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Abstract We establish various martingale inequalities in a rearrangement-invariant (RI) Banach func-
tion space. If X is an RI space that is not too small, we associate with it RI spaces Hp(X) (1 � p < ∞)
and K(X), and discuss martingale inequalities in these spaces. One of our results is as follows. Let
1 � p < ∞, let f = (fn) be an Lp-bounded martingale, and let |f |p = g + h be the Doob decomposition
of the submartingale |f |p = (|fn|p) into a martingale g = (gn) and a predictable non-decreasing process
h = (hn) with h0 = 0. Then, in the case where 1 < p < ∞, we obtain the inequalities

‖h
1/p
∞ ‖X � 2‖f∞‖Hp(X) and

∥∥∥ sup
n

|gn|1/p
∥∥∥

X
� 4‖f∞‖Hp(X),

and, in the case where p = 1, we obtain the inequalities

‖h∞‖X � sup
n∈Z+

‖fn‖K(X) and sup
n∈Z+

‖gn‖X � 2 sup
n∈Z+

‖fn‖K(X).

For some specific choices of X, we can give explicit expressions for Hp(X) and K(X). For example,
H1(L1) = L log L, Hp(Lp,∞) = Lp,1, and so on. Furthermore, if the Boyd indices of X satisfy 0 < αX �
βX < 1/p (respectively, 0 < αX), then Hp(X) = X (respectively, K(X) = X). In any case, Hp(X) is
embedded in K(X), and K(X) is embedded in X.
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1. Introduction

The purpose of this paper is to establish various martingale inequalities in rearrangement-
invariant (RI) Banach function spaces. Roughly speaking, a rearrangement-invariant
Banach function space (or simply, an RI space) is a Banach lattice X of measurable
functions (or random variables) such that ‖x‖X = ‖y‖X whenever x and y have the
same distribution. Some martingale inequalities in such a space X have been studied by
several authors. In 1988 Johnson and Schechtman [10] gave a necessary and sufficient
condition on X for the inequality

cX‖Sf‖X � ‖Mf‖X � CX‖Sf‖X (1.1)
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634 M. Kikuchi

to hold for any martingale f = (fn)n∈Z+ , where Mf denotes the maximal function of f

and Sf denotes the square function of f . The same result was proved independently by
Antipa [1] and by Novikov [14]. As an application of our main result, we can obtain an
extension of this inequality.

In order to prove inequality (1.1), the authors of papers [10], [1] and [14] used a stan-
dard method: they derived (1.1) from a distribution function inequality for Mf and Sf .
(Hitczenko [9] also gave another proof of (1.1). His method also needs a distribution func-
tion inequality.) Our approach differs from their method completely. We will use Boyd’s
theorem on the boundedness of averaging operators to derive some norm inequalities for
processes. The advantage of our approach, which may not be simpler, is that it enables us
to derive inequalities involving the norms of two random variables in different RI spaces,
such as

‖Mf‖X � C‖Sf‖Y or ‖Sf‖X � C‖Mf‖Y .

In fact, we can prove that these inequalities hold whenever Y is continuously embedded
in an RI space K(X), which will be defined in the next section.

In addition, we can prove some other inequalities. Among them, the inequalities for
the Doob decomposition of certain submartingales (Theorems 4.1 and 4.2) may be useful.
They are described as follows. Let 1 � p < ∞, let f = (fn) be an Lp-bounded martingale,
and let |f |p = g + h be the Doob decomposition of the submartingale |f |p = (|fn|p) into
a martingale g = (gn) and a predictable non-decreasing process h = (hn) with h0 = 0.
Then, in the case where 1 < p < ∞, we obtain the inequalities

‖h1/p
∞ ‖X � 2‖f∞‖Hp(X) and

∥∥∥ sup
n

|gn|1/p
∥∥∥

X
� 4‖f∞‖Hp(X),

and, in the case where p = 1, we obtain the inequalities

‖h∞‖X � sup
n∈Z+

‖fn‖K(X) and sup
n∈Z+

‖gn‖X � 2 sup
n∈Z+

‖fn‖K(X).

Here Hp(X) is an RI space embedded in X (see the next section for the definition of
this space). For some specific choices of X we can give explicit expressions for Hp(X)
and K(X). For example, if X is isomorphic to the Lorentz space Lp,∞, then Hp(X) is
isomorphic to Lp,1. Hence we have the inequalities

‖h1/p
∞ ‖p,∞ � Cp‖f∞‖p,1 and

∥∥∥ sup
n

|gn|1/p
∥∥∥

p,∞
� C ′

p‖f∞‖p,1.

As another example, let 0 < a < 1 and suppose that X is isomorphic to the RI space
Lexp:a consisting of all x such that exp(λ|x|a) is integrable for some λ > 0. Then K(X)
is isomorphic to Lexp:(a/(1−a)). Thus we obtain

‖h∞‖exp:a � Ca sup
n∈Z+

‖fn‖exp:(a/(1−a))

and

sup
n∈Z+

‖gn‖exp:a � C ′
a sup

n∈Z+

‖fn‖exp:(a/(1−a)),
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where ‖ · ‖exp:a denotes the norm of Lexp:a. In addition, K(Lexp:1) is isomorphic to L∞.
Hence

‖h∞‖exp:1 � Ca sup
n∈Z+

‖fn‖∞ and sup
n∈Z+

‖gn‖exp:a � C ′
a sup

n∈Z+

‖fn‖∞.

Moreover, it is worth pointing out that if the Boyd indices of X satisfy 0 < αX � βX <

1/p, then Hp(X) = X, and that if αX > 0, then K(X) = X.
We conclude this introductory section by giving a brief overview of the contents of this

paper.
Section 2 contains preliminary definitions and results. The definition and basic prop-

erties of the spaces Hp(X) and K(X) are given there.
Section 3 is devoted to studying norm inequalities for non-decreasing processes. The

proof of the main theorem (Theorem 3.3) is given there.
In § 4, we use Theorem 3.3 to derive various norm inequalities for martingales. Besides

the inequalities established there, one may be able to derive some useful inequalities from
Theorem 3.3.

The final section contains some explicit expressions for Hp(X) and K(X) in the case
where X is a Lorentz space, Zygmund space, Lorentz–Zygmund space, etc. Then we can
spell out the inequalities established in § 4.

2. Preliminaries

In this paper, we work with a complete probability space (Ω, Σ, P), and assume that
it is non-atomic. Besides this, we consider the canonical probability space (I,M, µ),
where I denotes the interval (0, 1], M denotes the σ-algebra of Lebesgue measurable sets
in I, and µ denotes Lebesgue measure. Throughout the paper, we distinguish these two
probability spaces; the reader who is not comfortable with this setting may assume that
Ω = I, Σ = M and P = µ.

Let x be a random variable on Ω. The non-increasing rearrangement of x, denoted
by x∗, is a (unique) non-increasing right-continuous function on I = (0, 1] such that

P{|x| > λ} = µ{x∗ > λ} (λ > 0).

Note that x∗ is represented as

x∗(t) = inf{λ > 0 | P{|x| > λ} � t} (t ∈ I),

with the convention that inf ∅ = ∞.
We also define the non-increasing rearrangement φ∗ of a function φ on I by regarding

φ as a random variable on the probability space I.
If φ and ψ are measurable functions on I, we write φ ≺ ψ to mean that∫ t

0
φ∗(s) ds �

∫ t

0
ψ∗(s) ds for all t ∈ I.

