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Abstract

We investigate the strict lower subdifferentiability of a real-valued function on a closed con-
vex subset of R". Relations between the strict lower subdifferential, lower subdifferential,
and the usual convex subdifferential are established. Furthermore, we present necessary
and sufficient optimality conditions for a class of quasiconvex minimization problems in
terms of lower and strict lower subdifferentials. Finally, a descent direction method is
proposed and global convergence results of the consequent algorithm are obtained.

1. Introduction

In this paper we investigate the concept of strict lower subdifferentiability of functions
and its application in mathematical programming. Strictly lower subdifferentiable
functions were defined by Plastria [9] as a sub-class of lower subdifferentiable func-
tions. There has already been considerable investigation of lower subdifferentiability
and its applications, and the most important result is a relation between lower subdiffer-
entiability and quasiconvexity. In particular, a lower subdifferentiable function can be
shown to be quasiconvex and lower semicontinuous. More recently, Martinez-Legaz
[5] proved that lower subdifferentiability of a function can be regarded as a special case
of abstract convexity (see [7]). Further, relations to the tangential of Crouzeix [1] and
the generalized subdifferential of Greenberg and Pierskalla [3] have been established
(see [5]). Another remarkable result is that the classic cutting plane algorithm was
extended to solve quasiconvex programming problems by using the lower subdiffer-
ential. (For details, see [9].) In contrast, there has been limited further discussion on
the relationship between strict lower subdifferentiability and quasiconvexity.

Here we discuss specific characteristics of strictly lower subdifferentiable func-
tions, their relationship to convexity, quasiconvexity, lower subdifferentiability and
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other related properties. We show that the strict lower subdifferential coincides with
the lower subdifferential at every point which is not a global minimizer and that a
strictly lower subdifferentiable function defined on a closed convex set is essentially
quasiconvex and under Lipschitz continuity assumptions the converse is true. We
also show that under some additional assumptions the strict lower subdifferential of
a strictly quasiconvex function at a given point coincides with the usual 'convex sub-
differential' of a specially related convex function. Consequently we can apply the
powerful methods of convex analysis to the study of the strict lower subdifferential.
We study constrained and unconstrained minimization problems involving strictly
lower subdifferentiable functions. In particular, we present a necessary and sufficient
optimality condition for a class of essentially quasiconvex programming problems
in terms of the strict lower subdifferential. Finally, we propose a descent direction
method for minimizing a class of boundedly strictly lower subdifferentiable functions.

This paper is structured as follows. In Section 2 strictly lower subdifferentiable
functions are introduced and their basic properties are outlined. Section 3 presents
results on the structure of the strict lower subdifferential at extreme points of level sets
of the given function. In Section 4 we present optimality conditions for minimization
problems involving strictly lower subdifferentiable functions. Finally in Section 5 we
discuss a descent direction method for a class of unconstrained quasiconvex mini-
mization problems.

This paper is dedicated to Bruce Craven and Bert Mond on the occasion of their
retirement. It is a contribution to nonsmooth analysis and mathematical programming,
two areas in which Bruce Craven and Bert Mond have made substantial and deep
contributions over several decades.

2. Strict lower subdifferentiability - basic properties

In this paper we consider a lower semicontinuous function / : K" -»• K+oo with
a closed convex domain denoted dom/ = {x e R" : f (x) < +oo}, where R+oo =

Throughout this paper we shall use the following notation: [x, v] will represent
the inner product of vectors x, y of OS" and || • || will denote the Euclidean norm.
Let cl £2, bd £2, and int £2 denote the closure, boundary, and interior of Q respectively.
Likewise, we use ep i / , c o / , and c l / to denote the epigraph, convex hull, and closure
of a function / (see for example [11]). Let cone £2 = [Xx : k > 0, x e £2} denote the
cone generated by £2.

Let Sf(y) = {x € IK" : f (x) < /(v)} and Tf(y) = {*€»" : / ( * ) </(>>)}. Let
Df denote the set of global minimizers of / .
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[3] Strict lower subdifferentiability and applications 381

A function / is said to be lower subdifferentiable at a point y if

3 - / 00 = {veRn:(yx€Tf (y))[u, x - y] < f (x) - f (y)} ̂  0}.

If y e D*, then Tf (y) = 0. In this case d~f (y) = W. The set d~f (y) is called the
lower subdifferential of the function / at the point y. A function / is called lower
subdifferentiable if d~f (y) ^ 0 for all y e dom/ .

