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Abstract
This work explores the morphology and dynamical properties of cores within rich superclusters, highlighting their role as transitional struc-
tures in the large-scale structure of the Universe. Using projected and radial velocity distributions of member galaxies, we identify cores
as dense structures that, despite being gravitationally bound, are not yet dynamically relaxed. However, they exhibit a tendency towards
virialisation, evolving in a self-similar manner to massive galaxy clusters but on a larger scale. Morphological analysis reveals that cores are
predominantly filamentary, reflecting quasi-linear formation processes consistent with the Zeldovich approximation. Our estimates of the
entropy confirm their intermediate dynamical state, with relaxation levels varying across the sample. Mass estimates indicate efficient accre-
tion processes, concentrating matter into gravitationally bound systems. We conclude that cores are important environments where galaxy
evolution and hierarchical assembly occur, bridging the gap between supercluster-scale structures and virialised clusters.
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1. Introduction

The evolution of structures at various scales in the Universe is
understood today through the hierarchical formation model (e.g.
Peebles 1980; Padmanabhan 1993) in a �CDM scenario. The level
of substructuring that a galaxy system (cluster or group) or larger
structure could exhibit is a consequence of this hierarchical for-
mation process. In fact, the presence and dynamical significance of
substructures (i.e. their prominence andmeasurable impact on the
overall properties) in a particular structure can be considered as an
observational estimator of its evolutionary state (e.g. Araya-Melo
et al. 2009). More dynamically evolved systems, such as virialised
rich clusters, exhibit a more regular – spatial and velocity – distri-
bution of galaxies with negligible or no substructures (e.g. Caretta
et al. 2023; Zúñiga et al. 2024b, and references therein).

On the other hand, superclusters are generally not considered
dynamically relaxed and globally gravitationally bound structures
(e.g. Oort 1983; Pearson et al. 2014; Sankhyayan et al. 2023), pre-
senting clear signs of substructuring at various scales ranging from
isolated systems to large filaments and dense ‘nodes’ in their inter-
sections (e.g. Einasto et al. 2007b; Santiago-Bautista et al. 2020).
Superclusters are considered the youngest structures being formed
under gravitational influence and still retain the memory of their
formation history (e.g. Chon, Böhringer, & Nowak 2013; Einasto
et al. 2019), making them important laboratories for testing cos-
mological models of structure formation and evolution across
different scales (e.g. Einasto et al. 2021).
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The study of the internal structure of rich superclusters has
revealed the presence of ‘central regions’ within most of them
(Einasto et al. 2007c, 2008). These regions, known as cores, are
characterized by high density contrasts in both galaxy number
and mass. In our previous work (Zúñiga, Caretta, & Andernach
2024a, hereafter Paper I), a catalogue of such cores was com-
piled for a sample of rich superclusters. Specifically, they were
identified as gravitationally bound structures, comprised of two
or more clusters and groups, representing significant cosmolog-
ical overdensities high enough to suggest they will virialise in
the future. A supercluster can host more than one core depend-
ing on its mass; generally, more massive superclusters tend to
host a greater number of cores. It is more likely to find multiple
cores within superclusters with masses ≥ 1015 h−1

70 M�, indicating
a more complex and densely populated internal structure in these
structures.

In Paper I, cores are regarded as nucleation regions because
they are zones within superclusters where matter accumulates
and condenses, forming denser and more compact structures. In
these zones, rich clusters act as ‘seeds’ around which additional
matter, whether from galaxies, galaxy systems, or filaments con-
necting different parts of the supercluster, gathers and aggregates.
Essentially, cores are focal points of dynamic activity and struc-
ture formation within superclusters, where processes of accretion
and merging of matter are predominant (e.g. Marini et al. 2004).
This makes them important regions for the growth and devel-
opment of large-scale structures. Moreover, the high density and
dynamical interactions within cores provide unique environments
for studying the interplay between dark and baryonic matter, and
the influence of cosmic web filaments, thereby offering valuable
insights into the mechanisms driving cosmic structure formation
and evolution.
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Figure 1. Distribution of line-of-sight galaxy velocity dispersions in DCC cores, along with the double Gaussian fit (red solid line) and its components: Gaussian 1 (blue dashed line)
and Gaussian 2 (green dotted line).

In this work, we focus on studying the dynamical state of
cores through various approaches, including the analysis of the
spatial and velocity distributions of their member galaxies, their
morphologies, their entropies, and the estimation of their virial
parameters. Our goal is to understand the evolutionary state of
these structures, apart from finding out whether they are grav-
itationally bound. Under the hierarchical formation model, we
hypothesise that coresmight be in an intermediate relaxation state
between virialised clusters and the superclusters in which they
reside.

Throughout this paper a flat�CDMcosmology is used with the
following parameters: Hubble constantH0 = 70 h70 km s−1 Mpc−1

with matter density �m = 0.3, curvature density �k = 0, and dark
energy density �� = 0.7.

2. Data

2.1. Our sample of cores

For this study, we used the full core sample from the Density-
based Core Catalogue (DCC, Paper I), a catalogue containing a
total of 105 cores in 53 nearby rich superclusters, with redshifts
between 0.02 and 0.15. The cores were selected from candidate
structures that were initially identified using improved perco-
lation techniques (based on the DBSCAN and FoF algorithms,
e.g. Ester et al. 1996; Berlind et al. 2006) applied to samples of
galaxy systems present in the regions of rich superclusters of
the Main SuperCluster Catalogue (MSCC, Chow-Martínez et al.
2014) based on Abell/ACO clusters (Abell 1958; Abell, Corwin, &
Olowin 1989). The selection of coreswas based on physically moti-
vated density criteria proposed in the literature (see, for example,
Dünner et al. 2006; Chon, Böhringer, & Zaroubi 2015), defining
them as structures with a high probability of future collapse and
virialisation despite cosmic expansion.