Furthermore, if x and y are random variables on Ω and if x∗ ≺ y∗, then we write x ≺ y.
We will frequently use the following facts (see [3, pp. 44, 56]).
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Fact 1. Let x and y be random variables on Ω. If x∗y∗ ∈ L1(I), then xy ∈ L1(Ω) and

E[|xy|] �
∫ 1

0
x∗(s)y∗(s) ds.

In particular,

E[|x|1A] �
∫

P(A)

0
x∗(s) ds (A ∈ Σ),

where 1A denotes the indicator function of A ∈ Σ. Analogous estimates hold for any
measurable functions on I.

Fact 2. Let φ1, φ2 and ψ be non-negative measurable functions on I. If φ1 ≺ φ2 and
if ψ is non-increasing, then

∫ 1

0
φ∗

1(s)ψ(s) ds �
∫ 1

0
φ∗

2(s)ψ(s) ds.

Suppose that X and Y are normed linear spaces of random variables on Ω (or mea-
surable functions on I). We write Y ↪→ X if Y is continuously embedded in X.

Definition 2.1. A real Banach space (X, ‖ · ‖X) of random variables on Ω (respec-
tively, measurable functions on I) is called a rearrangement-invariant space, or simply
an RI space, over Ω (respectively, I) if X satisfies the following conditions:

(B1) L∞ ↪→ X ↪→ L1;

(B2) if |y| � |x| a.s. and x ∈ X, then y ∈ X and ‖y‖X � ‖x‖X ;

(B3) if 0 � xn ↑ x a.s., xn ∈ X for all n, and supn ‖xn‖X < ∞, then x ∈ X and
‖x‖X = supn ‖xn‖X ;

(R) if x and y are identically distributed and if x ∈ X, then y ∈ X and ‖x‖X = ‖y‖X .

For the sake of convenience, we adopt the convention that ‖x‖X = ∞ unless x ∈ X.

Strictly speaking, each element of an RI space is an equivalence class of random vari-
ables.

Since the underlying probability space Ω (or I) is non-atomic, condition (R) can be
replaced by the following condition (cf. [3, Exercise 16, p. 90]):

(R′) if y ≺ x and x ∈ X, then y ∈ X and ‖y‖X � ‖x‖X .

If X is a normed linear space satisfying (B1), (B2) and (B3), then X has the Riesz–
Fischer property, and hence it is a Banach space (cf. [3, Theorem 1.6, p. 5]).
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Now let us recall the Luxemburg representation theorem. For any RI space (X, ‖ · ‖X)
over Ω, there exists an RI space (X̂, ‖ · ‖X̂) over I such that

(i) x ∈ X if and only if x∗ ∈ X̂;

(ii) ‖x‖X = ‖x∗‖X̂ for all x ∈ X.

Such an RI space X̂ is unique. We call (X̂, ‖ · ‖X̂) the Luxemburg representation of X

(see [3, pp. 62–64] for details).
We consider some linear operators acting on the space of measurable functions on I.

For each p ∈ [1,∞] the operators Pp, Qp and Rp are defined by

(Ppφ)(t) =
1

t1/p

∫ t

0
φ(s)s1/p ds

s
(t ∈ I),

(Qpφ)(t) =
1

t1/p

∫ 1

t

φ(s)s1/p ds

s
(t ∈ I),

and

(Rpφ)(t) =
∫ 1

0

φ(s)s1/p

t1/p + s1/p

ds

s
(t ∈ I),

provided that the respective integrals are finite for almost all t ∈ I. Here we let 1/p = 0
if p = ∞. We write P for P1, Q for Q∞, and R for R1.

For each s ∈ (0,∞), the dilation operator Ds is defined by

(Dsφ)(t) =

{
φ(st), if st ∈ I,

0, if st �∈ I,
(t ∈ I).

If Y is an RI space over I, then each Ds is a bounded linear operator from Y into Y and
‖Ds‖B(Y ) � 1 ∨ s−1, where ‖Ds‖B(Y ) stands for the operator norm of Ds : Y → Y . If
we set

αY = sup
0<s<1

log ‖Ds−1‖B(Y )

log s
and βY = inf

1<s<∞

log ‖Ds−1‖B(Y )

log s
,

then

0 � lim
s→0+

log ‖Ds−1‖B(Y )

log s
= αY � βY = lim

s→∞

log ‖Ds−1‖B(Y )

log s
� 1

(see [3, p. 149] for details). The numbers αY and βY , which are determined by the
structure of Y , are called the lower and upper Boyd indices of Y , respectively. Moreover,
if X is an RI space over Ω, then the Boyd indices of X are defined by αX = αX̂ and
βX = βX̂ . For example,

αLp = βLp = 1/p (1 � p � ∞)

and

αLp,q = βLp,q = 1/p (1 < p < ∞, 1 � q � ∞),

where Lp,q denotes the Lorentz space (see [3, pp. 216–220]).
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Now let us recall Boyd’s theorem.

Boyd’s theorem. Let Y be a rearrangement-invariant space over I, and let B(Y )
denote the space of bounded linear operators on Y into Y .

(i) Suppose that 1 � p < ∞. Then Pp ∈ B(Y ) ⇐⇒ βY < 1/p.

(ii) Suppose that 1 < p � ∞. Then Qp ∈ B(Y ) ⇐⇒ αY > 1/p.

(iii) Suppose that 1 � p < ∞. Then Rp ∈ B(Y ) ⇐⇒ 0 < αY � βY < 1/p.

Boyd proved statements (i) and (ii) in [4] (see also [3, p. 150]). Statement (iii) is an
immediate consequence of the first two statements and the following estimate:

1
2{(Ppφ) + (Qφ)} � (Rpφ) � (Ppφ) + (Qφ). (2.1)

With each RI space X over Ω, we associate some new spaces of random variables.

Definition 2.2. Let 1 � p < ∞, and let X be a rearrangement-invariant space over Ω.
For each random variable x, we let

‖x‖Hp(X) = ‖Ppx
∗‖X̂ ,

‖x‖Hp(X) = ‖Rpx
∗‖X̂

and

‖x‖K(X) = ‖Qx∗‖X̂ .

The space Hp(X) (respectively, Hp(X), K(X)) is defined to be the set of random variables
x for which ‖x‖Hp(X) (respectively, ‖x‖Hp(X), ‖x‖K(X)) is finite.

Lemma 2.3. Let X be a rearrangement-invariant space over Ω. Then

(i) Hp(X) is a rearrangement-invariant space and Hp(X) ↪→ X for any p ∈ [1,∞);

(ii) if the function t �→ − log t belongs to X̂, then K(X) is a rearrangement-invariant
space and K(X) ↪→ X;

(iii) if the function t �→ − log t belongs to X̂, then Hp(X) is a rearrangement-invariant
space and Hp(X) ↪→ X for any p ∈ [1,∞);

(iv) if the function t �→ − log t does not belong to X̂, then both K(X) and Hp(X)
consist of the zero function only.

In view of this lemma, we will assume that − log t ∈ X̂ whenever we consider the space
K(X) or Hp(X).