A function / is said to be strictly lower subdifferentiable at a point y if

Kf 00 = ( » € « " : (v* e S, (y))[w, x - y] < f (x) - / (y)} # 0}.

The set 87/ (y) is called the sfncf /ower subdifferential of the function / at the point
y. A function / is called strictly lower subdifferentiable if d~f(y) ^ 0 for all
y € dom/ .

The notion of strict lower subdifferentiability and lower subdifferentiability were
introduced by Plastria [9]. Clearly d~f (y) is a closed convex set. We now look into
the structure of d~f (y).

Let ft be a convex set with y e ft. Denote the recession cone of Q by re Q = {v :
(Vi/ 6 ft, A. > 0)v' + kv € ft}, and the normal cone of ft at y by N(y, ft) = {v :
(Vx € ft)[v, x — y] < 0}. We have the following easily established results.

PROPOSITION 2.1. Ifd~f (y) is nonempty, then d~f (y) C N(y,Sf (y)) = re d~f (y).
Furthermore if S/ (y) w convex and y e bd 5/ (y), f/ze/i 3S~/ (y) ^ 0.

PROPOSITION 2.2. The following hold:

(a) 0 6 d;f (y) i/and on/y i/y e D/;
(b) tfie sef D} is a singleton if and only ifd'f (y) = R";
(c) ify € int 5/ (y) W 37/ (y) ^ 0, rAen 3f"/ (y) = {0}.

Next, we shall compare djf (y) and 3_/(y). Obviously d~f(y) c a " / ^ ) . but
the reverse inclusion does not necessarily hold.

PROPOSITION 2.3. Lety € dom/. If cl Tf(y) = Sf(y), then d~f(y) = d~f(y).

Note that lower subdifferentiability implies quasiconvexity and lower semiconti-
nuity [9]. Using Proposition 2.2, we can prove that the condition cl l/(y) = S/(y)
can be replaced by the continuity of/.

PROPOSITION 2.4. Suppose that int dom/ ^ 0 . Iff is continuous on dom/ and
strictly lower subdifferentiable, then d~f (y) = 3 " / (y)for all y g D*r
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In the following we will investigate the relationship between strict lower subdif-
ferentiability and essential quasiconvexity. Recall that a quasiconvex function / is
called essentially quasiconvex if each local minimizer of/ is global. It is not difficult
to show that every local minimizer of a strictly lower subdifferentiable function with
respect to a closed convex set is a global minimizer. With this, we can obtain the
following result.

PROPOSITION 2.5. Iff is strictly lower subdifferentiable on dom / , then it is essentially
quasiconvex.

The converse to Proposition 2.5 does not necessarily hold, for example, consider
the function

0 x = 0;

f (x) = • -xln(-;c) x e [—1,0);

+00 otherwise.

However under additional assumptions we have the following result.

PROPOSITION 2.6. Suppose that intdom/ is non-empty. Iff is Lipschitz and essen-
tially quasiconvex on dom/ , then f is strictly lower subdifferentiable on dom/ .

As we have shown, a strictly lower subdifferentiable function / is essentially qua-
siconvex. There are various definitions of generalized subdifferential for quasiconvex
functions (see, for example, [8] and the references therein). It is interesting to compare
strict lower subdifferentiability with some of these definitions. Here we consider the
following generalized subdifferential:

3,7 GO = [v • [«.*] > [v.y] = » / ( * ) > / G O } .

PROPOSITION 2.7. Letf be strictly lower subdifferentiable. Thend~f(y) C 3*/GO.
for y e dom/.

A relationship between the lower subdifferential and the generalized subdifferential
of Greenberg and Pierskalla [3] was established by Martinez-Legaz [5].

If/ is a convex function we can compare d~f (v) and 3/ (y) which is the usual
convex subdifferential, see Rockafellar [11]. The proof of the following is straight-
forward.

PROPOSITION 2.8. Assume that f is convex and let y 6 ridom/ where ridom/ is the
relative interior of Aomf. Then
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We now analyse the set valued mapping x i—• ds f (x).

PROPOSITION 2.9. Suppose that intdom/ ^ 0 and f is continuous on dom/ and
strictly lower subdifferentiable. Then the mapping x i->- d~f (x) is closed on dom/.