In particular, in Paper I we defined cores as galaxy struc-
tures with masses M≥ 5× 1014h−1

70 M�, R≥ 7.86, and �cr ≥
1.36, where

R≡ ρov

ρb
, (1)

is the density ratio between the meanmass density of an overdense
region, ρov, and the mean local background density, ρb, and

�cr ≡ ρov

ρcr
− 1, (2)

is the density contrast, with ρcr = 3H2(z)/8πG being the critical
density of the Universe at redshift z. These parameters are used to
assess whether a given structure is likely to remain gravitationally
bound and eventually virialise in the future.

The DCC catalogue contains cores of some well-known super-
clusters of the Local Universe (such as Corona Borealis, Shapley,
Ursa Major, Coma-Leo, Hercules, Böotes, among others), which
have already been identified and studied in previous works (e.g.
Kopylova & Kopylov 1998; Bardelli et al. 1994; Einasto et al. 2008).
Additionally, new cores within other superclusters were identified,
generating a systematically constructed and statistically significant
sample for studying these structures.

For each MSCC supercluster in our sample, we selected galaxy
samples with spectroscopic redshift from the Sloan Digital Sky
Survey (SDSS DR13, Albareti et al. 2017), the 2dF Galaxy Redshift
Survey (2dFGRS, Colless et al. 2001), or the 6dF Galaxy Survey
(6dFGS, Jones et al. 2009), depending on the region of the sky
where it was located. Galaxy systems were identified from these
samples using iterative system identification algorithms based on
the works of Biviano et al. (2006) and Santiago-Bautista et al.
(2020). Our full sample of systems consisted of a total of 3 337
groups and clusters, including about 527 Abell/ACO clusters, as
well as many others that match systems from other published
catalogues of galaxy systems.

Beyond the homogeneity in the identification and analysis
algorithms (which also include adjustments to local densities), we
also limited our samples of superclusters to the ones completely
inside the area and restricted to the redshift limits of each survey,
as captured in Figure 1 of paper I. SDSS-DR13 contains the Sloan
Legacy Survey (DR7), which is complete and deep enough for our
aims, despite receiving photometric and spectroscopic improve-
ments through the subsequent DRs. SDSS-DR13 and 2dFGRS
have similar depth, which guarantee the coverage to zlim ∼ 0.15,
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while 6dFGS is shallower (zlim ∼ 0.08) and was used only up to
this redshift limit.

2.2. Core galaxy sample

Themember galaxies of each DCC corewere defined as all galaxies
up to a distance of 3.5Ri

vir from the centroid of each i-th member
system in the supercluster galaxy sample in 3D rectangular coor-
dinates and corrected for the corresponding Finger-of-God effect
(FoG, e.g. Coil 2012). Following Santiago-Bautista et al. (2020),
we refer to this as the ‘supercluster box’. The transformations
from equatorial to rectangular coordinates were performed in the
form

X =Dc cos δ cos α,
Y =Dc cos δ sin α,
Z =Dc sin δ, (3)

where α = RA, δ =Dec and

Dc(z)= c
H0

∫ z

0

dz′

E(z′)
, (4)

is the line-of-sight comoving distance (e.g. Hogg 2000) of the
object defined by its redshift z, c is the speed of light, and

E(z)≡
√

�m(1+ z)3 + ��. (5)

Within a distance of 3.5Ri
vir from the centre of each mem-

ber system, we expect to include galaxies up to their turn-around
zone (a region that encompasses galaxies on the zero-velocity
surface of each system, as well as those that are decelerating
while approaching this surface, and those that have begun moving
towards collapse towards the system’s centre), along with galaxies
in bridges between them and galaxies in the dispersed component
of the cores.

3. Galaxy distributions in cores

A first analysis of the dynamical state of the cores was carried out
for their selection process (see Paper I), making it clear that they
are mostly gravitationally bound structures. Furthermore, since
the cores represent cosmologically significant overdensities, they
could already be in the process of, or close to, gravitational col-
lapse, to then reach virial equilibrium in the future. However,
although the marginal state of equilibrium of the cores is well
known – or at least theoretically assumed – due to their self-
similarity to any galaxy system, little or nothing is known about
their current dynamical states. We do not know how far or close
they are from such an equilibrium.

The study of the spatial and velocity distributions of the mem-
ber galaxies of a system helps to give us an idea of its evolution-
ary state. In fact, observations reveal that, as the galaxy system
approaches dynamical equilibrium, such distributions tend to sta-
tistically known shapes (see structure evolution in simulations, e.g.
Araya-Melo et al. 2009). For example, galaxies in regular clusters
tend to have a normal (or Gaussian) line-of-sight velocity distri-
bution, as well as a projected (spatial) distribution that is very well
fit by a King profile (e.g. Adami et al. 1998; Sampaio & Ribeiro
2014; Zúñiga et al. 2024b). Since the dynamics of the galaxy struc-
tures that have detached from the Hubble flow is only dominated
by gravity, they evolve in a self-similar way to smaller galaxy sys-
tems tending towards virialisation. Thus, the spatial and velocity
distributions of member galaxies of cores are expected to change

throughout the evolutionary processes they undergo to reach the
dynamical relaxation like in very rich clusters.

3.1. Velocity distribution of galaxies

The line-of-sight velocity distributions of galaxies in the cores
were studied from the spectroscopic redshifts zi ≈Vri/c of galax-
ies, whereVri is the radial velocity of the i-th galaxy and c the speed
of light. For each DCC core, the set of redshift values of its Ng
member galaxies was examined to explore whether it follows an
underlying normal distribution. A preliminary analysis of skew-
ness and kurtosis provided an initial qualitative assessment of the
redshift distributions, revealing a variety of patterns: some closely
resembling normal distributions, while others exhibited features
such as flattened shapes, double peaks, or heavy tails. However,
this initial exploration was intended only as a guide to identify
possible deviations and to gain some insight into the underlying
dynamics of the galaxies within the cores, as the subsequent anal-
ysis focused on quantifying these deviations using more robust
statistical tests.