Proof of Lemma 2.3. (i) We first prove that the functional ‖ · ‖Hp(X) is a norm.
It suffices to show that this functional satisfies the triangle inequality. To this end, we
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use the fact that (x + y)∗ ≺ x∗ + y∗ (see [3, p. 55]). Since the function s �→ s(1/p)−1 is
decreasing,

(Pp(x + y)∗)(t) =
1

t1/p

∫ t

0
(x + y)∗(s)s1/p ds

s

� 1
t1/p

∫ t

0
{x∗(s) + y∗(s)}s1/p ds

s

= (Ppx
∗)(t) + (Ppy

∗)(t)

by Fact 2. This establishes the triangle inequality for ‖ · ‖Hp(X). Next we verify that
Hp(X) is an RI space. It is clear that Hp(X) satisfies conditions (B2), (B3) and (R).
Hence it suffices to show that Hp(X) satisfies condition (B1). Since x∗ � p−1Ppx

∗ on I,

‖x‖X = ‖x∗‖X̂ � 1
p
‖Ppx

∗‖X̂ =
1
p
‖x‖Hp(X),

i.e. Hp(X) ↪→ X. Let 1 denote the constant function taking the value 1. Then Pp1 = p1
and hence

‖x‖Hp(X) � ‖Pp1‖X̂‖x‖∞ = p‖1‖X̂‖x‖∞

whenever x ∈ L∞. Thus L∞ ↪→ Hp(X) ↪→ X ↪→ L1, as was to be shown.

(ii) In order to show that the functional ‖ · ‖K(X) is a norm, we have only to prove the
triangle inequality. Observe that∫ t

0
(Qφ)(s) ds =

∫ 1

0
φ(s)

s ∧ t

s
ds (t ∈ I). (2.2)

Using this we have by Fact 2 that, for any t ∈ I,∫ t

0
(Q(x + y)∗)(s) ds =

∫ 1

0
(x + y)∗(s)

s ∧ t

s
ds

�
∫ 1

0
{x∗(s) + y∗(s)}s ∧ t

s
ds

=
∫ t

0
{(Qx∗)(s) + (Qy∗)(s)} ds.

In other words, Q(x + y)∗ ≺ Qx∗ + Qy∗. From (R′) it follows that, if x, y ∈ K(X), then
x + y ∈ K(X) and

‖x + y‖K(X) = ‖Q(x + y)∗‖X̂ � ‖Qx∗‖X̂ + ‖Qy∗‖X̂ = ‖x‖K(X) + ‖y‖K(X).

This proves the triangle inequality for ‖ · ‖K(X).
We now prove that L∞ ↪→ K(X) ↪→ L1. Since (Q1)(t) = − log t ∈ X̂ by hypothesis,

‖x‖K(X) � ‖Q1‖X̂‖x‖∞ for any x ∈ L∞, i.e. L∞ ↪→ K(X). On the other hand, by (2.2),
∫ t

0
(Qx∗)(s) ds =

∫ 1

0
x∗(s)

s ∧ t

s
ds �

∫ t

0
x∗(s) ds (t ∈ I),
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i.e. x∗ ≺ Qx∗. From (R′) it follows that, if x ∈ K(X), then x ∈ X and

‖x‖X � ‖Qx∗‖X̂ = ‖x‖K(X).

Thus K(X) ↪→ X(↪→ L1). It is clear that K(X) satisfies (B2), (B3) and (R). This
completes the proof of (ii).

(iii) As in the proof of (i), we can show that Rp(x + y)∗ � Rpx
∗ + Rpy

∗, which estab-
lishes the triangle inequality for ‖ · ‖Hp(X). Since (Rp1)(t) � p − log t by (2.1), we find
that L∞ ↪→ Hp(X). On the other hand, since (Rpx

∗) � 2−1Qx∗ by (2.1), we find that
Hp(X) ↪→ K(X) ↪→ X. Thus (iii) is proved.

(iv) It suffices to prove the statement for K(X), because Hp(X) ↪→ K(X). Suppose
that there is a non-zero element x in K(X). Then there are positive numbers ε and δ

such that x∗(t) � ε for all t ∈ (0, δ). Hence ε(log δ − log t) � (Qx∗)(t) for t ∈ (0, δ). Since
Qx∗ ∈ X̂, the function t �→ − log t must belong to X̂. This proves (iv). �

As shown above, Hp(X) is an RI space for each p ∈ [1,∞), and hence we can consider
the Luxemburg representation Ĥp(X) of Hp(X). Let φ be a non-negative measurable
function on I. Then

φ ∈ Ĥp(X) ⇐⇒ Ppφ
∗ ∈ X̂. (2.3)

Indeed, since Ω is non-atomic, there is a random variable xφ such that x∗
φ = φ∗ on I

(see [7, p. 44]). Then

φ ∈ Ĥp(X) ⇐⇒ xφ ∈ Hp(X) ⇐⇒ Ppφ
∗ = Ppx

∗
φ ∈ X̂.

In the same way, we find that

φ ∈ K̂(X) ⇐⇒ Qφ∗ ∈ X̂, (2.4)

φ ∈ Ĥp(X) ⇐⇒ Rpφ
∗ ∈ X̂.

These facts will be used in the proof of the following lemma.

Lemma 2.4. Let X be a rearrangement-invariant space over Ω.

(i) If 1 � p < q < ∞, then

Hq(X) ↪→ Hp(X) ↪→ X and Hq(X) ↪→ Hp(X) ↪→ X.

(ii) For any p ∈ [1,∞),

Hp(X) = Hp(X) ∩ K(X) = Hp(K(X)) = K(Hp(X)).

Proof. (i) Suppose that 1 � p < q < ∞. Since s(1/p)−1 ≺ pq−1s(1/q)−1 ≺ s(1/q)−1,
Fact 2 yields that, for any t ∈ I,

(Ppx
∗)(t) =

∫ 1

0
x∗(st)s1/p ds

s
�

∫ 1

0
x∗(st)s1/q ds

s
= (Pqx

∗)(t). (2.5)

Hence ‖x‖Hp(X) � ‖x‖Hq(X), i.e. Hq(X) ↪→ Hp(X). Moreover, since Rpx
∗ � 2Rqx

∗ by
(2.1) and (2.5), we see that Hq(X) ↪→ Hp(X).
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(ii) It is clear from (2.1) that Hp(X) = Hp(X) ∩ K(X). To prove that Hp(X) =
Hp(K(X)) = K(Hp(X)), we use the following formulae:

QPpφ = p(Ppφ + Qφ − (Ppφ)(1)) (1 � p < ∞); (2.6)

PpQφ = p(Ppφ + Qφ) (1 � p < ∞). (2.7)

These formulae are valid for functions φ in L1(du1/p), in particular, for functions φ such
that Ppφ ∈ L1. Using (2.1), (2.4) and (2.6) we have

x ∈ Hp(K(X)) ⇐⇒ Ppx
∗ ∈ K̂(X) ⇐⇒ QPpx

∗ ∈ X̂

⇐⇒ Rpx
∗ ∈ X̂ ⇐⇒ x ∈ Hp(X).

Thus Hp(K(X)) = Hp(X). Moreover, from (2.3), (2.4), (2.6) and (2.7), we see that

x ∈ Hp(K(X)) ⇐⇒ Ppx
∗ ∈ K̂(X) ⇐⇒ QPpx

∗ ∈ X̂

⇐⇒ PpQx∗ ∈ X̂ ⇐⇒ Qx∗ ∈ Ĥp(X) ⇐⇒ x ∈ K(Hp(X)).

This completes the proof. �

Using Lemma 2.3, Lemma 2.4 and Boyd’s theorem, we have the following lemma.

Lemma 2.5. Let X be a rearrangement-invariant space over Ω.

(i) If βX < 1/p, then

• Hp(X) = X and ‖ · ‖Hp(X) ≈ ‖ · ‖X ;

• Hp(X) = K(X) and ‖ · ‖Hp(X) ≈ ‖ · ‖K(X).

(ii) If αX > 0, then

• K(X) = X and ‖ · ‖K(X) ≈ ‖ · ‖X ;

• Hp(X) = Hp(X) and ‖ · ‖Hp(X) ≈ ‖ · ‖Hp(X).