PROOF. Let xk -> x, vk -> v with vk € 3,"/ (xk). We must verify that v e d~f (x).
First assume x & D*{. Then xk & D*f for sufficiently large it, say for it > K. Applying
Proposition 2.4 we conclude that d~f(x) = d~f(x) and d;f{xk) = d~f(xk) for
k > K. Let y e 7̂  (*) and s = ^(f (x) — f (y)). Since / is continuous, for
sufficiently large it > K, we have f (xk) > f (x) — s > / ( y ) , and so y e ??(**)•
Since i;* € d;f(xk) = d~f(xk), we have [vt,y - xk] < f (y) -f(xk). Thus
[v, y - x] < f (y) - / (x) and v € 3~/ (x) = d~f (x). Secondly, suppose x € D*{.
Then d;f {x) = W and therefore w € 3f/ (x).

3. The strict lower subdifferential at level set extreme points

Letg : K" -+ K+0O be a convex function. If dom g — Sg(y), then 87/(y) = 3/(y).
We will use this relationship to study strict lower subdifferentiability.

Throughout this section let / be a quasiconvex lower semicontinuous function and
let y € dom/. Then 5/ (y) is closed and convex. Assume that d~f (y) is not empty.
Set

( xes'(y)'

Then d~f(y) = d~fy(y). We shall use the function / , to study d~f(y). Let
c o / be the convex hull of the function / (that is co(epi/) = epi(co/)) and let
(clco/)(x) = liminfl._>Jt(co/)(;c') be the closure of/. It is well known (see [11])
that c lco / = /** where / * denotes the Fenchel conjugate function to / , that is,
f*(v) = suPjt6R.{[t;,jc] - / ( * ) } , a n d / " = (/*)*. Thus (see [11]) (clco/)(*) =

" '*] + c)> w h e r e

s(/) = {(v,c) 6 R" x R : (VJ e W)[v, x] - c < f (x)} = epi/*.

THEOREM 3.1. Ify is an extreme point ofSf{y), then

3,-/00 = 3(co/,)00.

We need the following lemmas in the proof of this theorem.
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LEMMA 3.1. Ifdomf** is bounded, then/** = cof.

This result follows directly from [4, Proposition 1.5.4]. Using the definition of a
convex hull of a function and the definition of an extreme point, we can also obtain
the following result.

LEMMA 3.2. If the conditions of Theorem 3.1 are satisfied, then c\cofy — cofy and
(cofy)(y)=f(y).

PROOF OF THE THEOREM. First we will prove the inclusion

Take the set

sify) = {(v, c) : ( V * e Sf (y))[v, x ] - c < f ( * ) } .

Since the lower semicontinuous function/ is bounded below on the compact set 5/ (y)
it follows that s(fy) is nonempty. Applying Lemma 3.2 we conclude that

(cofy)(x) = (clcofy)(x) = sup{[v,x] — c: (v,c) e s(fy)}, for all* e Sf(y).

For v € 3S~/ 00 we have [v,x - y] < f (x) - f (y) for all x e Sf{y). Let c =
[v,y]-f(y). Then for all x € S/(y), [v,x] - c < / ( x ) and

( C O / , ) ( J C ) = ( c l c o / , ) ( * ) = s u p ( [ « ' , x] - c') > [v, x ] - c

= [v,x] - [v, y] +f(y) = [v,x] - [v, v] + (co fy)(y).

Since domfy = Sf (y) it follows that v € dfy(y). Thus (1) has been proved. Now we
prove the reverse inclusion. Since cofy(x) < fy(x) = f (x) for all x e Sf(y) and
cofy(y) = fy(y) = f Cy) we have, for v e dfy(y) and any x € 5/ (y),

[v,x-y]<cofy(x)-cofy(y)<f(x)-f(y).

Thusu €

COROLLARY 3.1. Assume that dom/ is bounded. Iff is strictly quasiconvex in the
following sense:

(Vx,ye dom/,* # y, Va e (0, 1)) /(ax + (1 - a)y) < max{/(x),/(y)},

3,-/00 = d(cofy)(y)forall y e dom/.
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Theorem 3.1 allows us to apply the methods of convex analysis for studying the
strict lower subdifferential at a point y which is an extreme point of the set 5/ (y).

PROPOSITION 3.1. Assume that the conditions of Theorem 3.1 hold. Then the following
are equivalent:

(a) u e 3,- /00;
(b) The function x >->• [v,x] — f (x) achieves its supremum over the set 5/ (y) at the

point y;
(c) f (y)+ (/,)*&) = [v,y];
(d) f(y) + (fynv)<[v,y];
(e) y

PROOF. The results follow directly from Theorem 3.1 and [11, Theorem 23.5].

