dy − −

∫
B(x,r)

|fj(y)| dy

)

=: MΩfj(x) − s1 − s2 − s3.

Above we have |s1|, |s3| � MΩ(fj − f)(x) (for s1 we use the sublinearity of MΩ), which
implies that (since x ∈ Ac

j) |s1| + |s3| � 1/4i. On the other hand, since x ∈ Ec and
d(r, Rf(x)) > λ, we get that s2 > 1/i. Combining these estimates, we conclude that

−
∫

B(x,r)
|fj(y)| dy � MΩfj(x) +

1
4i

− 1
i

< MΩfj(x). (2.9)

In particular, r 	∈ Rfj(x) and we have proved that Rfj(x) ⊂ Rf(x)(λ). This verifies that

{x ∈ ΩR : Rfj(x) 	⊂ Rf(x)(λ)} ⊂ Aj ∪ E. (2.10)

Here m(Aj ∪ E) < 2ε, when j � j0. This completes the proof. �

Before the next lemma, let us introduce some notation. Assume that f ∈ Lp(Ω),
1 � p < ∞. Let ei be one of the standard basis vectors of R

n. For h ∈ R, h 	= 0, we
define the functions f i

h and f i
τ(h) by setting

f i
h(x) =

f(x + hei) − f(x)
h

and f i
τ(h)(x) = f(x + hei). (2.11)

These functions are well defined in the set {x ∈ Ω : δ(x) > |h|}. In particular, for all
K ⊂⊂ Ω these functions are well defined in K when |h| is small enough. We know that
for all K ⊂⊂ Ω we have f i

τ(h) → f in Lp(K) when h → 0 and, if p > 1, for functions
f ∈ W 1,p(Ω) [3, § 7.11], that f i

h → Dif in Lp(K) when h → 0.
Next we prove a lemma which is very similar to the previous one. We study how

close the sets Rf(x + hei) and Rf(x) are when h is small. In the case when Ω = R
n

this is obvious by using Lemma 2.2. Hypothetically this is also the case if Ω 	= R
n but

technically one has to be very careful with translations in the case of subdomains and
therefore we found it necessary to treat this case separately.
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Lemma 2.3. Let f ∈ Lp(Ω), 1 < p < ∞. Then for all i, 1 � i � n, λ > 0 and
K ⊂⊂ Ω one has

(i) m({x ∈ K : Rf(x + hei) 	⊂ Rf(x)(λ)}) h→0−−−→ 0,

(ii) m({x ∈ K : Rf(x) 	⊂ Rf(x + hei)(λ)}) h→0−−−→ 0.

Proof. Let us first prove (i). The proof is very similar to that of Lemma 2.2. We
repeat the first part of the proof and assume that the sets A and E, depending on f , ε

and λ, are chosen (see (2.8)). Then, define

Ah =
{

x ∈ K : M(χΩf i
τ(h) − χΩf)(x) >

1
2i

}
,

Bh =
{

x ∈ K : |MΩf(x + hei) − MΩf(x)| >
1
4i

}

and

Ch =
{

x ∈ Ω : ∃r ∈ [δ(x) − 2|h|, δ(x)]

such that
∣∣∣∣ −
∫

B(x,r)
f(y) dy − −

∫
B(x,δ(x)−|h|)

f(y) dy

∣∣∣∣ >
1
8i

}
,

and define our final exceptional set to be

Eh := E ∪ Ah ∪ Bh ∪ (Ch − hei).

We observe that the measure of the sets Ah, Bh and Ch tends to zero when h → 0.
Therefore, for the claim, it suffices to prove that

{x ∈ K : Rf(x + hei) 	⊂ Rf(x)(2λ)} ⊂ Eh

for h small enough. Let us prove this: choose h0 > 0 so that K(2h0) ⊂ Ω and h0 < λ.
Then let |h| < h0 and x ∈ A \ Eh so that there exists r ∈ Rf(x + hei) such that
d(r, Rf(x)) > 2λ. We treat separately the (harder) case where r is ‘too’ close to δ(x).
More precisely, suppose first that

r ∈ [δ(x) − |h|, δ(x + hei)].

Then, we have d(δ(x) − |h|,Rf(x)) > λ and we get

MΩf(x + hei) = −
∫

B(x+hei,r)
f(y) dy

�
∣∣∣∣ −
∫

B(x+hei,r)
f(y) dy − −

∫
B(x+hei,δ(x+hei)−|h|)

f(y) dy

∣∣∣∣
+ −

∫
B(x+hei,δ(x+hei)−|h|)

f(y) dy
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� 1
8i

+ −
∫

B(x,δ(x+hei)−|h|)
f(y + hei) dy

� 1
8i

+ −
∫

B(x,δ(x+hei)−|h|)
|f(y + hei) − f(y)| dy

+ −
∫

B(x,δ(x+hei)−|h|)
f(y) dy

� 1
8i

+
1
2i

+ −
∫

B(x,δ(x+hei)−|h|)
f(y) dy

� 1
8i

+
1
2i

+ MΩf(x) − 1
i

< MΩf(x) − 1
4i

.

This implies that |MΩf(x+hei)−MΩf(x)| > 1/4i and contradicts the assumption that
x 	∈ Bh. The remaining case, r < δ(x) − |h|, is the easier one: with the same reasoning
as above we observe that

MΩf(x + hei) = −
∫

B(x+hei,r)
f(y) dy

= −
∫

B(x,r)
f(y + hei) dy

� −
∫

B(x,r)
|f(y + hei) − f(y)| dy + −

∫
B(x,r)

f(y) dy

� 1
2i

+
(

MΩf(x) − 1
i

)
,

which leads to the same contradiction as above. This completes the proof.
Finally, we observe that (ii) is an easy corollary of (i). For that, let us choose ε > 0

such that K(2ε) ⊂ Ω. When |h| < ε we observe that

{x ∈ K : Rf(x) 	⊂ Rf(x + hei)(λ)}
= {x ∈ K + hei : Rf(x − hei) 	⊂ Rf(x)(λ)} − hei

⊂ {x ∈ K(ε) : Rf(x − hei) 	⊂ Rf(x)(λ)} − hei.

Now the claim follows from (i) and the translation invariance of the measure. �

Remark 2.4. The importance of the previous lemma lies in the following observation.
We denote by

π(A, B) := inf{δ > 0 : A ⊂ B(δ) and B ⊂ A(δ)}

the Hausdorff distance of the sets A and B. Using this notation, Lemma 2.3 appears in
the form

m({x ∈ K : π(Rf(x),Rf(x + hei)) > λ}) → 0 when h → 0.
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This guarantees that we find a sequence (hk)∞
k=1, hk > 0 with hk → 0, and such that

π(Rf(x),Rf(x + hkei)) → 0 as k → ∞ for almost every x ∈ K. Using this observation
we next establish, generalizing [12, Theorem 3.1] (the argument of the proof is essentially
the same), a useful formula for the derivative of the maximal function.

Theorem 2.5. Assume that (Q) holds and that f ∈ W 1,ψ(Ω). Then for almost all
x ∈ Ω it holds that

(a) DiMΩf(x) = −
∫

B(x,r)
Di|f |(y) dy for all r ∈ Rf(x), 0 < r < δ(x) and

(b) DiMΩf(x) = Di|f |(x) if 0 ∈ Rf(x).