(iii) If 0 < αX � βX < 1/p, then

• Hp(X) = X and ‖ · ‖Hp(X) ≈ ‖ · ‖X .

3. Rearrangement inequalities and norm inequalities

In this section, we establish some norm inequalities for non-decreasing processes. For
basic facts that we will use here, see, for instance, [8], [12], [13] or [15].

Proposition 3.1. Let 1 � p < ∞ and let x, y be non-negative random variables. If x

and y satisfy the inequality

E[(x − λ)p1{x>λ}] � E[yp1{x>λ}] (λ > 0), (3.1)

then Px∗ � Ppy
∗ +Qy∗ on I. Moreover, if x and y satisfy (3.1) for p = 1, then x∗ ≺ Qy∗.
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For the proof of the proposition, we need the following lemma.

Lemma 3.2. If 1 � p < ∞ and if φ : I → R is a non-negative non-increasing function,
then (

1
t

∫ t

0
φ(s)p ds

)1/p

� 1
p
(Ppφ)(t) (t ∈ I). (3.2)

Proof. Suppose first that φ is of the form

φ =
n∑

i=1

ai1(0,ti), where ai > 0 and 0 < t1 < t2 < · · · < tn � 1. (3.3)

Then, by Minkowski’s inequality,
(∫ t

0
φ(s)p ds

)1/p

�
n∑

i=1

ai(t ∧ ti)1/p =
t1/p

p
(Ppφ)(t) (t ∈ I).

Thus (3.2) holds for this φ. If φ is an arbitrary non-negative non-increasing function,
then there exists a sequence {φi} of functions of the form (3.3) such that 0 � φi ↑ φ a.e.
on I. Hence we may use the monotone convergence theorem to complete the proof. �

Proof of Proposition 3.1. Setting λ = x∗(t) in (3.1) and using Fact 1, we deduce
that ∫

{s∈I|x∗(s)�x∗(t)}
(x∗(s) − x∗(t))p ds = E[(x − x∗(t))p1{x>x∗(t)}]

� E[yp1{x>x∗(t)}] �
∫

P{x>x∗(t)}

0
y∗(s)p ds.

Since {s ∈ I | x∗(s) � x∗(t)} ⊃ (0, t] and P{x > x∗(t)} � t, it follows from the estimates
proved above and Jensen’s inequality that

{(Px∗)(t) − x∗(t)}p =
{

1
t

∫ t

0
(x∗(s) − x∗(t)) ds

}p

� 1
t

∫ t

0
(x∗(s) − x∗(t))p ds

� 1
t

∫ t

0
y∗(s)p ds.

Thus, by Lemma 3.2,

(Px∗)(t) − x∗(t) �
(

1
t

∫ t

0
y∗(s)p ds

)1/p

� 1
p
(Ppy

∗)(t) (t ∈ I),

and hence, by (2.6),

Px∗ − (Px∗)(1) = Q(Px∗ − x∗) � 1
p
QPpy

∗ = Ppy
∗ + Qy∗ − (Ppy

∗)(1). (3.4)
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Furthermore, inequality (3.1) together with Lemma 3.2 implies that

(Px∗)(1) = ‖x‖1 � ‖x‖p � ‖y‖p � 1
p
(Ppy

∗)(1) � (Ppy
∗)(1).

Hence we conclude from (3.4) that Px∗ � Ppy
∗ + Qy∗.

Now suppose that p = 1. Then Px∗ � Py∗ + Qy∗ = PQy∗ by (2.7). This shows that
x∗ ≺ Qy∗, completing the proof. �

Now we consider some norm inequalities for processes. Given a process ξ = (ξn)n∈Z+ ,
we adopt the convention that ξ−1 ≡ 0. We say that a process ξ = (ξn) is non-decreasing
if ξn+1 � ξn � 0 a.s. for all n ∈ Z+. For a non-decreasing process ξ, we let ξ∞ =
limn→∞ ξn a.s.

Given a filtration F = (Fn)n∈Z+ , we denote by S(F) the collection of all F-stopping
times.

Theorem 3.3. Let ξ = (ξn)n∈Z+ be a non-decreasing process adapted to a filtration
F = (Fn)n∈Z+ , let γ be a non-negative random variable, and let X be a rearrangement-
invariant space over Ω.

(i) If 1 < p < ∞ and if

E[(ξ∞ − ξn−1)p | Fn] � E[γp | Fn] a.s. (n ∈ Z+), (3.5)

then P(ξ∞)∗ � 2Rpγ
∗ on I, and ‖ξ∞‖X � ‖ξ∞‖H1(X) � 2‖γ‖Hp(X).

(ii) If (3.5) holds for p = 1, then (ξ∞)∗ ≺ Qγ∗ and ‖ξ∞‖X � ‖γ‖K(X).

From Theorem 3.3 and Lemma 2.5, we derive the following corollary.

Corollary 3.4. Let ξ = (ξn), γ and X be as in Theorem 3.3.

(i) Suppose that 1 < p < ∞. If (3.5) holds and if 0 < αX � βX < 1/p, then

‖ξ∞‖X � CX‖γ‖X , (3.6)

where CX is a positive constant depending only on X.

(ii) If (3.5) holds for p = 1 and if αX > 0, then (3.6) holds.

Proof of Theorem 3.3. It is routine to deduce from (3.5) that, if σ ∈ S(F), then

E[(ξ∞ − ξσ−1)p | Fσ] � E[γp | Fσ] a.s. (3.7)

Let λ > 0 and let σ = inf{n ∈ Z+ | ξn > λ}. Then {ξ∞ > λ} = {σ < ∞} ∈ Fσ and
ξσ−1 � λ (since ξσ−1 = 0 on the set {σ = 0}). Therefore, by (3.7),

E[(ξ∞ − λ)p1{ξ∞>λ}] � E[γp1{ξ∞>λ}].

Using Proposition 3.1, we obtain that P(ξ∞)∗ � Ppγ
∗ + Qγ∗ � 2Rpγ

∗, and hence that
‖ξ∞‖H1(X) � 2‖γ‖Hp(X).

If p = 1, then (ξ∞)∗ ≺ Qγ∗. This implies that ‖ξ∞‖X � ‖γ‖K(X). �
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Remark 3.5. Clearly, (3.1) implies that

(λ1 − λ2)pP{x > λ1} � E[yp1{x>λ2}] (λ1 > λ2 � 0).

We can show that if this inequality holds for p ∈ (1,∞), then

Px∗ � p′(Ppy
∗ + Qy∗),

where p′ = p/(p − 1). Using this fact, we can derive a result analogous to Theorem 3.3:
if ξ = (ξn) is a (not necessarily non-decreasing) process and if

E[|ξτ − ξσ−1|p1{τ<∞} | Fσ] � E[γp | Fσ] (σ, τ ∈ S(F), σ � τ),

then
P(sup

n
| ξn|)∗ � p′(Ppγ

∗ + Qγ∗) � 2p′Rpγ
∗

and ∥∥∥ sup
n

|ξn|
∥∥∥

X
� 2p′‖γ‖Hp(X).

We omit the details.

4. Norm inequalities for martingales

In this section, we will consider some norm inequalities for martingales. Throughout this
section, X is an RI space over Ω.

We begin by introducing (or recalling) some notation that will be used in this section.
Given a martingale f = (fn)n∈Z+ , we denote by Mf the maximal function of f , and
denote by Sf the square function of f , i.e.