We can exploit Theorem 3.1 in the study of the strict lower £-subdifferential. For
e > 0, the set

KJ 00 = <u : Ofr e sf 00) [v. x-y]-e<f(x)-f 001

is called the strict lower £-subdifferential off at y.

PROPOSITION 3.2. Suppose that the conditions of Theorem 3.1 hold for the function f
and the point y. Then, for s > 0, we have

where de(co fy)(y) is the usual e -subdifferential of the convex function cofy at the
point y.

4. Optimality conditions

In this section we consider the following minimization problem:

(P)min/GO

subject to x e C,

where dom/ = OS", C is a closed convex set with int C ^ 0. Let ker(/) = [x :
/ ( * ) = / « > ) } .

ASSUMPTION 4.1. Assume f satisfies the following: / (0 ) = inf[f(x) : x € K"}, and
ker(/)nC = 0.
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This assumption is reasonable in practice (see [12] for a discussion). Note that
Thach and Kojima [12] presented a necessary and sufficient optimality condition
for (P) in terms of the generalized subdifferential under Assumption 4.1 and essential
quasiconvexity. In what follows, we shall propose a necessary and sufficient optimality
condition for (P) in terms of (strict) lower subdifferentials under similar assumptions.

THEOREM 4.1. Letf be locally Lipschitz on W, lower subdifferentiable at every point
in C, and essentially quasiconvex on C. Assume that Assumption 4.1 holds, x* € C,
and Tf(x*) is bounded. Then x* is optimal for (P) if and only if

C). (2)

PROOF. Suppose that x* satisfies (2). Then there exists v e 3 / (x*) such that
-v e N(x*,C). By definition, for each x e Tf(x*),0 > / ( * ) - / ( * * ) > [v,x-x*].
Equivalently if there exists a point x such that [v, x — x*] > 0, then x g Tf (x*). On
the other hand, for every x e C, [v, x — x*] > 0. Thus, x & Tf (x*), for every x e C,
which proves that x* is a global minimizer of/ over C.

Conversely, if x* is a global minimizer of (P), then x* e bd C, otherwise x* € int C
is the global minimizer of/ which contradicts our assumption.

Clearly C D Tf(x*) = 0. Since/ is continuous it follows that Tf(x*) is open.
By the separation theorem, there exists a v ^ 0, with ||u|| = 1 such that, for each
x e Tf (x*), [v, x — x*] < 0 and, for every x' e C,[v,x' -x*]> 0. Let P denote the
plane {JC : [v, x — x*] — 0}, x denote the orthogonal projection of x e Tf {x*) onto P.
Clearly x $ Tf(x*). Thus f (x) - f (x*) > f (x) - f (x). Since Tf(x*) is bounded,
then the projection of Tf(x*) on P is bounded. By assumption there exists a positive
constant L such that/(;c) — f (x) > -L\\x - x\\. Since ||;c — Jc|| = [v,x* - x],
then f(x)-f (x*) > [Lv, x - x*]. Note that x is arbitrarily taken from Tf (x*). We
conclude that Lv € d~f (x*). Note also that [Lv, x' - x*] > 0 for all x' € C. This
proves (2) as required.

By applying Proposition 2.4, Proposition 2.5 and the above theorem, we have the
following result.

COROLLARY 4.1. Letf be locally Lipschitz on W, and strictly lower subdifferentiable
on R". Assume that Assumption 4.1 holds, x* 6 C, and Tf{x*) is bounded. Then x*
is optimal for (P) if and only ifO € d;f (x*) + N(x*, C).

When C is represented by a finite number of inequalities, we have the following.
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THEOREM 4.2. Let gt be locally Lipschitz on W, C, = [x <= Rn : gt(x) < 0}, (i =
1, . . . , m), C = fltei c » and i n t C ^ 0. Assume that, for i = 1 , . . . , m, C, is
convex, and gt is lower subdifferentiable at every point in C,. Assume also that f is
locally Lipschitz on K", lower subdifferentiable at every point in C, and essentially
quasiconvex on C. Let x* € C. Thenx* is optimal for (P) if and only if

m

0e 3-/(**) + ]£cone 3
1 = 1

PROOF. By Theorem 4.1, it suffices to prove that Y17=iconed~Si(x*) = N(x*, C). Let
K(x, C) denote the tangent cone of C at x. Since C, is convex, it is well-known that

K(x*, C) = ! X i *(**• C<)> md N(x*- C ) = -(*(**• O)*, where (K(x\ C))*
denotes the conjugate cone of K(x*, C). Also

/A V
TV (x , L-) = —(.A. (X , L-)) = — I I K (X , C,J I

• i I i

= cl

By [5, Proposition 4.17], N(x\ Q) = cone d-gi(x*). Since int C ^ 0, it follows that
int A"(A:*, C) ^ 0 and therefore the cone N(x*, C) = -(K(x*, C))* has a compact
base. It is well-known that the sum of closed cones contained in a cone with a compact
base is also closed. The proof is complete.