To formally assess the extent of these deviations, we applied
a suite of statistical tests, including the Anderson–Darling (AD),
Jarque–Bera (JB), and Lilliefors (L) tests. These tests evaluate
whether the null hypothesis – that a sample of redshift values
follows a normal distribution – can be rejected in favor of an alter-
native hypothesis suggesting significant deviation from normality.
Each test returned a binary result, where htest = 1 indicated rejec-
tion of the null hypothesis (when p-values < 0.05), and htest = 0
otherwise. The results of these tests, presented in Columns 2 and 3
of Table 1, provide a more rigorous and quantitative evaluation of
the observed patterns, allowing us to distinguish between genuine
deviations and random fluctuations from normality.

By combining the results from the three statistical tests, we
found that about 30% of the studied cores exhibit line-of-sight
velocity distributions consistent with an underlying normal distri-
bution within a significance level of 0.05, while the remaining 58%
deviate from this behavior. Although the results for another 12%
suggest that in some cores the radial velocity distributions are not
far from normal, this alone is insufficient to conclude that they
are dominantly relaxed structures. While a more advanced evo-
lutionary state compared to their host superclusters is probable,
the cores still remain highly substructured. Since the radial veloc-
ity distributions of galaxies in cores are mostly non-Gaussian, we
infer that these galaxies have not yet reached a Maxwelliana 3D
velocity distribution, which indicates that the cores are not dynam-
ically relaxed, as expected. This lack of ‘relaxation’ in the velocity
distributions is a key indicator that cores are still in the process of
forming and evolving.

3.1.1. Bimodality in the distribution of velocity dispersions of core
galaxies

Since the line-of-sight velocity distributions of member galaxies
deviate from normality in most cores, their bulk velocities and
velocity dispersions must be calculated using robust statistical
estimators. In particular, here the bulk velocities and velocity dis-
persions in the line of sight (LOS) were estimated using Tukey’s

aThis arises because each component of the total velocity is treated a statistically inde-
pendent random variable, and projecting a Maxwellian distribution (typical of systems in
equilibrium) onto a single axis results in a Gaussian distribution (e.g. Binney & Tremaine
2008).
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Table 1. Summary of the spatial, velocity, and dynamical properties of DCC cores.

ID htest p-values V̄LOS σv 
0 rc γ R2
det Rh Mc

vir HZ Prelax

DCC AD JB L AD JB L (km s−1) (km s−1) (gal/h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (1014h−1
70 M�) (nats)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

001 1 1 0 0.0473 0.0127 0.1056 19 373 831 7.12 2.25 1.42 0.997 6.48 40.92 12.98 0.78

002 1 1 1 0.0005 0.0010 0.0010 18 319 697 17.08 2.83 3.29 0.995 4.15 18.40 13.09 0.78

003 0 0 0 0.3164 0.3793 0.1091 17 931 450 17.57 1.02 1.31 0.984 5.71 10.58 12.17 0.55

004 0 0 0 0.6894 0.5000 0.5000 18 957 372 11.49 2.92 3.33 0.898 3.97 5.01 11.30 0.63

005 1 0 0 0.0214 0.2638 0.0523 31 954 522 9.09 2.63 2.18 0.996 4.20 10.44 12.17 0.81

006 0 0 0 0.9120 0.5000 0.5000 32 576 411 – – – – 4.08 6.29 11.68 0.72

007 1 1 1 0.0012 0.0050 0.0039 33 734 514 – – – – 4.67 11.28 12.60 0.58

008 1 1 1 0.0041 0.0010 0.0227 33 719 370 – – – – 4.01 5.03 11.79 0.65

009 1 1 1 0.0040 0.0010 0.0103 32 360 733 17.57 3.58 6.51 0.972 3.52 17.28 13.40 0.80

010 1 1 1 0.0006 0.0119 0.0013 16 532 903 6.30 1.98 2.29 1.000 2.83 21.11 14.54 0.71

011 1 1 1 0.0005 0.0011 0.0091 16 297 503 8.42 3.62 12.64 0.997 4.77 11.03 12.27 0.48

012 1 1 1 0.0005 0.0052 0.0010 17 809 651 8.61 2.67 2.35 0.953 4.39 16.99 13.05 0.70

013 0 1 0 0.1319 0.0123 0.2099 23 325 271 5.06 1.71 1.06 0.907 4.66 3.12 10.67 0.63

014 1 0 1 0.0156 0.3023 0.0071 23 979 679 29.66 1.54 4.85 0.743 4.76 20.06 12.59 0.49

015 1 0 1 0.0266 0.4693 0.0281 17 987 781 17.24 1.34 2.58 0.960 4.71 26.25 13.05 0.55

016 1 1 1 0.0005 0.0045 0.0010 29 417 746 8.90 4.93 8.47 0.974 3.30 16.79 13.83 0.71

017 1 1 1 0.0038 0.0117 0.0491 31 285 532 9.19 1.21 1.59 0.988 3.90 10.08 13.09 0.52

018 1 0 1 0.0005 0.0512 0.0010 33 739 995 3.50 3.87 2.06 0.803 6.54 59.14 14.10 0.59

019 1 0 0 0.0404 0.4465 0.1962 42 436 1297 9.16 2.20 4.35 0.986 3.44 52.95 14.31 0.72

020 1 0 0 0.0263 0.2754 0.1027 41 067 661 5.68 1.14 1.36 0.994 3.34 13.35 13.98 0.61

021 1 1 1 0.0045 0.0031 0.0190 8836 499 – – – – 3.03 6.89 11.85 0.65

022 1 1 1 0.0005 0.0010 0.0030 9731 276 – – – – 4.52 3.15 10.56 0.53

023 1 1 1 0.0005 0.0010 0.0010 10 547 491 28.01 1.68 3.85 0.986 2.89 6.37 12.48 0.62

024 1 0 1 0.0037 0.0787 0.0060 9901 843 3.03 1.81 0.72 0.961 4.31 28.01 13.08 0.77

025 0 0 0 0.9007 0.5000 0.5000 27 836 696 – – – – 3.22 14.24 13.83 0.66

026 1 1 1 0.0005 0.0336 0.0021 31 806 1058 4.54 3.45 3.20 0.991 5.25 53.63 14.72 0.58