Mf = sup
n∈Z+

|fn| and Sf =
{ ∞∑

n=0

(∆nf)2
}1/2

,

where ∆nf = fn − fn−1(n ∈ Z+). (Note that ∆0f = f0 by convention.) We denote by s

the operator defined by

sf =
{ ∞∑

n=0

E[(∆nf)2 | Fn−1]
}1/2

,

where F−1 = {∅, Ω}. More generally, we define

s(p)f =
{ ∞∑

n=0

E[|∆nf |p | Fn−1]
}1/p

(1 � p < ∞).

Furthermore, we deal with operators m(p) and θ(p), acting on the space of uniformly
integrable martingales, defined, respectively, by

m(p)f = sup
n∈Z+

E[|f∞|p | Fn]1/p (1 � p < ∞)
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and

θ(p)f = sup
n∈Z+

E[|f∞ − fn−1|p | Fn]1/p (1 � p < ∞),

where f∞ = limn→∞ fn a.s.
Now let 1 � p < ∞ and let f = (fn)n∈Z+ be a martingale such that fn ∈ Lp for all

n ∈ Z+. By the Doob decomposition theorem, the process |f |p = (|fn|p)n∈Z+ is uniquely
decomposed as the sum of a martingale g = (gn)n∈Z+ and a predictable non-decreasing
process h = (hn)n∈Z+ with h0 = 0 (see, for example, [13, p. 145] or [15, p. 153]). If f

is an Lp-bounded martingale, then the limits f∞ = limn→∞ fn, g∞ = limn→∞ gn and
h∞ = limn→∞ hn exist a.s.

Theorem 4.1. Let 1 < p < ∞, let f = (fn)n∈Z+ be an Lp-bounded martingale, and
let |f |p = g + h be the Doob decomposition of |f |p = (|fn|p) into a martingale g = (gn)
and a predictable non-decreasing process h = (hn) with h0 = 0. Then

‖h1/p
∞ ‖X � 2‖f∞‖Hp(X) and ‖(Mg)1/p‖X � 4‖f∞‖Hp(X).

Moreover, if 0 < αX � βX < 1/p, then

‖h1/p
∞ ‖X � Cp,X‖f∞‖X and ‖(Mg)1/p‖X � Cp,X‖f∞‖X ,

where Cp,X is a positive constant depending only on p and X.

Theorem 4.2. Let f = (fn)n∈Z+ be an L1-bounded martingale, and let |f | = g + h

be the Doob decomposition of |f | = (|fn|) into a martingale g = (gn) and a predictable
non-decreasing process h = (hn) with h0 = 0. Then

‖h∞‖X � sup
n∈Z+

‖fn‖K(X) and sup
n∈Z+

‖gn‖X � 2 sup
n∈Z+

‖fn‖K(X).

Moreover, if αX > 0, then

‖h∞‖X � CX sup
n∈Z+

‖fn‖X and sup
n∈Z+

‖gn‖X � CX sup
n∈Z+

‖fn‖X .

Remark 4.3. In addition to the hypotheses of Theorem 4.2, suppose that f =
(fn)n∈Z+ is uniformly integrable. Then supn ‖fn‖K(X) (respectively, supn ‖fn‖X) can
be replaced by ‖f∞‖K(X) (respectively, ‖f∞‖X). To see this, recall (see [3, p. 74]) that

∫ t

0
y∗(s) ds = inf{‖y1‖1 + t‖y2‖∞ | y = y1 + y2, y1 ∈ L1, y2 ∈ L∞}.

From this identity, we can derive that E[x|G] ≺ x for any x ∈ L1 and any sub-σ-algebra
G of F . Hence, if f = (fn) is uniformly integrable, then

fn = E[f∞ | Fn] ≺ f∞ for each n ∈ Z+.

Thus supn ‖fn‖K(X) � ‖f∞‖K(X) and supn ‖fn‖X � ‖f∞‖X by (R′).
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Proof of Theorem 4.1. We prove the first statement only, because the second state-
ment follows from the first statement and Lemma 2.5 (iii).

Since Mf ∈ Lp by the Doob maximal inequality and since

E[h∞] � −E[g0] + sup
n

‖fn‖p
p < ∞,

we see that Mg � h∞ + (Mf)p ∈ L1. Hence g = (gn) is uniformly integrable, i.e. gn =
E[g∞ | Fn] for each n ∈ Z+. This implies that

E[(h1/p
∞ − h1/p

n )p | Fn] � E[h∞ − hn | Fn] = E[|f∞|p − |fn|p | Fn] � E[|f∞|p | Fn].

If we set ξn = h
1/p
n+1(n ∈ Z+) and γ = |f∞|, then inequality (3.5) holds. From Theorem 3.3

we conclude that ‖h
1/p
∞ ‖X � 2‖f∞‖Hp(X).

Now we estimate the norm of (Mg)1/p in X. The Doob maximal inequality, together
with Fact 1, shows that

λ � 1
P{Mf � λ}E[|f∞|1{Mf�λ}]

� 1
P{Mf � λ}

∫
P{Mf�λ}

0
(f∞)∗(s) ds

= (P(f∞)∗)(P{Mf � λ}). (4.1)

Let t ∈ I and set λ = (Mf)∗(t) in (4.1). Since P{Mf � (Mf)∗(t)} � t and since the
function P(f∞)∗ is non-increasing, it follows that

(Mf)∗(t) � (P(f∞)∗)(t) (t ∈ I). (4.2)

Therefore,

‖(Mg)1/p‖X � ‖{(Mf)p + h∞}1/p‖X

� ‖Mf + h1/p
∞ ‖X

� ‖Mf‖X + ‖h1/p
∞ ‖X

� ‖P(f∞)∗‖X̂ + 2‖f∞‖Hp(X).

Since P(f∞)∗ � Pp(f∞)∗ � 2Rp(f∞)∗ by (2.1) and (2.5), we obtain that

‖(Mg)1/p‖X � 4‖f∞‖Hp(X),

as desired. �

Proof of Theorem 4.2. Let N > 0 be a fixed integer. Then

E[hN − hn | Fn] = E[|fN | − |fn| | Fn] � E[|fN | | Fn] a.s. (0 � n � N).

If we set γ = |fN | and ξn = h(n+1)∧N for each n ∈ Z+, then (3.5) holds for p = 1. There-
fore, ‖hN‖X � ‖fN‖K(X) by Theorem 3.3 (ii). Thus we conclude (from the Fatou prop-
erty (B3) of K(X)) that ‖h∞‖X � supn ‖fn‖K(X).
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Furthermore, we see that

sup
n

‖gn‖X � ‖h∞‖X + sup
n

‖fn‖X � 2 sup
n

‖fn‖K(X).

This completes the proof of the first statement of Theorem 4.2. The second statement
follows from the first statement and Lemma 2.5 (ii). �

Now we consider norm inequalities for s(p)f . Burkholder and Gundy proved in [6] that
if 2 � r < ∞, then

‖sf‖r � Cr‖f∞‖r,

with some constant Cr > 0 depending only on r. The next theorem extends this.

Theorem 4.4. Let f = (fn)n∈Z+ be a uniformly integrable martingale and let f∞ =
limn→∞fn a.s. If 2 � p < ∞, then

‖s(p)f‖X � Cp‖f∞‖Hp(X), (4.3)

with some constant Cp > 0 depending only on p. Moreover, if in addition 0 < αX �
βX < 1/p, then

‖s(p)f‖X � Cp,X‖f∞‖X ,

with some constant Cp,X > 0 depending only on p and X.

Before proving this theorem, we recall the Burkholder inequality (see [5, Theorem 3.2]).
For each p ∈ (1,∞) there is a constant cp > 0 such that if f = (fn) is a uniformly
integrable martingale, then

E[(Sf)p] � cpE[|f∞|p].