Proof. It is sufficient to prove the claim for non-negative functions, because MΩf =
MΩ |f | and |f | ∈ W 1,ψ(Ω) if f ∈ W 1,ψ(Ω) (because |∇|f || = |∇f | a.e.). Let us also first
assume that f is in some W 1,p(Ω) for some 1 < p < ∞. Let K ⊂⊂ Ω. We start by
choosing a sequence (hk)∞

k=1, hk > 0 and hk → 0 so that π(Rf(x),Rf(x + hkei)) → 0
as k → ∞ for almost all x ∈ K (see Remark 2.4). Then we have

(i) ‖DiMΩf − (MΩf)i
hk

‖p,K → 0 as k → ∞,

(ii) ‖Dif − f i
hk

‖p,K → 0 as k → ∞,

(iii) ‖MΩ(Dif − f i
hk

)‖p,K → 0 as k → ∞.

Now, by moving to a subsequence if needed, we may assume that the convergences above
also hold pointwise almost everywhere. Observe also that

{x ∈ Ω : ∃k ∈ N such that 0 ∈ Rf(x + hkei) with MΩf(x + hkei) 	= f(x + hkei)}

has measure zero as a countable union of sets of measure zero. Let x ∈ K be such that
pointwise analogies of (i)–(iii) hold at x and let r ∈ Rf(x), r < δ(x).

Since π(Rf(x),Rf(x + hkei)) → 0, there exist radii rk ∈ Rf(x + hkei) such that
rk → r when k → ∞. Suppose first that r > 0. We have r < δ(x), and thus rk < δ(x)
when k is large, and we can estimate

DiMΩf(x) = lim
k→∞

1
hk

(MΩf(x + hkei) − MΩf(x))

� lim
k→∞

1
hk

(
−
∫

B(x+hkei,rk)
f(y) dy − −

∫
B(x,rk)

f(y) dy

)

= lim
k→∞

1
m(B(x, rk))

∫
B(x,rk)

f(y + hkei) − f(y)
hk

dy

= −
∫

B(x,r)
Dif(y) dy.
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The last equation holds, because m(Brk
) → m(Br) and χB(x,rk)f

i
hk

→ χB(x,r)Dif in
L1(Ω) when k → ∞. On the other hand, we obtain that

DiMΩf(x) � lim
k→∞

1
hk

(
−
∫

B(x+hkei,r)
f(y) dy − −

∫
B(x,r)

f(y) dy

)

= lim
k→∞

1
m(B(x, r))

∫
B(x,r)

f(y + hkei) − f(y)
hk

dy

= −
∫

B(x,r)
Dif(y) dy.

Now suppose that r = 0. The same argument as above applies in this case to show
that DiMΩf(x) � Dif(x). If we have rk = 0 for infinitely many k, then it follows that
DiMΩf(x) = Dif(x). If rk > 0 starting from some k0, we obtain in the same way as
above that

DiMΩf(x) � lim
k→∞

−
∫

B(x,rk)
f i

hk
(y) dy = Dif(x),

since

lim
k→∞

∣∣∣∣ −
∫

B(x,rk)
f i

hk
(y) dy − Dif(x)

∣∣∣∣ � lim
k→∞

MΩ(f i
hk

− Dif)(x) = 0.

Now we have proved the claim for x ∈ K. Since K ⊂⊂ Ω was arbitrary, this gives the
claim in Ω when f is in W 1,p(Ω) for some 1 < p < ∞. The claim for general f ∈ W 1,ψ(Ω)
follows easily from this by (2.3). More precisely, suppose that (Q) holds and f ∈ W 1,ψ(Ω).
Let r > 0 and observe that

R := sup{r′ : r′ ∈ Rf(x), x ∈ Ω ∩ B(0, r)} < ∞.

Then we choose a function ω ∈ C∞
0 (Rn) such that ω � 1 everywhere and ω ≡ 1 in

B(0, R + r). Using (2.3) we get that fω ∈ W 1,p(Ω) for some p > 1. Also we have
MΩ(fω) = MΩf in B(0, r) ∩ Ω. Then, what we proved above applies for fω and this
yields the desired formula for DiMΩf(x) a.e. in B(0, r) ∩ Ω. Since r was arbitrary, the
proof is complete. �

To prove our main result, which is the continuity of the maximal operator in W 1,ψ(Ω),
we have to deal with the difficult case where δ(x) ∈ Rf(x). At this type of point we do
not have the formula for DiMf(x) which otherwise is successfully used (in the same way
as in [12, § 3.1]) to estimate the difference of the derivatives of two maximal functions.
Because of this, we need several technical lemmas which help us control the behaviour
of the derivative of the maximal function at the points where the maximal average is
achieved in the largest ball contained in Ω.

The first one of these lemmas is simple, but it has an important role in our argu-
ment (see Remark 2.13). In the following, write fj ⇀ 0 if the sequence of functions
fj ∈ L1

loc(R
n) converges to zero in the sense of distributions that is, if∫

Ω

fjϕ
j→∞−−−→ 0

for every ϕ ∈ C∞
0 (Ω).
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Lemma 2.6. Assume that A ⊂ Ω is measurable. Let fj be a sequence in W 1,1
loc (Ω) so

that fj ⇀ 0 and |∇fj(x)| � F (x) a.e. in Ω, where ‖F‖ψ,Ω < ∞. If, for all ε > 0,

m({x ∈ A : Difj(x) > ε}) → 0 when j → ∞ (2.12)

or

m({x ∈ A : Difj(x) < −ε}) → 0 when j → ∞, (2.13)

then we have ‖Difj‖ψ,A → 0.

Proof. Because of the pointwise majorant of Difj , it is sufficient to prove that
‖Difj‖ψ,K → 0 for all compact K ⊂ A. Moreover, because of symmetry, we may assume
that (2.12) holds. Let ε > 0 and suppose that there exists λ > 0, so that, for all j,

m({x ∈ K : Difj(x) < −ε}) > λ. (2.14)

Let us fix an open set V ⊂⊂ Ω so that K ⊂ V and m(V \K) < δ(ε). Since K lies strictly
inside the set V , it is possible to choose a function ϕ ∈ C∞

0 (Ω) so that ϕ ≡ 1 in K, ϕ ≡ 0
in Ω \ V and ϕ � 1 everywhere. Now

∫
Ω

fj(x)Diϕ(x) dx = −
∫

Ω

Difj(x)ϕ(x) dx

= −
∫

V \K

Difj(x)ϕ(x) dx −
∫

K

Difj(x) dx.

By the pointwise estimate F and the fact that ϕ � 1 we get
∣∣∣∣
∫

V \K

Difj(x)ϕ(x) dx

∣∣∣∣ �
∫

V \K

F (x) dx <
ελ

10

by the absolute continuity if we choose δ(ε) properly. Furthermore,

−
∫

K

Difj(x) dx = −
∫

{x∈K:Difj�0}
Difj(x) dx −

∫
{x∈K:Difj>0}

Difj(x) dx. (2.15)

It follows from (2.14) that the absolute value of the first term on the right-hand side
of (2.15) is greater than ελ for all j. For the latter term, write

−
∫

{x∈K:Difj>0}
Difj(x) dx =

∫
{x∈K:0<Difj<ελ/10m(K)}

Difj(x) dx

+
∫

{x∈K:Difj�ελ/10m(K)}
Difj(x) dx.