5. Descent direction methods

In this section, we shall discuss numerical methods for minimizing a boundedly
strictly lower subdifferentiable function over a closed convex set C c I". There
have been some specific numerical methods developed for solving quasiconvex mini-
mization problems. The most noteworthy ones are Gromicho's ellipsoid method and
Plastria's cutting plane method.

In this section, we shall discuss an alternative approach by introducing a descent di-
rection method for solving a special class of unconstrained quasiconvex minimization
problems.

A function / is said to be boundedly strictly lower subdifferentiable at a point
y 6 dom/ if there exists a positive constant M such that the following set is non-
empty

3Hf(y) = 3f /O0f>' e r : "VH ̂  M>-
From the definition, it is clear that 3 ^ / (y) is a closed convex set.

https://doi.org/10.1017/S0334270000010961 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010961


388 H. Xu, A. M. Rubinov, B. M. Glover [10]

THEOREM 5.1. Assume that f is continuous on dom/ and boundedly strictly lower
subdifferentiable at every point of a compact convex set C C dom/. Then d^f (•) is
upper semicontinuous on C.

PROOF. It is well-known that a closed set-valued mapping with compact graph is upper
semicontinuous, see, for example, [6]. Hence it suffices to show that 3 ^ / (•) is closed.
Let xk G C and xk —*• x, vk G d^f (xk), and vk —*• v. We need to prove that v €
d^fix). By definition, \\vk\\ < M, thus ||u|| < M. Since 3^/(xk) C d;f(xk), and
d~f (•) is closed (by Proposition 2.9), we have v e d~f (x). Therefore v e d^f (x).
The proof is complete.

Using Theorem 5.1, we can easily obtain the following.

LEMMA 5.1. Assume that f is boundedly strictly lower subdifferentiable at every point
of a compact set C c dom/ , with x G int C, d G K", and d ^ 0. Ifd is not a descent
direction, then there exists v G 3 ^ / (JC), such that [d, v] > 0.

THEOREM 5.2. Assume that f is boundedly strictly lower subdifferentiable at every
point of a compact set C C dom/, and let x € int C. IfO g d^f (x), then there exists
a v e 3 ^ / (x) such that —v is a descent direction off at x.

PROOF. For the sake of contradiction assume that, for every v € d^f(x), — v is
not a descent direction. Then, by Lemma 5.1, there exists v* e 3 ^ / (x), such that
[v, v*] < 0. Let a(v) = {v* € d^f (x) : [v, v*] < 0}. Then for all v e d^f(x),
a(v) ^ 0, a(v) C d^f (x), and a{v) is convex. Further a(-) is closed. By the
Kakutani fixed point theorem, there exists v € d^f (x) such that [v, v] = ||v||2 < 0,
thus 0 G d^f (x),& contradiction.

LEMMA 5.2 ([2]). Let C c dom/ be a closed convex set in W with 0 £ C and
d* = argmin{||rf|| : d e C). Then [d, d*] > Oforallde C.

Now let

fc = -argmin{ |M| : i ;G3«/(x)} . (3)

We have the following theorem.

THEOREM 5.3. Assume that f is Lipschitz and strictly lower subdifferentiable at every
point of a compact set C C dom/ and let x G int C. IfO & d^f (x), then h, defined
by (3), is a descent direction.
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PROOF. For the sake of a contradiction, assume h is not a descent direction. Then,
by Lemma 5.1, there exists v* e d^f (x) such that [h, v*] > 0. Also, since d^f (x)
is convex and 0 & d^f(x), by Lemma 5.2, [h, v*] < 0, which leads to the desired
contradiction.

By Theorem 5.3, we can find a descent direction for a boundedly strictly lower
subdifferentiable function / at the interior of a compact set when 0 £ 3 ^ / (x). The
process is summarised in the following algorithm.

ALGORITHM 5.1 (Finding a Descent Direction). Step 1. Let &Z0 Q djuf (*) be a con-
vex set, set k := 0.