We use the conditional form of this inequality. Given a martingale f = (fn) and an
integer N � 0, we denote by f (N) the stopped martingale (fn∧N )n∈Z+ . Then

E[S(f − f (N))p | FN ] � cpE[|f∞ − fN |p | FN ] a.s. (N ∈ Z+), (4.4)

provided that 1 < p < ∞. Inequality (4.4) follows by applying the ordinary Burkholder
inequality to the martingale f ′ = ((fN+n − fN )1A)n∈Z+ with respect to the filtration
F ′ = (FN+n)n∈Z+ , where A ∈ FN .

Proof of Theorem 4.4. We prove the first statement only. Let

ξn =
{n+1∑

k=0

E[|∆kf |p | Fk−1]
}1/p

(n ∈ Z+) and ξ∞ = lim
n→∞

ξn = s(p)f.
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Since 2 � p < ∞, we find that

E[(ξ∞ − ξN−1)p | FN ] � E[ξp
∞ − ξp

N−1 | FN ]

� E
[ ∞∑

k=N+1

E[|∆kf |p | Fk−1]
∣∣∣∣ FN

]

= E
[ ∞∑

k=N+1

|∆kf |p
∣∣∣∣ FN

]

� E
[( ∞∑

k=N+1

|∆kf |2
)p/2 ∣∣∣∣ FN

]

= E[S(f − f (N))p | FN ]

� cpE[|f∞ − fN |p | FN ]

� cp2p−1(E[|f∞|p | FN ] + |fN |p)
� cp2pE[|f∞|p | FN ],

where we have used (4.4). Thus, if we set γ = c
1/p
p 2|f∞|, then γ satisfies (3.5). From

Theorem 3.3 (i), we obtain (4.3) with Cp = 4c
1/p
p , completing the proof. �

The next theorem is an extension of the Burkholder–Davis–Gundy inequality.

Theorem 4.5. There are absolute constants k1 and k2 such that if f = (fn)n∈Z+ is a
martingale, then

‖Sf‖X � k1‖Mf‖K(X) and ‖Mf‖X � k2‖Sf‖K(X).

Moreover, if f = (fn)n∈Z+ is a uniformly integrable martingale and f∞ = limn→∞ fn a.s.,
then

‖Sf‖X � 2k1‖f∞‖H1(X).

Suppose that αX > 0. Then it follows from Theorem 4.5 and Lemma 2.5 that

cX‖Sf‖X � ‖Mf‖X � CX‖Sf‖X

for all martingales f , where cX and CX are positive constants depending only on X.
This result was established independently by Antipa [1], Johnson and Schechtman [10]
and Novikov [14].

Proof of Theorem 4.5. We use the (conditional form of the) Davis inequality (see,
for example, [8, p. 286] or [12, p. 89]). There are constants k1 and k2 such that

E[Sf − Sn−1f | Fn] � k1E[Mf | Fn] a.s. (n ∈ Z+)

and

E[Mf − Mn−1f | Fn] � k2E[Sf | Fn] a.s. (n ∈ Z+),
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where

Snf =
{ n∑

k=0

(∆kf)2
}1/2

, Mnf = sup
0�k�n

|fk|, and S−1f = M−1f ≡ 0.

Therefore, the first statement follows from Theorem 3.3 (ii). Moreover, since k−1
1 (Sf)∗ ≺

Q(Mf)∗, inequality (4.2) together with (2.6) gives that if f = (fn) is uniformly integrable,
then

k−1
1 (Sf)∗ ≺ QP(f∞)∗ � P(f∞)∗ + Q(f∞)∗ � 2R(f∞)∗.

Therefore,
‖Sf‖X � 2k1‖f∞‖H1(X),

which proves the second statement. �

Now let us consider some norm inequalities for the operators θ(p) and m(p). Long [11]
established norm inequalities for these operators in Orlicz spaces (with a different nota-
tion). Our aim here is to extend his results. We begin by recalling a basic result. If
f = (fn) is a uniformly integrable martingale, then

1
2E[θ(p)f ] � E[m(p)f ] � 17E[θ(p)f ] (1 � p < ∞). (4.5)

Long’s proof of this result is based on a ‘rearrangement technique’. In Appendix A,
however, we will give another proof by means of a usual ‘distribution function technique’.

Theorem 4.6. If f = (fn)n∈Z+ is a uniformly integrable martingale, then

1
2‖θ(p)f‖X � ‖m(p)f‖X � 17‖θ(p)f‖K(X) (1 � p < ∞). (4.6)

In particular, if αX > 0, then ‖θ(p)f‖X ≈ ‖m(p)f‖X for any finite p � 1.

Proof. The first inequality of (4.6) is obvious, since θ(p)f � 2m(p)f by Minkowski’s
inequality. Let us prove the second inequality. Fix n ∈ Z+ and let A ∈ Fn. We consider
the martingale f ′ = (f ′

k)k∈Z+ given by

f ′
k = E[(f∞ − fn−1)1A | F ′

k] (k ∈ Z+), where F ′
k = Fn+k.

For each k ∈ Z+, let
m

(p)
k f = sup

0�j�k
E[|f∞|p | Fj ]1/p.

Then
(m(p)f − m

(p)
n−1f)1A � sup

k∈Z+

E[|f∞ − fn−1|p | F ′
k]1/p1A = m(p)f ′. (4.7)

To see this, it suffices to observe that

m(p)f = (m(p)
n−1f) ∨

(
sup
k�n

E[|f∞|p | Fk]1/p
)

� (m(p)
n−1f) ∨

(
sup
k�n

E[|f∞ − fn−1|p | Fk]1/p + |fn−1|
)

� sup
k∈Z+

E[|f∞ − fn−1|p | F ′
k]1/p + m

(p)
n−1f.
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Since θ(p)f ′ � (θ(p)f)1A, combining (4.5) and (4.7) yields that

E[(m(p)f − m
(p)
n−1f)1A] � 17E[θ(p)f ′] � 17E[(θ(p)f)1A].

Hence
E[m(p)f − m

(p)
n−1f | Fn] � 17E[θ(p)f | Fn] a.s. (n ∈ Z+).

Thus the second inequality of (4.6) follows from Theorem 3.3 (ii). �

We conclude this section with the following theorem.

Theorem 4.7. Let 1 � p < ∞ and let f = (fn)n∈Z+ be a uniformly integrable mar-
tingale.

(i) If p < q < ∞, then there is a constant Cp,q > 0, depending only on p and q, such
that

‖m(p)f‖X � Cp,q‖f∞‖Hq(X). (4.8)

(ii) If 0 < αX � βX < 1/p, then there is a constant Cp,X > 0, depending only on p

and X, such that
‖m(p)f‖X � Cp,X‖f∞‖X . (4.9)

Proof. (i) Assume first that f∞ is bounded. Fix n ∈ Z+ and let A ∈ Fn. We con-
sider the martingale f ′ = (E[|f∞|p | Fn+k]1A)k∈Z+ with respect to the filtration F ′ =
(Fn+k)k∈Z+ . Applying the Doob maximal inequality, we find that

E
[

sup
k�n

E[|f∞|p | Fk]q/p1A

]p/q

� q

q − p
E[|f∞|q1A]p/q.

Thus

E
[

sup
k�n

E[|f∞|p | Fk]q/p | Fn

]
� C ′

p,qE[|f∞|q | Fn] a.s.,

where C ′
p,q = {q/(q − p)}q/p. On the other hand, we have that

(m(p)f − m
(p)
n−1f)q � (m(p)f)q − (m(p)

n−1f)q � sup
k�n

E[|f∞|p | Fk]q/p.