027 1 0 0 0.0270 0.4737 0.1160 36 911 608 11.57 1.45 2.53 0.992 5.53 18.67 12.24 0.63

028 0 0 0 0.2775 0.3001 0.2421 34 346 571 3.49 1.03 0.82 0.780 3.52 10.49 12.55 0.68

029 0 0 0 0.0783 0.5000 0.0915 37 806 761 – – – – 6.83 36.14 13.77 0.51

030 1 1 1 0.0006 0.0227 0.0075 22 611 599 19.40 1.04 0.87 0.973 5.04 16.53 12.79 0.67

031 1 1 1 0.0005 0.0198 0.0010 31 672 744 11.13 2.03 2.97 0.982 5.14 26.00 13.07 0.55

032 0 0 0 0.1792 0.3308 0.2153 33 552 540 4.43 1.71 1.10 0.928 5.32 14.17 12.44 0.54

033 0 0 0 0.5374 0.4145 0.5000 33 168 815 3.91 2.64 2.22 0.964 5.41 32.83 13.39 0.60

034 0 0 0 0.1745 0.5000 0.5000 10 065 726 42.52 1.10 1.36 1.000 2.88 13.85 13.28 0.80

035 0 0 0 0.4181 0.4860 0.5000 10 045 790 6.75 2.64 1.45 0.976 5.28 30.09 13.36 0.75

036 1 1 1 0.0005 0.0010 0.0010 7 226 433 – – – – 3.94 6.74 11.87 0.54

037 0 0 0 0.0621 0.2297 0.0564 38 657 605 4.40 2.38 2.33 0.998 3.95 13.23 13.69 0.72

038 0 0 0 0.1876 0.2511 0.2175 39 895 782 – – – – 4.62 25.82 13.36 0.61

039 1 0 1 0.0030 0.0664 0.0124 41 131 738 5.72 6.63 15.12 0.887 4.23 21.06 13.75 0.72

040 1 1 0 0.0121 0.0343 0.0873 6 790 647 – – – – 4.19 16.03 12.51 0.61

041 1 1 1 0.0005 0.0104 0.0010 6 999 779 – – – – 3.81 21.14 13.18 0.74

042 0 0 1 0.1071 0.2230 0.0337 13 871 465 – – – – 3.55 7.01 12.12 0.63

043 1 0 1 0.0025 0.0806 0.0304 20 837 546 23.77 1.63 3.38 0.948 4.81 13.11 12.20 0.43

044 1 1 1 0.0005 0.0156 0.0010 18 032 722 – – – – 4.02 19.14 13.38 0.64
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Table 1. (Continued)

ID htest p-values V̄LOS σv 
0 rc γ R2
det Rh Mc

vir HZ Prelax

DCC AD JB L AD JB L (km s−1) (km s−1) (gal/h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (1014h−1
70 M�) (nats)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

045 1 1 1 0.0005 0.0011 0.0010 15 343 534 – – – – 4.10 10.68 12.00 0.50

046 0 1 0 0.0500 0.0418 0.0645 19 284 590 29.06 1.48 2.87 0.994 4.28 13.62 12.31 0.64

047 1 1 1 0.0005 0.0089 0.0044 24 294 556 – – – – 6.95 19.61 11.97 0.59

048 0 0 0 0.4211 0.2434 0.5000 24 363 531 6.46 2.80 2.50 0.983 4.08 10.50 12.71 0.69

049 1 1 1 0.0010 0.0010 0.0095 24 945 582 7.18 1.37 0.95 0.952 6.68 20.64 12.62 0.57

050 1 1 1 0.0030 0.0211 0.0116 23 512 613 6.22 1.09 1.30 0.967 4.08 14.03 13.03 0.58

051 0 0 0 0.4699 0.5000 0.4103 36 244 878 5.77 1.36 2.09 0.979 4.07 28.68 14.41 0.56

052 0 0 0 0.0944 0.0847 0.3112 35 356 554 1.80 7.05 11.07 0.703 3.64 10.22 13.67 0.61

053 0 0 0 0.0558 0.1232 0.1039 42 020 792 4.28 4.99 11.22 0.760 6.72 38.52 13.43 0.50

054 0 0 0 0.0650 0.0578 0.2669 41 441 361 1.45 3.82 2.42 0.808 4.24 5.04 11.67 0.62

055 1 0 1 0.0053 0.1314 0.0059 40 899 925 5.77 4.32 10.61 0.958 4.51 35.25 14.46 0.59

056 1 0 1 0.0020 0.1695 0.0114 23 867 378 – – – – 4.42 5.77 10.95 0.42

057 0 1 0 0.0523 0.0011 0.1601 24 120 334 2.08 1.53 0.96 0.984 4.07 4.15 11.33 0.45

058 0 0 0 0.0708 0.5000 0.0816 22 296 503 – – – – 3.35 7.76 11.86 0.80

059 1 0 0 0.0444 0.0550 0.0850 25 372 575 3.50 2.33 1.85 0.627 3.66 11.06 13.07 0.61

060 0 0 1 0.1295 0.5000 0.0289 24 165 625 12.51 1.45 2.13 0.999 2.51 8.98 13.23 0.78

061 0 0 0 0.1246 0.3838 0.1767 24 555 389 – – – – 3.22 4.44 11.52 0.75

062 1 1 1 0.0005 0.0026 0.0010 25 681 514 13.19 4.02 7.56 0.996 3.71 8.94 12.33 0.81

063 0 0 0 0.5827 0.5000 0.5000 31 785 600 – – – – 3.97 13.05 13.39 0.39

064 1 1 1 0.0005 0.0419 0.0010 21 454 772 – – – – 5.82 31.65 13.77 0.63

065 1 0 0 0.0146 0.0807 0.1328 17 861 428 7.36 2.03 1.95 0.721 4.68 7.82 11.78 0.71