By the assumption,

m

({
x ∈ K : Difj � ελ

10m(K)

})
→ 0 as j → ∞.
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Again, using the absolute continuity of integral and the pointwise estimate Difj � F , this
guarantees that the latter term on the right-hand side above converges to 0 as j → ∞.
The absolute value of the first term is clearly less than ελ/10.

Putting the above estimates together, we deduce that
∣∣∣∣
∫

Ω

fjDiϕ(x) dx

∣∣∣∣ >
ελ

2

when j is large. Clearly, this contradicts our assumption that fj ⇀ 0. From this we
conclude that our assumption (2.14) cannot hold. Combining this with (2.12) we get
that

m({x ∈ K : |Difj(x)| > ε}) → 0 when j → 0.

This is true for every ε > 0 since ε was chosen arbitrarily. Now the claim follows by
absolute continuity and the pointwise majorant. �

Corollary 2.7. Suppose that in Lemma 2.6 we have, instead of the uniform pointwise
bound, that |∇fj(x)| � F (x) + Fj(x) a.e. in Ω and ‖Fj‖ψ,Ω → 0 as j → 0. Then, the
result of Lemma 2.6 still holds.

Proof. Suppose, on the contrary, that for some subsequence we have ‖Difj‖1,A >

λ > 0. Again, by extracting a subsequence we may assume that
∑∞

j=1 ‖Fj‖1,Ω < ∞;
hence, we get that |∇fj(x)| � F (x)+G(x), where G(x) =

∑∞
j=1 Fj(x) and ‖G‖1,Ω < ∞.

Using Lemma 2.6 we get a contradiction. �

Recall that the domain Ω ⊂ R
n is uniform with a constant c > 0, if for every x and

y we find a rectifiable curve γ : [0, l(γ)] �→ Ω, parametrized by the arc length l(γ), such
that γ(0) = x and γ(l(γ)) = y and

d(γ(t), ∂Ω) � c min{t, l(γ) − t} and l(γ) � 1
c
d(x, y).

We will use the following lemma in the proof of Lemma 2.9 in a very simple case, where
Ω = B(x, r) ∪ B(x + h, r).

Lemma 2.8. Let Ω be uniform with a constant c and let f ∈ W 1,1
loc (Ω). Suppose that

x and y are Lebesgue points of f . Then it holds that

|f(x) − f(y)| � C(c, n)|x − y|(M(χΩ |∇f |)(x) + M(χΩ |∇f |(y))).

Proof. The case when Ω = R
n is proved (for example) in [4]. By using the Poincaré

inequality combined with a standard chaining argument on a suitable (‘cigar’) path γ

joining x and y, we obtain the result in the general case. �

In the following two lemmas we establish some basic convergence properties which we
need in computations in the case where δ(x) ∈ Rf(x).
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Lemma 2.9. Suppose that f ∈ W 1,ψ(Ω), where ψ is such that (Q) holds, and x ∈ Ω.
Let rk and hk be positive real numbers so that hk → 0, rk � δ(x) for every k and
rk → δ(x) as k → ∞. Moreover, assume that rk � δ(x + hkei) for all k. Then

lim
k→∞

−
∫

B(x,rk)

f(y + hkei) − f(y)
hk

dy = −
∫

B(x,δ(x))
Dif(y) dy.

Proof. To simplify notation, we denote M(∇f) := M(χΩ |∇f |). Let k0 be such that
rk > hk for all k > k0. The domain B(x, rk) ∪ B(x + hkei, rk) ⊂ Ω is clearly uniform
with a constant which does not depend on x or k. Moreover, for almost every y ∈ Ω it
holds that y + hk is a Lebesgue point of f for all k ∈ N. Therefore, by Lemma 2.8, we
get that

|f i
hk

(y)| =
|f(y + hkei) − f(y)|

hk
� C(M(∇f)(y + hkei) + M(∇f)(y))

for almost every y ∈ B(x, rk). From this we conclude that, for small t > 0,
∣∣∣∣
∫

B(x,rk)\B(x,rk−t)
f i

hk
(y) dy

∣∣∣∣
�

∣∣∣∣
∫

B(x,rk)\B(x,rk−t)
C(M(∇f)(y + hkei) + M(∇f)(y)) dy

∣∣∣∣.
Now, M(∇f) ∈ L1

loc(R
n) and by using the absolute continuity of the integral, we see

that for every ε > 0 there exists t0 > 0 such that∣∣∣∣
∫

B(x,rk)\B(x,rk−t)
f i

hk
(y) dy

∣∣∣∣ < ε

for all t � t0. Also we know that

lim
t→0

∫
B(x,δ(x)−t)

Dif(y) dy =
∫

B(x,δ(x))
Dif(y) dy

and, after that, the claim follows when we use the fact that B(x, r − t) is compactly in
Ω, implying that

lim
k→∞

∫
B(x,rk−t)

f i
hk

(y) dy =
∫

B(x,δ(x)−t)
Dif(y) dy.

The above equality holds because f i
hk

→ Dif in L1
loc(Ω). �

Lemma 2.10. Let f ∈ W 1,ψ(Ω) and define, for every h > 0,

ah(x) :=
1
h

(
−
∫

B(x+hei,δ(x+hei))
f(y) dy − −

∫
B(x,δ(x))

f(y) dy

)
.

Moreover, assume that hk > 0 and hk → 0 as k → ∞. Then we have

lim inf
k→∞

|ahk
(x)| � 5MΩ∇f(x)

almost everywhere.
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Proof. We observe that

|ah(x)| � 1
h

∣∣∣∣
(

−
∫

B(x+hei,δ(x+hei))
f(y) dy − −

∫
B(x+hei,δ(x)−h)

f(y) dy

)∣∣∣∣
+

1
h

∣∣∣∣
(

−
∫

B(x+hei,δ(x)−h)
f(y) dy − −

∫
B(x,δ(x)−h)

f(y) dy

)∣∣∣∣
+

1
h

∣∣∣∣
(

−
∫

B(x,δ(x)−h)
f(y) dy − −

∫
B(x,δ(x))

f(y) dy

)∣∣∣∣
=: a1(x, h) + a2(x, h) + a3(x, h).

We know that
0 � 1

h
(δ(x + hei) − (δ(x) − h)) � 2

and, if we assume that f ∈ C1(Ω), we can use the scaling argument to get

a1(x, h) =
1
h

∣∣∣∣ −
∫

B(x+hei,δ(x)−h)

(
f

(
z + (z − (x + hei))

(
δ(x + hei)
δ(x) − h

− 1
))

− f(z)
)

dz

∣∣∣∣
� −

∫
B(x+hei,δ(x)−h)

( ∫ 1

0

∣∣∣∣∇f

(
z + t(z − (x + hei))

(
δ(x + hei)
δ(x) − h

− 1
))∣∣∣∣ dt

)
dz

= 2
∫ 1

0
−
∫

B(x+hei,t(δ(x+hei)))
|∇f(z)| dz dt.

By approximation, we also obtain this estimate for every function f ∈ W 1,ψ(Ω) and using
this inequality we directly obtain that

lim inf
k→∞

a1(x, hk) � lim inf
k→∞

2MΩ |∇f |(x + hkei) = 2MΩ |∇f |(x) a.e.