Therefore,

E[(m(p)f − m
(p)
n−1f)q | Fn] � C ′

p,qE[|f∞|q | Fn] a.s. (n ∈ Z+).

Applying Theorem 3.3 (i), we obtain (4.8) with Cp,q = 2C ′
p,q.

Now we remove the restriction that f∞ is bounded. Let f = (fn)n∈Z+ be an arbitrary
uniformly integrable martingale. For each k = 1, 2, . . . , let f 〈k〉 = (f 〈k〉

n )n∈Z+ denote the
martingale defined by

f 〈k〉
n = E[f∞1{|f∞|�k} | Fn] (n ∈ Z+).

Then m(p)f 〈k〉 ↑ m(p)f a.s. as k ↑ ∞, and hence ‖m(p)f 〈k〉‖X ↑ ‖m(p)f‖X by (B3). From
what we have proved above, it follows that

‖m(p)f‖X = lim
k→∞

‖m(p)f 〈k〉‖X � Cp,q lim
k→∞

‖f 〈k〉
∞ ‖Hq(X) = Cp,q‖f∞‖Hq(X).

This completes the proof of statement (i).
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(ii) Suppose that 0 < αX � βX < 1/p. If we choose a number q so that p < q < 1/βX ,
then (4.8) holds. Hence (4.9) follows from Lemma 2.5 (iii). �

5. Examples of Hp(X), K(X) and Hp(X)

Let us recall the definition of Lorentz space Lp,q. Let 1 � p < ∞ and 1 � q � ∞. For
each measurable function φ on I, we let

‖φ‖p,q =

⎧⎪⎪⎨
⎪⎪⎩

(∫ 1

0
{t1/pφ∗(t)}q dt

t

)1/q

if 1 � q < ∞,

sup
t∈I

{t1/pφ∗(t)} if q = ∞.

The Lorentz space Lp,q = Lp,q(I) (over I) consists of all measurable functions φ for
which ‖φ‖p,q < ∞. If 1 � q � p < ∞, then (Lp,q, ‖ · ‖p,q) is an RI space over I. However,
unless 1 � q � p < ∞, the functional ‖ · ‖p,q is not a norm. So we need to consider
another functional; let ‖φ‖(p,q) = ‖Pφ∗‖p,q. Then ‖ · ‖p,q ≈ ‖ · ‖(p,q) and (Lp,q, ‖ · ‖(p,q))
is an RI space, provided that 1 < p < ∞ and 1 � q � ∞. In any case, we have
αLp,q = βLp,q = 1/p (see [3, pp. 216–220] for details).

More generally, we also consider the Lorentz–Zygmund spaces. Let 1 � p < ∞, 1 �
q � ∞ and −∞ < a < ∞. We define

‖φ‖p,q:a =

⎧⎪⎪⎨
⎪⎪⎩

(∫ 1

0
{t1/p(1 − log t)aφ∗(t)}q dt

t

)1/q

if 1 � q < ∞,

sup
t∈I

{t1/p(1 − log t)aφ∗(t)} if q = ∞,

and let ‖φ‖(p,q):a = ‖Pφ∗‖p,q:a. The Lorentz–Zygmund space Lp,q(log L)a consists of all
functions φ for which ‖φ‖p,q:a < ∞. If 1 < p < ∞, 1 � q � ∞ and −∞ < a < ∞, then

‖ · ‖p,q:a ≈ ‖ · ‖(p,q):a and (Lp,q(log L)a, ‖ · ‖(p,q):a)

is an RI space. Moreover, L1,1(log L)a is also an RI space whenever 0 � a < ∞ (see [2]).
Let 1 � p < ∞ and 0 � a < ∞. The space (Lp,p(log L)a, ‖·‖p,p:a) is called the Zygmund

space and is denoted by (Lp(log L)a, ‖ · ‖p:a). One can prove that φ ∈ Lp(log L)a if and
only if |φ|{log(1+|φ|)}a ∈ Lp (cf. [3, p. 252]). We write L(log L)a for L1(log L)a, Lp(log L)
for Lp(log L)1, and L(log L) for L1(log L)1.

The space Lp,q = Lp,q(Ω) over Ω is defined to be the space of random variables x for
which ‖x‖p,q := ‖x∗‖p,q < ∞. The other spaces over Ω are defined in the same way.

It is a simple matter to verify that

• H1(L1) = H1(L1) = L(log L);

• Hp(L1) = Hp(L1) = Lp,1 (1 < p < ∞).
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Furthermore, we have

• Hp(Lp,1) = Hp(Lp,1) = Lp,1(log L) (1 < p < ∞);

• Hp(Lp,∞) = Hp(Lp,∞) = Lp,1 (1 < p < ∞);

• Hp(Lq,r) = Hp(Lq,r) = Lp,1 (1 < q < p < ∞, 1 � r � ∞);

• Hp(Lq,r) = Hp(Lq,r) = Lq,r (1 � p < q < ∞, 1 � r � ∞);

• Hp(Lp,1(log L)a) = Hp(Lp,1(log L)a) = Lp,1(log L)a+1 (1 � p < ∞, 0 � a < ∞).

Indeed, it is straightforward to verify that

Hp(Lp,1) = Lp,1(log L), Hp(Lp,∞) = Lp,1,

and

Hp(Lp,1(log L)a) = Lp,1(log L)a+1.

Since αLp,1 = 1/p > 0, we have K(Lp,1) = Lp,1 by Lemma 2.5. Hence

Hp(Lp,1) = Hp(K(Lp,1)) = Hp(Lp,1) = Lp,1(log L)

by Lemma 2.4. In the same way, we see that

Hp(Lp,∞) = Lp,1 and Hp(Lp,1(log L)a) = Lp,1(log L)a+1.

Now, let 1 < q < p < ∞ and 1 � r � ∞. Then Lp,∞ ↪→ Lq,r and hence

Lp,1 = Hp(Lp,∞) ↪→ Hp(Lq,r).

On the other hand, since Lq,r ↪→ L1,1 = L1, we see that

Hp(Lq,r) ↪→ Hp(L1) = Lp,1.

Thus Hp(Lq,r) = Lp,1. Moreover, we have Hp(Lq,r) = Hp(Lq,r), because K(Lq,r) = Lq,r.
Next, let 1 � p < q < ∞ and 1 � r � ∞. Then, since αLq,r = βLq,r = 1/q ∈ (0, 1/p),

it follows from Lemma 2.5 that Hp(Lq,r) = Hp(Lq,r) = Lq,r.
We now give some examples of RI spaces X such that K(X) � X. Given a ∈ (0,∞),

we denote by Lexp:a the collection of random variables x on Ω for which

‖x‖exp:a := sup
t∈I

1
t(1 − log t)1/a

∫ t

0
x∗(s) ds = sup

t∈I

(Px∗)(t)
(1 − log t)1/a

< ∞.

Then (Lexp:a, ‖ · ‖exp:a) is an RI space. One can show that x ∈ Lexp:a if and only if
exp(λ|x|a) ∈ L1 for some λ > 0 (cf. [2, Theorem 10.3]).

Instead of the norm ‖ · ‖exp:a, we may use the functional Na(·) defined by

Na(x) = sup
t∈I

x∗(t)
(1 − log t)1/a

.
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The functional Na(·) is not a norm. However, for each a ∈ (0,∞), there is a constant
ka > 0 such that

Na(x) � ‖x‖exp:a � kaNa(x). (5.1)

A proof of this fact will be given in Appendix B.
If a > 1, then the function t �→ − log t does not belong to L̂exp:a = Lexp:a(I), and hence

the space K(Lexp:a) consists of the zero function only. On the other hand, if 0 < a � 1,
then

• K(Lexp:1) = Hp(Lexp:1) = L∞ (1 � p < ∞);

• K(Lexp:a) = Hp(Lexp:a) = Lexp:(a/(1−a)) (1 � p < ∞, 0 < a < 1).