066 0 1 0 0.0852 0.0161 0.0990 16 376 637 – – – – 4.82 17.89 12.82 0.67

067 1 1 1 0.0005 0.0010 0.0010 14 376 943 16.26 1.68 1.09 0.998 5.94 48.30 13.99 0.75

068 1 1 1 0.0005 0.0010 0.0010 11 614 607 14.89 1.16 1.20 0.999 3.97 13.40 12.85 0.83

069 1 1 0 0.0051 0.0024 0.0901 22 521 509 – – – – 5.26 12.47 12.63 0.58

070 0 0 0 0.5617 0.3212 0.5000 22 657 734 19.24 1.11 1.44 0.991 6.87 33.79 13.10 0.52

071 1 1 1 0.0005 0.0010 0.0010 18 815 630 25.76 2.06 3.06 0.995 6.84 24.78 12.62 0.47

072 1 0 1 0.0005 0.5000 0.0010 21 155 704 7.42 1.23 1.08 0.996 4.62 20.94 13.55 0.56

073 1 1 1 0.0005 0.0030 0.0011 20 103 626 – – – – 5.18 18.56 12.71 0.42

074 1 1 1 0.0005 0.0128 0.0010 33 844 624 3.03 2.29 1.16 0.838 6.37 22.69 12.87 0.62

075 1 1 1 0.0005 0.0125 0.0010 32 701 557 5.97 1.05 1.14 0.997 4.32 12.24 13.41 0.65

076 0 0 0 0.1106 0.0689 0.2569 33 928 495 1.61 4.78 2.55 0.978 6.27 14.03 12.50 0.67

077 0 0 0 0.1444 0.4597 0.3057 28 660 503 7.74 1.92 2.03 0.995 3.87 8.93 12.01 0.68

078 1 1 0 0.0360 0.0109 0.3012 26 681 558 4.03 3.29 2.32 0.996 3.24 9.23 13.41 0.62

079 1 1 1 0.0005 0.0268 0.0010 35 070 656 3.97 6.01 4.79 0.954 6.53 25.66 13.00 0.58

080 1 1 1 0.0005 0.0117 0.0018 37 600 575 – – – – 5.47 16.56 12.75 0.50

081 0 1 0 0.0926 0.0171 0.4037 15 581 492 – – – – 4.70 10.42 11.69 0.64

082 1 0 1 0.0160 0.5000 0.0467 13 497 532 – – – – 4.22 10.93 12.38 0.59

083 1 1 1 0.0005 0.0010 0.0010 11 425 625 20.06 1.25 1.06 0.948 6.29 22.48 12.89 0.65

084 1 1 1 0.0005 0.0114 0.0010 14 940 817 7.17 2.81 1.88 0.971 5.08 31.00 13.94 0.67

085 0 0 0 0.2138 0.5000 0.2587 23 492 690 6.65 1.33 0.65 0.965 5.74 24.94 13.14 0.61

086 0 0 0 0.0758 0.1727 0.3081 23 557 866 16.96 1.94 1.19 0.996 6.20 42.48 13.82 0.75

087 1 1 1 0.0005 0.0010 0.0180 22 833 419 1.40 2.14 0.57 0.672 7.42 11.92 11.13 0.64

088 1 1 1 0.0005 0.0116 0.0010 25 412 758 7.40 1.75 1.53 0.987 7.06 37.09 13.62 0.43

089 1 0 1 0.0086 0.0785 0.0094 34 033 830 – – – – 6.95 43.76 13.37 0.40
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Table 1. (Continued)

ID htest p-values V̄LOS σv 
0 rc γ R2
det Rh Mc

vir HZ Prelax

DCC AD JB L AD JB L (km s−1) (km s−1) (gal/h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (1014h−1
70 M�) (nats)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

090 0 0 0 0.8838 0.5000 0.5000 33 889 675 2.09 3.36 1.28 0.773 5.29 22.00 12.85 0.71

091 0 0 0 0.3112 0.5000 0.3591 34 058 876 14.87 1.35 1.14 0.991 5.70 39.98 13.87 0.77

092 1 1 1 0.0005 0.0047 0.0010 23 157 887 40.54 1.04 1.63 0.968 4.83 34.73 13.68 0.75

093 1 1 1 0.0005 0.0293 0.0010 21 746 856 27.79 1.08 1.18 0.999 6.09 40.74 13.63 0.66

094 1 1 1 0.0005 0.0010 0.0010 19 764 752 – – – – 5.83 30.10 13.14 0.61

095 0 0 0 0.2327 0.5000 0.1497 20 314 818 – – – – 4.47 27.31 13.33 0.73

096 1 1 0 0.0227 0.0335 0.0841 23 343 753 5.71 1.94 1.00 0.982 5.87 30.43 13.96 0.57

097 1 0 1 0.0005 0.0903 0.0010 10 252 479 – – – – 4.31 9.02 11.94 0.56

098 1 1 1 0.0005 0.0015 0.0010 12 132 650 11.16 1.68 1.55 0.999 4.89 18.87 12.78 0.63

099 1 1 1 0.0005 0.0010 0.0010 10 960 873 44.68 2.56 1.78 0.907 5.18 36.08 13.80 0.72

100 0 0 0 0.5517 0.2120 0.5000 40 763 499 – – – – 3.61 8.22 12.33 0.72

101 1 0 1 0.0005 0.1154 0.0010 5 908 349 – – – – 2.26 2.51 11.87 0.63

102 1 1 1 0.0198 0.0237 0.0110 5 677 334 – – – – 3.30 3.36 11.01 0.42

103 0 0 0 0.5577 0.4330 0.5000 33 398 583 7.87 3.15 7.57 0.990 3.69 11.47 13.76 0.65

104 0 0 0 0.1417 0.1488 0.2704 31 790 491 – – – – 5.27 11.59 12.48 0.51

105 1 1 1 0.0005 0.0022 0.0010 12 602 594 29.06 1.52 1.64 0.999 2.78 8.97 13.04 0.81

biweight method (e.g. Beers, Flynn, & Gebhardt 1990). Thus, we
take V̄LOS = CBI and σv = SBI, where CBI and SBI are, respectively,
the robust estimators for the centre and the scale of the velocity
distributions of core galaxies. The V̄LOS and σv values obtained
for the DCC cores are presented respectively in columns 4 and 5
of Table 1. The distribution of velocity dispersions in the DCC
cores can be seen in Figure 1. The mean and median values of this
distribution are 633 and 613 km s−1, respectively. These galaxy
velocity dispersion values are lower than those of typical rich
galaxy clusters (∼ 750–1000 km s−1, e.g. Bahcall 1996; Schneider
2015).