Exactly the same computation also shows that a3(x, hk) � MΩ |∇f |(x). For a2(x, h) we
get that

a2(x, h) =
∣∣∣∣ 1h −

∫
B(x,δ(x)−h)

f(y + h) − f(y) dy

∣∣∣∣
� 1

h
−
∫

B(x,δ(x)−h)

( ∫ h

0
|Dif(y + tei)| dt

)
dy

=
1
h

∫ h

0

(
−
∫

B(x,δ(x)−h)
|Dif(y + tei)| dy

)
dt

� 1
h

∫ h

0
MΩ |∇f |(x + tei) dt

� 2 −
∫

[−h, h]MΩ |∇f |(x + tei) dt,

which converges to 2MΩ∇f(x) almost everywhere on almost every line parallel to ei.
Combining the estimates for a1, a2 and a3, we obtain the wanted result. �
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The following lemma is needed when we use the difference quotients to give the partial
derivatives.

Lemma 2.11. Let Aj ⊂ R
n be measurable sets and let hk ∈ R

n such that |hk| → 0
when k → ∞. Then we can find a subsequence of (hk) such that for every j and for
almost every x ∈ Aj we have x + hki

∈ Aj when i is large enough.

Proof. Let R > 0. From basic measure theory we get that m((Aj + hk) \ Aj) → 0 as
k → ∞ if m(Aj) < ∞. In particular, this means that

∫
Rn

|χA1∩BR
(y) − χ((A1∩BR)+hk)(y)| dy → 0 as k → ∞.

By extracting a subsequence, we get that χ((A1∩BR)+hk) → χA1∩BR
a.e. in R

n. By the
standard Cantor diagonal argument we now find a subsequence (hki) for which χA1+hki

→
χA1 a.e. as i → ∞. Again, using a diagonal argument we find a subsequence (hki

) such
that χAj+hki

i→∞−−−→ χAj a.e. for every j. This proves the claim. �

Next we will prove the main theorem of this section, the continuity of MΩ in W 1,ψ(Ω).

Theorem 2.12. Let Ω ⊂ R
n be a subdomain and 1 < p < ∞. Then MΩ is continuous

on W 1,p(Ω). More generally, if MΩ is bounded on W 1,ψ(Ω), then it is also continuous.

Proof. We know that MΩ is bounded on W 1,p(Ω), so it is clearly enough to prove
the general claim. Let fj → f in W 1,ψ(Ω) when j → ∞. As before, we may assume that
the functions fj and f are non-negative. We have to show that ‖MΩfj − MΩf‖1,ψ → 0.
Because we know the continuity of MΩ in Lψ(Ω), it suffices to prove that ‖DiMΩfj −
DiMΩf‖ψ → 0 for all i, 1 � i � n.

Because |DiMΩf(x)| � 2MΩ |∇f |(x) almost everywhere (see (2.4)), we observe that

|Di(MΩfj − MΩf)(x)| � 2MΩ |∇fj |(x) + 2MΩ |∇f |(x)

� 2(MΩ(|∇fj − ∇f |)(x) + MΩ |∇f |(x)) + 2MΩ |∇f |(x)

= 4MΩ |∇f |(x) + 2MΩ |∇fj − ∇f |(x) (2.16)

for almost every x ∈ Ω. We start by choosing K ⊂⊂ Ω so that

‖4MΩ |∇f |‖ψ,Ω\K < ε.

By the absolute continuity of the integral we find an α > 0 such that

‖4MΩ |∇f |‖ψ,A < ε, ∀A ⊂ K, A measurable, m(A) < α. (2.17)

Then we divide the proof into two parts. In the first part, the same argument as in
the case of the global maximal operator can be applied.
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(i) δ(x) 	∈ Rf(x). Let us define

B = {x ∈ K : δ(x) 	∈ Rf(x)}. (2.18)

In this part we show that

‖DiMΩfj − DiMΩf‖ψ,B → 0 as j → ∞.

It turns out that outside a certain small exceptional set we can use Theorem 2.5 in the
estimation. Accordingly, let us first define this exceptional set.

Because the sets Rf(x) are compact, we can find γ > 0 such that

m({x ∈ B : Rf(x) 	⊂ [0, δ(x) − γ]}) =: m(Bγ) < 1
3α. (2.19)

Let (see (2.5)) ux(r) denote the average of Dif in the ball B(x, r) and ux(0) = Dif(x).
As already observed, for almost every x ∈ R

n, the functions ux are continuous on [0, δ(x)].
Therefore, there exists β > 0 such that β < γ and

m({x ∈ K : |ux(r1) − ux(r2)| > ε for some r1, r2, |r1 − r2| < β}) =: m(Cγ,β) < 1
3α.

(2.20)
The set Cγ,β is easily shown to be measurable. For the last exceptional set, recall
Lemma 2.2, which says that we can find j0 so that

m({x ∈ K : Rfj(x) 	⊂ Rf(x)(β)}) =: m(Uj) < 1
3α when j � j0. (2.21)

Then, let j � j0 be fixed. It follows from Theorem 2.5 that, for almost every x ∈ K, if
there exist r1, r2 such that r1 ∈ Rfj(x), r2 ∈ Rf(x) and r1, r2 < δ(x), one has

|DiMΩfj(x) − DiMΩf(x)|

=
∣∣∣∣ −
∫

B(x,r1)
Difj(y) dy − −

∫
B(x,r2)

Dif(y) dy

∣∣∣∣
�

∣∣∣∣ −
∫

B(x,r1)
Difj(y) dy − −

∫
B(x,r1)

Dif(y) dy

∣∣∣∣
+

∣∣∣∣ −
∫

B(x,r1)
Dif(y) dy − −

∫
B(x,r2)

Dif(y) dy

∣∣∣∣
� MΩ(Difj − Dif)(x) +

∣∣∣∣ −
∫

B(x,r1)
Dif(y) dy − −

∫
B(x,r2)

Dif(y) dy

∣∣∣∣. (2.22)

This inequality also applies to the cases r1 = 0 or r2 = 0 when we agree that

−
∫

B(x,0)
Dif(y) dy := Dif(x).

This is obvious because for almost every x we have MΩf(x) � f(x), and by Theorem 2.5
we have DiMΩf(x) = Dif(x) if 0 ∈ Rf(x).
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Now, if x is a point outside the exceptional sets, i.e x ∈ B \ (Bγ ∪ Cγ,β ∪ Uj), we can
pick r1 ∈ Rfj(x) and r2 ∈ Rf(x) so that |r1 −r2| < β and r1, r2 < δ(x). Then our choice
of β implies that ∣∣∣∣ −

∫
B(x,r1)

Dif(y) dy − −
∫

B(x,r2)
Dif(y) dy

∣∣∣∣ < ε.

Combining this with (2.22) we get that

|DiMΩfj(x) − DiMΩf(x)| � MΩ(Difj − Dif)(x) + ε, (2.23)

when x ∈ B \ (Bγ ∪ Cγ,β ∪ Uj). Since Difj → Dif in Lψ(Ω) and MΩ was bounded on
Lψ(Ω), we get that

‖DiMΩfj(x) − DiMΩf(x)‖ψ,B\(Bγ∪Cγ,β∪Uj) � ‖ε‖ψ,B\(Bγ∪Cγ,β∪Uj) + ε (2.24)

when j is large. On the other hand, if x ∈ B ∩ (Bγ ∪ Cγ,β ∪ Uj), we use the estimate
given in (2.16) (note that m(Bγ ∪ Cγ,β ∪ Uj) < α). We get that

‖DiMΩfj − DiMΩf‖ψ,B∩(Bγ∪Cγ,β∪Uj)

� ‖4MΩ |∇f |‖ψ,Bγ∪Cγ,β∪Uj
+ ‖2MΩ(|∇fj − ∇f |)‖ψ,Bγ∪Cγ,β∪Uj

� ε + ‖2MΩ(|∇fj − ∇f |)‖ψ,B .