To prove that K(Lexp:1) = L∞, let x ∈ K(Lexp:1). If 0 < t � δ � 1, then

x∗(δ) log(δ/t)
1 − log t

� (Qx∗)(t)
1 − log t

� (P(Qx∗))(t)
1 − log t

� ‖x‖K(Lexp:1).

Letting t → 0+ yields that x∗(δ) � ‖x‖K(Lexp:1) for all δ ∈ I. Therefore, ‖x‖∞ �
‖x‖K(Lexp:1), i.e. K(Lexp:1) ↪→ L∞. Thus we have K(Lexp:1) = L∞, since the embedding
L∞ ↪→ K(Lexp:1) is trivial.

Now let us prove that K(Lexp:a) = Lexp:(a/(1−a)) for a ∈ (0, 1). Suppose that x ∈
Lexp:(a/(1−a)). Then, by (2.7),

‖x‖K(Lexp:a) = sup
t∈I

(P(Qx∗))(t)
(1 − log t)1/a

= sup
t∈I

(Px∗)(t) + (Qx∗)(t)
(1 − log t)1/a

� ‖x‖exp:a + sup
t∈I

(Qx∗)(t)
(1 − log t)1/a

� ‖x‖exp:a + sup
t∈I

−x∗(t) log t

(1 − log t)1/a

� ‖x‖exp:a + ‖x‖exp:(a/(1−a))

� 2‖x‖exp:(a/(1−a)).

Thus Lexp:(a/(1−a)) ↪→ K(Lexp:a). Conversely, suppose that x ∈ K(Lexp:a). Then

x∗(δ) log(δ/t)
(1 − log t)1/a

� (Qx∗)(t)
(1 − log t)1/a

� ‖x‖K(Lexp:a) (0 < t � δ � 1). (5.2)

Therefore, since

max
0<t�δ

log(δ/t)
(1 − log t)1/a

=
a(1 − a)(1−a)/a

(1 − log δ)(1−a)/a
,

we have by (5.2) that

a(1 − a)(1−a)/ax∗(δ)
(1 − log δ)(1−a)/a

� ‖x‖K(Lexp:a) (0 < δ � 1).
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Thus Na/(1−a)(x) � Ca‖x‖K(Lexp:a), where C−1
a = a(1 − a)(1−a)/a. From (5.1) we con-

clude that

‖x‖exp:(a/(1−a)) � ka/(1−a)Ca‖x‖K(Lexp:a),

and hence that K(Lexp:a) ↪→ Lexp:(a/(1−a)). As a result, K(Lexp:a) = Lexp:(a/(1−a)).
Now it remains to show that K(Lexp:a) = Hp(Lexp:a) whenever 0 < a � 1 and 1 �

p < ∞. However, this follows from Lemma 2.5, because βLexp:a = 0. We omit the details
(cf. [3, p. 248]).

Combining the results in the present and preceding sections, we obtain various inequal-
ities for martingales. For example,

‖s(p)f‖p,1 � Cp‖f∞‖p,1:1 (2 � p < ∞),

‖m(p)f‖q,1:a � Cp,q,a‖f∞‖q,1:a+1 (1 � p < q < ∞, 0 � a < 1),

‖m(p)f‖exp:a � Cp,a‖f∞‖exp:(a/(1−a)) (1 � p < ∞, 0 < a < 1),

‖Mf‖exp:a � Ca‖Sf‖exp:(a/(1−a)) (0 < a < 1),

‖Mf‖exp:1 � C‖Sf‖∞.

Appendix A.

Proof of (4.5). Let 1 � p < ∞ and set

θ(p)
n f = sup

0�k�n
E[|f∞ − fk−1|p | Fk]1/p (n ∈ Z+).

Suppose that 0 < δ < 1 < b < ∞ and 0 < λ < ∞. We define the stopping times ρ, σ and
τ , respectively, by

ρ = inf{n ∈ Z+ | θ(1)
n f > δλ},

σ = inf{n ∈ Z+ | |fn| > λ}

and

τ = inf{n ∈ Z+ | |fn| > bλ}.

Then

{Mf > bλ, θ(1)f � δλ} = {τ < ∞, ρ = ∞}
⊂ {τ < ∞, σ < ρ}
⊂ {|fτ − fσ−1| � (b − 1)λ, σ < ρ}. (A 1)

Since the operators E[· | Fσ] and E[· | Fn] commute each other, we find that

E[|f∞ − fσ−1| | Fσ]1{σ=n} = E[|f∞ − fn−1| | Fn]1{σ=n} � (θ(1)
n f)1{σ=n}.
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Therefore,

E[|f∞ − fσ−1| | Fσ]1{σ<ρ} =
∞∑

n=0

E[|f∞ − fσ−1| | Fσ]1{σ=n<ρ}

�
∞∑

n=0

(θ(1)
n f)1{σ=n<ρ}

� (θ(1)
ρ−1f)1{σ<ρ}

� δλ1{σ<ρ}

� δλ1{Mf>λ}. (A 2)

Using (A 1) and (A 2), we have that

P{Mf > bλ, θ(1)f � δλ} � P{|fτ − fσ−1| � (b − 1)λ, σ < ρ}

� 1
(b − 1)λ

E[|fτ − fσ−1|1{σ<ρ}]

� 1
(b − 1)λ

E[|E[f∞ − fσ−1 | Fτ ]|1{σ<ρ}]

� 1
(b − 1)λ

E[E[|f∞ − fσ−1| | Fσ]1{σ<ρ}]

� δ

b − 1
P{Mf > λ}.

Hence, by Lemma 7.1 of [5],

E[Mf ] � b(b − 1)
δ(b − bδ − 1)

E[θ(1)f ],

provided b − bδ − 1 > 0. By setting b = 2 and δ = 1
4 , we obtain that

E[Mf ] � 16E[θ(1)f ] � 16E[θ(p)f ].

Since m(p)f � θ(p)f + Mf by Minkowski’s inequality,

E[m(p)f ] � 17E[θ(p)f ].

On the other hand, Minkowski’s inequality yields that θ(p)f � m(p)f + Mf � 2m(p)f .
This completes the proof. �

Appendix B.

Proof of (5.1). Because the first inequality of (5.1) is obvious, we prove the second
inequality only. Suppose first that a � 1 and Na(x) < ∞. Then

x∗(s) � Na(x)(1 − log s)1/a for all s ∈ I,
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and therefore

(Px∗)(t) � Na(x)
t

∫ t

0
(1 − log s)1/a ds

� Na(x)
{

1
t

∫ t

0
(1 − log s) ds

}1/a

= Na(x)(2 − log t)1/a

� 21/aNa(x)(1 − log t)1/a.

Thus ‖x‖exp:a � 21/aNa(x). Suppose now that 0 < a < 1 and Na(x) < ∞. Then, using
Lemma 3.2, we find that

(Px∗)(t)a � Na(x)a

{
1
t

∫ t

0
(1 − log s)1/a ds

}a

� Na(x)a a

ta

∫ t

0
(1 − log s)sa ds

s

= Na(x)a

(
1 +

1
a

− log t

)

�
(

1 +
1
a

)
Na(x)a(1 − log t).

Therefore, ‖x‖exp:a � (1 + (1/a))1/aNa(x). This completes the proof of (5.1). �
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