Step 2. Compute hk = — argmin{||/i|| : h e srfk), ifhk is a descent direction, then
stop.

Step 3. Find ak 6 d^f(x), such that [hk, ak] > 0, and set srfM = co(.$#* U(a*})>
k:=k + l,go to Step 2.

PROPOSITION 5.1. Let [hk} be generated by Algorithm 5.1. Suppose thatO & d^f (x).
Then

(a) ||At+1|| < ||At||;
(b) the process must terminate in a finite number of steps.

PROOF, (a) By the definition of hk we have [a, hk] < 0 for all a e si^k. Since
[hk, ak] > 0, we have ak & £?k. Thus srfk c M+i ^ 3.^/ (*)• The last inclusion is
due to the convexity and closedness of 3 ^ / (x). Let k = [hk, ak + hk]/\\ak + ht\\

2.
Then k e (0, 1), hk = —hk + k(ak + hk) e £?k+i, and by a simple calculation,
IIM2 = IIM2 - ^2llfl* + M 2 < ll^ll2- Thus \\hk+i\\

2 < \\hkf.
(b) For the sake of a contradiction, assume that the process is infinite. Since

aj e &/k, for j = 1 , . . . ,k - 1, and -hk e M , then [aj,-hk] > \\hk\\
2. Note

that [hk,ak] > 0. Thus [hk,ak - a,] > || - hk\\
2. Note also that [hk+l,hk] =

[-hk+u -hk] > || - hk+l\\
2 > 0 and \\ak\\ is bounded by M. By [4, Lemma 2.1.1],

hk -+ 0. Note that — hk e d^f (x) and 3 ^ / (x) is closed. This leads to a contraction.

The result above allows the calculation of a descent direction for a boundedly
strictly lower subdifferentiable function / at a point x where 0 ^ d^f (x). Indeed,
a descent direction can be calculated using the Clarke subdifferential dcf (x). More
precisely, if 0 ^ dcf(x), then a descent direction can be found. In the past few
decades several descent direction methods using the Clarke subdifferential have been
developed, such as the e-subgradient method and its variations (see [10]). These
results have been shown to be both robust and efficient. It is reasonable therefore
to propose an algorithm which incorporates the main features of these well-known
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algorithms with a specific technique for dealing with Clarke stationary points, (that is,
points at which 0 € dcf (x)).

We now describe such a hybrid algorithm.

ALGORITHM 5.2 (A Descent Direction Method). Step 1. Letx0 e dom/, set k = 0.
Step 2. Let yo = xk. Take yo as a starting point and use the e-subgradient algorithm

to minimize (P) until the algorithm terminates at some point y such that
OedJ(y),setxk = y;

Step 3. Compute hk with Algorithm 5.1. lfhk = 0, then stop;
Step 4. Compute stepsize: tk = argmin,>0 {/(.** + thk)}. Set xk+l = xk + tkhk, k :=

k + 1, go to Step 2.

THEOREM 5.4. Assume that f is continuous and boundedly strictly lower subdifferen-
tiable at every point of any compact convex subset ofdomf and let [xk] be generated
by Algorithm 5.2 with x0 6 int dom/. Suppose that Sf (x0) is bounded, 0 g dcf (x0),
and f has no point with a neighborhood containing an infinite number of Clarke
stationary points. Then the sequence {xk} generated by Algorithm 5.2 converges to
the global minimizer off.

PROOF. By assumption, / ( x , ) < f(x0). Let So = {x € Rn : f (x) < [f (*,) +
/ (*o)]/2). Then for k > 1, [xk] c So C Tf (x0) C 5/ (x0). Thus, the sequence and its
accumulation points remain in the interior of a compact set.

Assume that the algorithm terminates at some finite &0- Note that x^ e So C
Tf(x0) C Sf(x0), that is, x^ is in the interior of a compact set. Then 0 € d^fix^)
and Xh, is the global minimizer.

Now assume that x is an accumulation point of [xk}. Then there is a 8 > 0 such that
B(x,8) c Tf(x0), where B(x,8) denotes the ^-neighborhood of x. If 0 6 d^f(x),
then x is the global minimizer. Otherwise, let 8 be sufficiently small so that B(x, 8)
does not contain any other Clarke stationary points except x. That means that whenever
there is an iterate xk which occurs in B(x, 8), the e-subgradient algorithm terminates
at x. But this is impossible since 0 ^ d^f (x), thus a descent direction can be found
at x. The proof is complete.
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