In the above sum the last term converges to zero when j → ∞. As ε was arbitrary we
conclude that ‖DiMΩfj − DiMΩf‖ψ,B → 0 as j → ∞.

(ii) δ(x) ∈ Rf(x). Yet we have to prove that ‖Di(MΩfj − MΩf)‖ψ,K\B → 0. Let us
first choose a sequence (hk)∞

k=1, hk → 0+, so that for all j and 1 � i � n we have that

(MΩfj − MΩf)i
hk

(x) → Di(MΩfj − MΩf)(x) as k → ∞

for almost every x ∈ K. Then we divide the problem into subcases. To that end let us
define

Aj := {x ∈ K \ B : δ(x) ∈ Rfj(x)},

A+ := {x ∈ K \ B : δ(x + hkei) � δ(x) for infinitely many k},

A− := {x ∈ K \ B : δ(x + hkei) � δ(x) for infinitely many k}.

The above sets need not be disjoint, but what we need is that K \ B ⊂ A+ ∪ A−.
Depending on which of the above sets x lies within, we will use the different arguments
to estimate |Di(MΩfj − MΩf)(x)|.

Let us first treat the case when x ∈ Aj . For this, let us recall Lemma 2.11, to see that
by extracting a subsequence, if needed, we may assume that for almost every x ∈ K \ B

we have x + hkei ∈ K \ B, when k is large enough, and we have x + hkei ∈ Aj , for all j

for almost every x ∈ Aj if k is large. For all x ∈ Aj we have

MΩfj(x) = −
∫

B(x,δ(x))
fj(y) dy and MΩf(x) = −

∫
B(x,δ(x))

f(y) dy. (2.25)
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Let us then set fj − f =: Fj . Using (2.25) and Lemma 2.10 we get that

|Di(MΩfj − MΩf)(x)| =
∣∣∣ lim

k→∞
(MΩfj − MΩf)i

hk
(x)

∣∣∣
=

∣∣∣∣ lim
k→∞

1
hk

(
−
∫

B(x+hkei,δ(x+hkei))
Fj(y) dy − −

∫
B(x,δ(x))

Fj(y) dy

)∣∣∣∣
� 5MΩ |∇Fj |(x)

a.e. in Aj . Since |∇Fj | → 0 in Lψ(Ω), this guarantees that

‖Di(MΩfj − MΩf)‖ψ,Aj → 0 as j → ∞. (2.26)

Let us then consider the case of A+. By the definition, for every x ∈ A+ it holds that
δ(x + hkei) � δ(x) for large k. Moreover, for almost every x ∈ A+ we have x + hk ∈ A+

for k large enough. This implies that, for almost every x ∈ A+,

MΩf(x + hkei) = −
∫

B(x+hkei,δ(x+hkei))
f(y) dy

� −
∫

B(x+hkei,δ(x))
f(y) dy

for k large enough. We get the following inequality:

DiMΩf(x) = lim
k→∞

1
hk

(
−
∫

B(x+hkei,δ(x+hkei))
f(y) dy − −

∫
B(x,δ(x))

f(y) dy

)

� lim sup
k→∞

1
hk

(
−
∫

B(x+hkei,δ(x))
f(y) dy − −

∫
B(x,δ(x))

f(y) dy

)

= lim sup
k→∞

−
∫

B(x,δ(x))

f(y + hkei) − f(y)
hk

= −
∫

B(x,δ(x))
Dif(y) dy

for almost every x ∈ A+. The last equation above follows from Lemma 2.9 when we set
rk = δ(x) for every k. Combining the above inequality with Theorem 2.5, we get that,
for almost every x ∈ A+, it holds that

DiMΩf(x) � −
∫

B(x,r)
Dif(y) dy for all r ∈ Rf(x) (equality if r < δ(x)). (2.27)

We apply the above observation in the case when x ∈ A+ \ Aj . For this, recall the
definitions of β and Uj from part (i) (see (2.20) and (2.21)). For j0 sufficiently large we
had Rfj(x) ⊂ Rf(x)(β), when j > j0 and x ∈ U c

j . That is to say, for every x ∈ U c
j there

exists rj ∈ Rfj(x) such that |r − rj | � β for some r ∈ Rf(x) (it may be that r = δ(x)).
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Since x 	∈ Aj , rj < δ(x) holds. This implies, by Theorem 2.5 and (2.27), that

DiMΩf(x) − DiMΩfj(x)

� −
∫

B(x,r)
Dif(y) dy − −

∫
B(x,rj)

Difj(y) dy

=
(

−
∫

B(x,r)
Dif(y) dy − −

∫
B(x,rj)

Dif(y) dy

)
+

(
−
∫

B(x,rj)
Di(f − fj)(y) dy

)

=: s1(j, x) + s2(j, x).

With the same notation as earlier, s1(j, x) = ux(r) − ux(rj). As earlier in this proof,
using the continuity of the functions ux on [0, δ(x)] we get

m({x ∈ K : |s1(j, x)| > ε}) → 0 as j → ∞.

Also we observe that the corresponding property as above for |s2(j, x)| holds since
|s2(j, x)| � MΩ(Di(f − fj))(x) almost everywhere. These facts guarantee that

m({x ∈ A+ \ Aj : Di(MΩf − MΩfj)(x) � −ε}) → 0 as j → ∞,

which together with (2.26) implies that

m({x ∈ A+ : Di(MΩf − MΩfj)(x) � −ε}) → 0 as j → ∞.

Applying Corollary 2.7 (this is permissible because of (2.16)), we get that

‖Di(MΩf − MΩfj)‖ψ,A+ → 0 as j → ∞. (2.28)

In exactly the same way, it is also possible to prove that

‖Di(MΩf − MΩfj)‖ψ,A− → 0 as j → ∞. (2.29)

In the set A− we only obtain the inequality (2.27) in the reverse direction (we use
Lemma 2.9 in the case where rk = δ(x + hkei)) to get that

m({x ∈ A− : Di(MΩf − MΩfj)(x) � ε}) → 0 as j → ∞.

Then we again use Corollary 2.7 to verify (2.29). This completes the proof. �

Remark 2.13. We briefly sketch the additional difficulties brought in by the boundary
effects in the proof of Theorem 2.12. To that end, assume that fj → f in W 1,p(Ω).
One obviously needs to estimate the Lp(Ω)-norm of |Di(MΩf) − Di(MΩfj)|. In the
case where the maxima in the definitions of the various maximal operators involved are
obtained over balls strictly inside the domain, the argument runs pretty much along the
lines of the global case. This is shown by our Lemmas 2.2 and 2.3 and Theorem 2.5,
which are modifications of the corresponding results in the global case [12]. More serious
new difficulties are met when some of the maxima are attained over balls touching the
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boundary. There arise various possibilities according to exactly which of the quantities
Mf(x) and Mfj(x) are achieved over balls touching the boundary.