In virialised systems, the galaxy velocity dispersion σv directly
depends on the virial mass Mvir: more massive systems generate
stronger gravitational potentials, leading to higher orbital veloci-
ties and, consequently, larger velocity dispersions for the member
galaxies. According to the virial theorem,U = −2K, a greater mass
implies a deeper gravitational potential well (U), which in turns
results in a higher internal kinetic energy (K), reinforcing this idea
(e.g. Zúñiga et al. 2024b).

In non-virialised structures, such as superclusters and their
cores, the galaxy velocity dispersion σv serves primarily as a mere
statistical measure of the spread in velocities among member
galaxies, rather than as a direct indicator of mass. Unlike virialised
systems, where σv is proportional to the total mass, the velocity
dispersions in cores are not completely tied to their mass. This is
because non-virialised structures are out of equilibrium, with their
dynamics dominated by ongoing processes such as gravitational
collapse or cosmic expansion. As a result, the velocity dispersion
can be significantly influenced by these large-scale motions, mak-
ing it a less reliable tracer of mass in these cases. For instance, the
velocity dispersion of an expanding or collapsing structure may
primarily reflect the impact of bulk flows associated with indi-
vidual substructures, rather than representing a single cohesive
internal dynamics (e.g. Sargent & Turner 1977).

Note that the σv-distribution in DCC cores exhibits a clear
bimodal pattern, as seen from the double Gaussian fit (red solid
line) shown in Figure 1, with peaks centred around 555 km s−1

(Gaussian 1 with blue dashed line) and 789 km s−1 (Gaussian 2
with green dotted line). This bimodality remains robust even when
varying the binning parameters, suggesting that it is intrinsic to the
distribution rather than an artifact of the analysis. To understand
the origin of this feature, we consider the role of the most massive
cluster (MMC) within each core. By definition, each core contains
one system identified as the MMC. However, the degree to which
the MMC dominates the core’s dynamics varies significantly.

A separate analysis of the cores associated with each Gaussian
component confirms this distinction: cores associated with the
Gaussian 1 (component for low velocity dispersions) typically
contain a modest-mass MMC that, while formally the most mas-
sive system by the value of its virial mass, is not overwhelmingly
dominant. In these cases, the other gravitationally bound systems
within each core have comparable masses and contribute similarly
to the overall internal dynamics of their host cores. As a result,
the velocity dispersion of cores remains relatively low, reflecting a
more distributed influence among multiple systems. Conversely,
cores falling within the Gaussian 2 (component for high velocity
dispersions) tend to host an MMC with a significantly larger mass
than the other core member systems. Here, the velocity disper-
sion of galaxies within the core is strongly influenced by theMMC,
resulting in values characteristic of cluster-like systems, where the
virialised portion dominates. Furthermore, since cores are collaps-
ing structures, their velocity dispersions can be largely influenced
by the bulk motions of their member systems (e.g. Sargent &
Turner 1977).

On the other hand, we also observe that a few cores contain
two or even three highly massive systems with comparable masses,
making it reasonable to consider that they collectively dominate
the dynamics of the host cores. Interestingly, these cases also
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tend to fall within the Gaussian 2, likely due to the high veloc-
ity dispersions of the massive member clusters. This reinforces
the assumption that the bimodal velocity dispersion distribution
of the DCC cores is primarily driven by the varying degrees of
dynamical influence exerted by the most massive systems within
each core.

3.2. Projected distribution of galaxies

To study the spatial distribution of galaxies, we analyzed their
projected positions in the plane of the sky to assess whether
they exhibit a statistical tendency to follow the projected King
profile:


(r)= 
0

[
1+

(
r
rc

)2
]−γ

, (6)

where the parameters rc, 
0, and γ are determined by fitting the
model (6) to the projected distribution of member galaxies in each
core.

The King profile was selected because, despite being a mass
density profile, its projected form provides a good fit to the radial
distribution of galaxies in regular clusters (e.g. Rood et al. 1972;
Adami et al. 1998). These clusters typically feature a dense core
of galaxies surrounded by a sparse halo, where the galaxy number
density decreases with distance. In contrast, other profiles, such as
the Einasto and NFW profiles (e.g. Einasto 1965; Navarro, Frenk,
& White 1996), are better suited to describe the distribution of
dark matter within clusters.

Since the MMCs represent the most significant gravitational
potential wells in their respective host cores, we assume these clus-
ters to be the main physical centres of gravitational attraction
within the cores. Although in some cores (particularly those in
Gaussian 1) a clearly dominant MMC is not present, we adopt
the coordinates of the most massive cluster as a reference ‘centre’b
for consistency across the sample. MMCs, even when not over-
whelmingly dominant in mass, are generally rich systems located
in high-density regions, suggesting a strong gravitational influence
and a likely site of future collapse. Moreover, they often coincide
with local peaks in the spatial distribution of galaxies.

Thus, taking the sky coordinates of each core’s MMC as its cen-
tre, we calculated the projected core-centric distances (in units of
h−1
70 Mpc) of its member galaxies as follows:

Ri 	 π

180
Dc(z̄)
(1+ z̄)

[
(αMMC − αi)2 cos2 δ̄ + (δMMC − δi)2

]1/2 , (7)

where αMMC and δMMC are the RA and Dec coordinates of the
MMC (see columns 6 and 7 of Table 4 in Paper I), αi and δi are
the coordinates of each member galaxy, and z̄ and δ̄ represent the
mean redshift and declination of the core galaxies, respectively. As
before,Dc(z̄) is the comoving distance at redshift z̄, corresponding
to the mean radial distance of each core.