The easiest case, where Mf(x) is achieved strictly inside the domain, is pretty much
similar to the global case. If both Mf(x) and Mfj(x) correspond to balls touching the
boundary, some technical work (especially Lemma 2.10) is required. The hardest part is
the case where only Mf(x) is achieved over a ball touching the boundary. In this case
we have a formal expression for the difference of derivatives (assuming that Mfj(x) is
achieved over B(x, r)):

|Di(MΩf)(x) − Di(MΩfj)(x)| =
∣∣∣∣Di

(
−
∫

B(x,δ(x))
|f(y)| dy

)
− −

∫
B(x,r)

Difj(y)
∣∣∣∣.

A priori one cannot expect this quantity to be small. However, a suitable trick to treat
this case is found. Roughly speaking, we divide the set of these points into two parts
and observe the inequality in (2.27) in the first part and the inequality corresponding to
the reverse direction in the other part. By combining these observations with Lemma 2.6
(here we also need Lemma 2.9) we can verify the desired convergence.

Remark 2.14. In this paper we have not treated the endpoint cases p = 1 and p = ∞.
When p = 1, the natural counterpart to Theorem 2.12 would be the continuity of MΩ

from W 1,1(Ω) to the weak Sobolev space W 1,1
w (Ω). We regard these cases as worthy of

study and remark that our argument can be partly applied to both cases but some more
specific inspection is needed for the complete answer, especially as the case when p = ∞
is somewhat different.

Remark 2.15. It is of interest to note that the proof of Theorem 2.12 also applies
to certain other maximal operators, most notably to the Hardy–Littlewood maximal
operator defined through averages over cubes (instead of balls). We also remark that in
Theorem 2.12 one does not use any smoothness properties for Ω.

3. Boundedness in F p
s,q(Ω)

Korry [6] proved that M is bounded on the spaces F p
s,q(R

n) assuming that s ∈ (0, 1)
and 1 < p, q < ∞. In this section we provide a counterpart to results of Kinnunen and
Lindqvist [7] by extending the result of Korry to the local maximal operator.

We start with appropriate definitions and some auxiliary results. Let 0 < s < 1,
1 < p, q < ∞, 1 � r < min(p, q) and p = (p, q, r). Denote the n-dimensional unit ball
by Bn. We will use the following notion when characterizing F p

s,q(R
n) by differences: let

I ⊂ R. For a measurable function g : R
n × I × Bn �→ R we define

‖g‖p,I :=
( ∫

Rn

( ∫
I

( ∫
Bn

|g(x, t, h)|r dh

)q/r

dt

)p/q

dx

)1/p

and for a measurable function f : R
n �→ R define ‖f‖F p

s,q
= ‖Sf‖p,(0,1) + ‖f‖Lp , where

Sf is defined by setting

Sf(x, t, h) =
|f(x + th) − f(x)|

ts+(1/q) .
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The result of Triebel [14, p. 194] tells us that the norm defined in this way is equivalent
to the usual norm in F p

s,q(R
n) and, moreover, if 1 � r1, r2 < min(p, q), then the norms

corresponding to these numbers are equivalent. In particular, this means that if 1 < r <

min(p, q), there is C(n, p, q, s) such that

‖f‖p + ‖Sf‖(p,q,1),(0,1) � C(‖f‖p + ‖Sf‖(p,q,r),(0,1)). (3.1)

When Ω ⊂ R
n is open we define the space F p

s,q(Ω) and the norm in that space by
setting

F p
s,q(Ω) = {f |Ω : f ∈ F p

s,q(R
n)}

and

‖f‖F p
s,q(Ω) = inf{‖g‖F p

s,q(Rn) : g|Ω = f}.

This definition is due to Triebel. It is important to note that this is not the only way to
define these spaces. As we know, in the case of Sobolev spaces F p

s,2(Ω), our definition in
certain cases differs from the usual ‘inner’ definition. Unfortunately, there seems not to
exist a satisfying way to give an inner description of all of these spaces at the same time.
In standard Sobolev spaces we know that our definition is always equivalent to the inner
description when Ω is (for instance) a Lipschitz domain. For more about the definitions,
we refer the reader to [13, § 3.1].

In [10, § 4.3], Korry proved the following result, which implies the boundedness of
M in F p

s,q(R
n): assume that f : R

n × I × Bn �→ R, set f t,h(x) = f(x, t, h) and define
Mxf(x, t, h) = Mf t,h(x). Then there exists C = C(n, p) such that

‖Mxf‖p,(0,1) � C‖f‖p,(0,1). (3.2)

In fact, Korry proved this result for a certain general class of operators. Because of
this result we are able to say that ‖MxSf‖p,(0,1) � Cp,s‖Sf‖p,(0,1). This implies the
boundedness by the fundamental fact that

S(Mf) � Mx(Sf) a.e., (3.3)

which follows by the commutativity (with translations) and sublinearity of M .
As the most important auxiliary tool in his work, Korry used the fundamental result

of Benedek et al . [2]. Let F and E be Banach spaces and denote by L(E, F ) the space of
all bounded linear operators from E to F . An operator T is called a Benedek–Calderón–
Panzone (BCP) operator if T is bounded from Lp(Rn, E) �→ Lp(Rn, F ) for some p ∈
(1,∞), and if there exists a strongly measurable L(E, F )-valued kernel K defined on R

n,
locally integrable outside the origin such that for every compactly supported continuous
function f : R

n �→ E we have

T (f)(x) =
∫

Rn

K(x − y)(f(y)) dy for almost every x 	∈ supp f
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and, moreover, K satisfies Hörmander’s condition: there exists a constant M such that
for every y ∈ R

n we have

∫
|x|>2|y|

‖K(x − y) − K(x)‖L(E,F ) dx � M.

The result of [2] states that the operator T can be extended to a bounded operator
from Lq(Rn, E) to Lq(Rn, F ) for all q ∈ (1,∞). Let us call this result a BCP result.

In the following statements we assume that Ω ⊂ R
n, Ω 	= R

n is open and for all x ∈ R
n

we define δ(x) = d(x, Ωc). To avoid difficulties with notation, we also define

MΩf(x) := −
∫

B(x,0)
|f(y)| dy := |f(x)| (3.4)

at points x ∈ Ωc where f(x) is defined.
As mentioned previously, in the case of MΩ the problem is that MΩ does not com-

mute with translations. We solve this problem (roughly speaking) by using the simple
observation (3.8) combined with the following lemma and then applying the BCP result.

Lemma 3.1. Let f ∈ L1
loc(R

n), t > 0, and define the function ft by

ft(y) = −
∫

B(y, 2t)|f(z) − f(y)| dz.

Then for almost every x ∈ R
n we have that

∣∣∣∣ −
∫

B(x,r1)
|f(y)| dy − −

∫
B(x,r2)

|f(y)| dy

∣∣∣∣ � 2n+1Mft(x)

if r1 � 0, r2 � 0, such that |r1 − r2| � t.

Proof. If |x − y| � t, we get that B(y, t) ⊂ B(x, 2t) and

|f(y) − f(x)| � −
∫

B(y, t)|f(z) − f(y)| dz + −
∫

B(y, t)|f(z) − f(x)| dz

� 2n −
∫

B(y, 2t)|f(z) − f(y)| dz + 2n −
∫

B(x,2t)
|f(z) − f(x)| dz

= 2n(ft(y) + ft(x)). (3.5)

Assume that r2, r1 > 0, |r2 − r1| � t. By scaling we get that

−
∫

B(x,r2)
|f(z)| dz = −

∫
B(x,r1)

∣∣∣∣f
(

x +
r2

r1
(z − x)

)∣∣∣∣ dz, (3.6)
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and combining this with (3.5) we get that
∣∣∣∣ −
∫

B(x,r1)
|f(z)| dz − −

∫
B(x,r2)

|f(z)| dz

∣∣∣∣ � −
∫

B(x,r1)

∣∣∣∣f
(

x +
r2

r1
(z − x)

)
− f(z)

∣∣∣∣ dz

� −
∫

B(x,r1)
2n

(
ft

(
x +

r2

r1
(z − x)

)
+ ft(z)

)
dz

= 2n

(
−
∫

B(x,r2)
ft(z) dz + −

∫
B(x,r1)

ft(z) dz

)

� 2n+1Mft(x).

The case where r1 = 0 or r2 = 0 can be obtained at Lebesgue points of f by taking a
limit when rk

1 → r1 and rk
2 → r2, where rk

1 > 0 and rk
2 > 0. �

Now we are ready to prove the boundedness.

Theorem 3.2. MΩ is bounded in F p
s,q(Ω), when 1 < p < ∞, 1 < q < ∞ and

0 < s < 1.

Proof. Let g be in F p
s,q(Ω) and f ∈ F p

s,q(R
n) satisfy f |Ω = g. We define a function

MΩf on R
n according to the definition (3.4), thus MΩf(x) = MΩg(x) if x ∈ Ω and

MΩf(x) = |f(x)| if x ∈ Ωc. We observe that the theorem follows by showing that

‖MΩf‖F p
s,q(Rn) � C(n, p, s, q)‖f‖F p

s,q(Rn). (3.7)

This holds, because then every MΩf defined as above is in F p
s,q(R

n), is the extension of
MΩg to R

n and by choosing ‖f‖F p
s,q(Rn) to be arbitrarily close to ‖g‖F p

s,q(Ω) we get what
we want. So, let us establish (3.7).

We may suppose that f is non-negative, because MΩf = MΩ |f | and, moreover,
|‖f |‖F p

s,q(Rn) � ‖f‖F p
s,q(Rn). Then we start with an easy observation which makes

Lemma 3.1 useful. Let x and y be Lebesgue points of f in R
n. We claim that one

can choose r1 � 0 and r2 � 0 such that |r1 − r2| � |x − y| and

|MΩf(x) − MΩf(y)| �
∣∣∣∣ −
∫

B(x,r1)
f(z) dz − −

∫
B(y, r2)f(z) dz

∣∣∣∣. (3.8)

Because of symmetry, we can assume that MΩf(y) > MΩf(x). Then we choose r1 and
r2 so that r2 ∈ Rf(y) and r1 = max{0, r2 − |x − y|}. Now, trivially |r1 − r2| � |x − y|.
When r1 = 0, we see that equation (3.8) holds since MΩf(x) � f(x). If r1 > 0, we get
that r1 = r2 − |x − y| � δ(y) − |x − y| � δ(x), guaranteeing that

MΩf(x) � −
∫

B(x,r1)
|f |

and implying (3.8).
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Assume then that (x, t, h) ∈ R
n × (0, 1)×Bn so that x+ th and x are Lebesgue points

of f . Let the function ft be defined as in Lemma 3.1. By (3.8) we can find r1, r2 � 0 such
that |r1 − r2| � t and

|MΩf(x + th) − MΩf(x)| �
∣∣∣∣ −
∫

B(x+th,r1)
|f(z)| dz − −

∫
B(x,r2)

|f(z)| dz

∣∣∣∣
�

∣∣∣∣ −
∫

B(x,r1)
f(z + th) − f(z) dz

∣∣∣∣
+

∣∣∣∣ −
∫

B(x,r1)
|f(z)| dz − −

∫
B(x,r2)

|f(z)| dz

∣∣∣∣
� Mft,h(x) + 2n+1Mft(x), (3.9)

where the function ft,h is defined by

ft,h(z) = |f(z + th) − f(z)|. (3.10)

Then, set φ(t) = 1/ts+(1/q), whence we get from above that

‖MΩf‖F p
s,q(Rn) = ‖S(MΩf)‖p,(0,1) + ‖MΩf‖Lp

� ‖φ(t)(Mft,h + 2n+1Mft)‖p,(0,1) + C‖f‖Lp . (3.11)

As we have already mentioned (see (3.2)), Korry proved that

‖φ(t)Mft,h‖p,(0,1) = ‖M(φ(t)ft,h)‖p,(0,1) � C‖φ(t)ft,h‖p,(0,1) = C‖Sf‖p,(0,1).

Thus, to complete the proof it is sufficient to show that

‖φ(t)Mft‖p,(0,1) � C(n, p, q, s)‖f‖F p
s,q(Rn).

It turns out that this can be done in exactly the same way as Korry proved his result.
Korry needed to iterate the BCP result three times; we have to do the iteration twice.

Let ω ∈ C∞
0 be radial and supported in B(0, 1). We recall [10, § 4.3] that if we define

Uf(x, u) = f ∗ (γ(· , u))(x), where γ(x, u) =
1
un

ω

(
x

u

)
,

and f : R
n �→ R, u ∈ (0,∞), then U defines the BCP operator from Lq(Rn) to

Lq(Rn, L∞((0,∞), du)) and Mf(x) � C(n)‖Uf(x, ·)‖∞ for all x ∈ R
n, f ∈ Lq(Rn)

(recall that we have assumed f � 0). Let us denote the kernel of U by K and
L∞((0,∞), du) by F (it is to easy to see that K equals the mapping x �→ γ(x, ·)).
Then we define an operator U1 by setting, for f : R

n × (0, 1) �→ R, x ∈ R
n, t ∈ (0, 1) and

u ∈ (0,∞),
(U1f)(x, t, u) = U(f(· , t))(x, u).

By Fubini’s theorem and after an easy computation we see that U1 is a bounded operator
from Lq(Rn, Lq((0, 1))) to Lq(Rn, Lq((0, 1), F )). It is also a BCP operator: if we define
for x ∈ R

n, g ∈ Lq((0, 1)) and t ∈ (0, 1) that

((K1(x))(g))(t) = K(x)g(t),
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we obtain that K1 : R
n �→ L(Lq((0, 1)), Lq((0, 1), F )) and K1 is the kernel of U1, the

operator norm of K1(x − y) − K1(x) equals ‖K(x − y) − K(x)‖∞ and therefore K1

satisfies the Hörmander condition because K satisfies it. Now we are able to use the BCP
result to get that U1 is also bounded from Lp(Rn, Lq((0, 1))) to Lp(Rn, Lq((0, 1), F )).
But writing this down reveals that this is exactly what we need. When verifying this,
we use the notation f�(x, t) = φ(t)ft(x). Because φ(t)Mft does not depend on h and
φ(t)Mft(x) = M(φ(t)ft)(x), we get that

‖φ(t)Mft‖p,(0,1) = m(Bn)
( ∫

Rn

[ ∫ 1

0
|φ(t)Mft(x)|q dt

]p/q

dx

)1/p

� C

( ∫
Rn

[ ∫ 1

0
‖(U(φ(t)ft)(x, ·))‖q

∞ dt

]p/q

dx

)1/p

= C

( ∫
Rn

[ ∫ 1

0
‖(U(f�(· , t))(x, ·))‖q

∞ dt

]p/q

dx

)1/p

= C

( ∫
Rn

‖U1f
�(x, · , ·)‖p

Lq((0,1),F ) dx

)1/p

= C‖U1f
�‖Lp(Rn,Lq((0,1),F ))

� C ′‖f�‖Lp(Rn,Lq((0,1)))

= C ′
( ∫

Rn

[ ∫ 1

0
φ(t)|ft(x)|q

]p/q

dx

)1/p

=: s.