We used a binning method to analyze the projected density
distribution of galaxies as a function of the core-centric distance
in the RA-Dec plane. This process involved counting only mem-
ber galaxies in concentric circular annuli in 2D, centred on the
MMC of the given core. Each ring was taken to have an area

bIt is important to mention that studies of the spatial distribution of galaxies in a struc-
ture (or system), as well as estimates of certain dynamical parameters, are sensitive to the
choice of a ‘centre’.While other definitions such as the centre ofmassmay provide valuable
complementary insights, we defer such analysis to future work.

Figure 2. Top: 2D-density map of the projected distribution of galaxies in the DCC 099
core of the Hercules Supercluster (MSCC 474). Each black dot represents a member
galaxy of the core. The space between the red dashed circles give a schematic repre-
sentation of the rings (bins in 2D) on which galaxies were counted (�R= 0.35 h−1

70 Mpc).
The width of the annuli plotted was chosen as 1 h−1

70 Mpc to avoid saturation of circles
in the graph. Bottom:
 vs. R plot for the DCC 099 core. The blue dots represent the sur-
face number density of galaxies – in the ring – at distance R from the centre (the MMC)
of the core. The solid red line is the projected King profile fitted to the data using the
NLS method. The fit parameters for this case were 
0 = 44.68 gal/h−2

70 Mpc2, rc = 2.56
h−1
70 Mpc, and γ = 1.78, with a goodness of fit R2det = 0.91.

Ar = 2πR�R, where R is the mean radius of the ring and �R
is its width. The width �R was kept constant for all radii, and
all galaxies with core-centric distances Ri between R− �R/2 and
R+ �R/2 were counted within the corresponding ring. The sur-
face density of galaxies at a given radius R was then calculated
as 
(R)=Nr/Ar , where Nr is the number of galaxies in that
ring.

For all cores, we adopted a fixed ring width of �R= 0.35 h−1
70

Mpc (a value that maximized the goodness-of-fit in most cores),
while allowing the radius R to vary without overlap between
bins. Using the Nonlinear Least Squares (NLS) method, we fit-
ted the projected King profile (6) to the resulting set of (R,
)
pairs, determining the best-fit parameters (
0, rc, γ ). Figure 2 pro-
vides an example of this procedure applied to the DCC 099 core
in the Hercules Supercluster (MSCC 474). A similar analysis was
performed for all other cores.

Columns 6 to 9 of Table 1 present the set of parameters
(
0, rc, γ ) obtained by fitting the King profile to the projected
galaxy sample of each DCC core, along with the respective
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goodness of fit measured through the R2
det statistic.c The profile

fitting using the NLS method was not successful for approxi-
mately 33% of the DCC cores, resulting in unphysical parameters
that were excluded from the analysis. The mean and median val-
ues of the corresponding distributions of parameters (
0, rc, γ )
in the sample of DCC cores, excluding outliers, are presented in
Table 2. Notably, the characteristic radius rc of the cores, with a
median value of 1.93 h−1

70 Mpc, is comparable to the virial radii
of their MMCs (in contrast to the median values for galaxy clus-
ters of about 0.25 h−1

70 Mpc, e.g. Bahcall 1996; Caretta et al. 2023).
This may suggest that, although DCC cores are not yet regular
galaxy structures, they have the potential to evolve into ‘core-halo
supersystems’, with their central nuclei likely located close to their
MMCs. It can be expected that these systems will serve as the
formation regions for the future nuclei of marginally virialised
(relaxed and regular) cores.

Approximately 55% of the DCC cores could be fitted by the
King profile achieving a goodness of fitR2

det > 0.9, while only∼8%
of them were fitted with a goodness of fitR2

det < 0.8. Thus, most of
the cores in the sample exhibit a projected distribution of galaxies
that can be adequately described by a King profile, suggesting an
evolutionary tendency towards dynamical states statistically con-
sistent with this density model. However, the observed density
distributions still display ‘humps’ as a function of radius, indicat-
ing the presence of substructures within the cores. These humps
can affect the values of the fit parameters, which, in principle,
assuming that the distribution of galaxies follows the distribution
of total matter (dark and baryonic) and vice versa in these struc-
tures, should be related to the equilibrium state of the cores. For
instance, and as anticipated, the γ values obtained for the distribu-
tions of core galaxies remain far from γ = 1, which is the expected
terminal value for a projected galaxy distribution in dynamical
equilibrium (e.g. Sarazin 1986; Adami et al. 1998).

4. Morphology analysis of cores

Studying the morphology of galaxy structures also provides valu-
able insights into their dynamical states or evolutionary phases.
The shape of a structure is primarily influenced by the distribution
of matter within it and the gravitational interactions among its
member galaxies and galaxy systems. Consequently, the morphol-
ogy of these structures can reveal information about the spatial
distribution of galaxies and dark matter within them, as well as
their interactions with one another. Additionally, the shape may
be related to their formation and evolutionary history, and it can
be influenced by external factors, such as interactions with other
large-scale structures in the Universe.

Since cores are not virialised structures, they exhibit a wide vari-
ety of shapes. In this section, a morphometric analysis of the DCC
cores will be conducted using statistical and geometrical methods.

4.1. Minkowski functionals and shapefinders

A comprehensive morphological study of bodies in n dimensions
requires both topological and geometrical descriptors to charac-
terise their connectivity, content, and shape (e.g. Mecke, Buchert,
&Wagner 1994). Minkowski functionals (MFs) constitute a family
of n+ 1 morphological descriptors for extended bodies, grounded

cAlso known as the coefficient of determination. This statistic assesses the quality of a
model in replicating results and indicates the proportion of variation in the results that
can be explained by the fitted model.

Table 2. Mean (with standard deviation) and median values for the 
0,
rc and γ parameters (excluding outliersd) of the King profile fit to the
projected distributions of galaxies in the sample of DCC cores. Median val-
ues are given as asymmetric ranges with�Q1 =Median−Q1 and�Q3 =
Q3 −Median as lower and upper indices, where Q1 and Q3 are the 25th
and 75th percentiles, respectively.