Now, by a change of variables, we see that

φ(t)ft(x) =
∫

Bn

|f(x + 2th) − f(x)|φ(t) dh,

which implies that s = C(n)‖Sf‖(p,q,1),(0,2). Now it is easy to observe that

‖Sf‖(p,q,1),(0,2) � C‖f‖p + ‖Sf‖(p,q,1),(0,1).

Finally, we use (3.1) (or just Jensen’s inequality) to obtain that ‖Sf‖(p,q,1),(0,1) �
C‖f‖F p

s,q(Rn). This completes the proof. �

4. Continuity on F p
s,q(Ω)

We finally verify the continuity of the local maximal operator on Triebel–Lizorkin spaces
defined on subdomains, thus providing a counterpart to [12]. The continuity will be
deduced from the pointwise estimates for SMΩf , which were obtained in the previous
section, and the following lemma, which, in a sense, is an extension of the Lebesgue
dominated convergence theorem.
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Lemma 4.1. Let p = (p, q, r) (1 � p, q, r < ∞) and Fj , G, Gj be mappings from
R

n × I × Bn to R such that ‖Gj‖p,I → 0 as j → ∞, ‖G‖p,I < ∞, |Fj | � G + Gj a.e. for
all j. Moreover, assume that, for almost every x and t,

m{h ∈ Bn : |Fj(x, t, h)| > ε} j→∞−−−→ 0 (4.1)

for every ε > 0. Then ‖Fj‖p,I
j→∞−−−→ 0.

Proof. We start by assuming to the contrary that ‖Fj‖p,(0,1) > λ for some subse-
quence and λ > 0. Observe then that we may assume the functions Fj to have a uniform
bound. This holds, since, again by extracting a subsequence, we have

∑∞
j=1 ‖Gj‖p,(0,1) <

∞. Define G0 =:
∑∞

j=1 Gj , and obviously ‖G0‖p,(0,1) < ∞ and, moreover, |Fj | < G + G0

for every j. So, we may assume that

|Fj(x, t, h)| < G(x, t, h) for almost every (x, t, h).

Then it holds for almost every (x, t) that

|Fj(x, t, h)| < G(x, t, h) for almost every h ∈ Bn and
∫

Bn

G(x, t, h)r dh < ∞.

From this and assumption (4.1) we easily deduce that
∫

Bn

|Fj(x, t, h)|r dh → 0

for almost every (x, t).
We continue by observing that, for almost every x,

( ∫
Bn

|Fj(x, t, h)|r dh

)q/r

<

( ∫
Bn

G(x, t, h)r dh

)q/r

for almost every t.

Combined with the fact that, for almost every x,

∫
I

( ∫
Bn

G(x, t, h)r dh

)q/r

dt < ∞,

this enables us to use the dominated convergence theorem to get that, for almost every
x, ∫

I

( ∫
Bn

Fj(x, t, h)r dh

)q/r

dt → 0 as j → ∞.

Using the above simple method once more, we obtain that ‖Fj‖p,(0,1) → 0 and we reach
a contradiction. �

Finally, we verify the continuity of MΩ on Triebel–Lizorkin spaces.

Theorem 4.2. The maximal operator MΩ is continuous in F p
s,q(Ω) when 1 < p, q < ∞

and 0 < s < 1.
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Proof. Let fj → f in F p
s,q(Ω), 1 < r < min(p, q) and p = (p, q, r).

Let us first assume that Ω = R
n, MΩ = M . Suppose, on the contrary, that by extract-

ing a subsequence, if needed, there exists c > 0 such that

‖S(Mf − Mfj)‖p,(0,1) > c (4.2)

for every j. Again, since we know that (Mf − Mfj) → 0 in Lp, by extracting a subse-
quence we may assume that |Mfj(x)−Mf(x)| → 0 a.e. Then it is easy to check that for
almost every x ∈ R

n and every t ∈ (0, 1) it holds that

m{h ∈ Bn : S(Mf − Mfj)(x, t, h) > λ} j→∞−−−→ 0

for all λ > 0. By using the triangle inequality and sublinearity of M we get that

S(Mf − Mfj) � S(Mf) + S(Mfj)

� Mx(Sf) + Mx(Sfj)

� Mx(Sf) + Mx(Sf) + Mx(Sfj − Sf).

Furthermore, ‖Mx(Sf)‖p,(0,1) < ∞ (Korry’s result) and

‖Mx(Sf − Sfj)‖p,(0,1) � C‖Sfj − Sf‖p,(0,1) � C‖S(fj − f)‖p,(0,1)
j→∞−−−→ 0.

Therefore, the assumptions of Lemma 4.1 hold and we get that ‖S(Mf −Mfj)‖p,(0,1) →
0. This contradicts (4.2) and proves the case when Ω = R

n.
Assume then that Ω 	= R

n. Let g be an extension of f to the whole space R
n and let

functions g̃j be the extensions of the functions f −fj with the property ‖g̃j‖F p
s,q(Rn) → 0.

Define gj = g − g̃j . Now gj extends fj and, moreover, gj − g = g̃j , which implies that
gj − g → 0 in F p

s,q(R
n). Furthermore, we see that

‖MΩfj − MΩf‖F p
s,q(Ω) � ‖MΩgj − MΩg‖F p

s,q(Rn),

because (MΩgj − MΩg)|Ω = MΩfj − MΩf . We must show that the right-hand side
above vanishes when j → ∞. For this we use Lemma 4.1, but now the task is not as easy
as in the case when Ω = R

n because in the present situation MΩ does not commutate
with translations.

As above, first suppose on the contrary that (4.2) holds. Again, by choosing a subse-
quence, we have for almost every x ∈ R

n and every t ∈ (0, 1) that

m{h ∈ Bn : S(MΩg − MΩgj)(x, t, h) > λ} j→∞−−−→ 0 (4.3)

for all λ > 0.
In the proof of Theorem 3.2 we established the inequality (3.9), which we use next to

get (recalling the notation of (3.10)) that

|MΩgj(x + th) − MΩgj(x)|
� M((gj)t,h)(x) + 2n+1M((gj)t)(x)

� M((gj − g)t,h + gt,h)(x) + 2n+1M((gj − g)t + gt)(x)

� M(gj − g)t,h(x) + Mgt,h(x) + 2n+1(M(gj − g)t(x) + Mgt(x)).
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Then, define functions Fj and F by

Fj(x, t, h) = φ(t)(M(gj − g)t,h(x) + 2n+1M(gj − g)t(x)),

F (x, t, h) = φ(t)(Mgt,h(x) + Mgt(x)).

From the above we get that

S(MΩgj − MΩg) � S(MΩgj) + S(MΩg) � S(MΩg) + F + Fj .

Furthermore, Theorem 3.2 implies that ‖F‖p,(0,1) < ∞ and ‖Fj‖p,(0,1) → 0 as j → ∞.
These facts, combined with (4.3), guarantee that we can use Lemma 4.1 to obtain

‖S(MΩgj − MΩg)‖p,(0,1)
j→∞−−−→ 0.

This completes the proof. �
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