Parameter Mean± std Median+�Q3
−�Q1


0 (gal/h−2
70 Mpc

2) 10.24± 7.69 7.38+7.50
−2.89

rc (h−1
70 Mpc) 2.17± 1.04 1.93+0.81

−0.57
γ 1.93± 0.99 1.64+0.78

−0.48

in well-established principles of integral geometry (e.g. Wiegand,
Buchert, & Ostermann 2014). The morphological properties of an
n-dimensional body are determined by the (n− 1)-dimensional
hypersurface that encloses it (e.g. Sheth et al. 2003). Thus, themor-
phology of a closed two-dimensional surface embedded in three-
dimensional Euclidean space is comprehensively characterized by
four MFs (e.g. Einasto et al. 2007a; Bag et al. 2019):
1. The volume enclosed by the surface: V ,
2. The surface area: S,
3. The integrated mean curvature of the surface:

C = 1
2

∮ (
1
R1

+ 1
R2

)
dS, (8)

4. The integrated Gaussian curvature (or Euler characteristic)
of the surface:

χ = 1
2π

∮ 1
R1R2

dS, (9)

where in Equations (8) and (9), R1 and R2 denote the two
local principal radii of curvature at any point on the surface.
Furthermore, the Euler characteristic can be expressed in terms
of the genus, which quantifies the number of topological handles
that the surface exhibits and provides a measure of the connec-
tivity of the structure, distinguishing between isolated underdense
regions (voids) and interconnected features (Sheth et al. 2003).
Essentially, it describes the number of holes in a closed surface or
three-dimensional object and can be defined as follows:

G= 1− χ

2
. (10)

Both χ and G serve as measures of the surface topology (mul-
tiply connected surfaces have G> 0, while those that are simply
connected have G= 0, e.g. Sahni, Sathyaprakash, & Shandarin
1998). Thus, while the genus provides insight into the connectiv-
ity of a surface, the other three MFs are sensitive to local surface
deformations, effectively characterizing the geometry and shape of
the bodies (Sheth et al. 2003).

To characterise the shape and determine the characteristic
dimensions of a structure, we employ ‘shapefinders’ (Sahni et al.
1998), which are defined from the MFs as follows (e.g. Sheth et al.
2003; Bag et al. 2019):

1. Thickness:
T= 3V/S, (11)

dThroughout this work, outliers were identified using the standard interquartile range
(IQR) rule, that is, data points outside [Q1 − 1.5× IQR, Q3 + 1.5× IQR] were excluded
from the analysis.
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2. Breadth:

B= S/C, (12)

3. Length:

L= C
4π(1+ |G|) , (13)

4. Planarity:

P= B− T
B+ T

, (14)

5. Filamentarity:

F= L− B
L+ B

, (15)

This set of five shapefinders includes three quantities with
dimensions of length (T, B, and L) and two dimensionless ratios
(P and F), providing a robust framework for quantifying the
morphology of structures.

The shapefinders T, B, and L estimate the three principal phys-
ical extensions of a three-dimensional structure. These shapefind-
ers are spherically normalized, ensuring that V = (4π/3)TBL,
where V is the volume enclosed by the structure. Generally, for
a convex surface, the relation T≤ B≤L holds; if not, the small-
est dimension is designated as T and the largest as L to maintain
order (Bag et al. 2019). In cases where C < 0, it is possible to rede-
fine C → |C| to ensure that both B and L remain positive. Oblate
ellipsoids (pancake-like shapes) are characterized by T< B≈L,
while prolate ellipsoids (filamentary structures) are described by
T≈ B<L (Einasto et al. 2007a).

On the other hand, the shapefindersP andF are dimensionless
quantities that allow us to determine the shape of an object. For
example, in some works (e.g. Sahni et al. 1998; Einasto et al. 2007a;
Bag et al. 2019) these shapefinders have been characterized so that:

• For spheres: T= B=L, that is, P=F= 0,
• For ideal filaments P≈ 0, F≈ 1,
• For real filaments: F�P,
• For ideal pancakes: P≈ 1, F≈ 0,
• For planar objects (sheets or pancakes): P�F,
• For ideal ribbons: P≈F≈ 1,
• For ribbon-like objects: P/F≈ 1.

Note that in this context, the word ‘ideal’ refers to a theoretical
or simplified representation of the structure, as commonly used in
the literature.

4.2. Morphometry of cores

The MFs are typically defined for extended bodies with
well-established (smooth and differentiable) boundary surfaces.
However, they can also be applied to galaxy distributions by con-
structing an extended object from the point set of galaxy coordi-
nates. This is achieved by defining a limiting surface that encloses
the member galaxies of a structure, thus allowing its morphology
to be characterized by the four MFs (V , S, C, χ) that describe the
enclosing surface (e.g. Einasto et al. 2007a, 2008). Given the global
and additive nature of MFs, their applicability can be extended to
surfaces with singular edges and corners (Mecke et al. 1994). This
versatility makes them suitable for analyzing irregular or discon-
tinuous structures, providing valuable insights into the geometry

and topology of cores. In this work, we employ two methods
to generate enclosing surfaces around the core member galaxies,
adjusting the definition of the MFs (and shapefinders) in each case
to match the specific characteristics of the generated surfaces.

4.2.1. Main method: Polyhedral surfaces

Polyhedral surfaces that envelop the DCC cores were constructed
by triangulating boundary points from the three-dimensional
distribution of their member galaxies. The triangulation was per-
formed using the 3D alpha-shape algorithm (e.g. Edelsbrunner
& Mücke 1994), implemented through the MATLAB boundary
function. This function identifies and returns the set of boundary
points of a distribution for a given compactness level, modulated
by the shrink factor sf, and subsequently allows the generation of
a polyhedral envelope, ranging from the convex hull, for sf = 0, to
a tightly fitted compact boundary, for sf = 1 (see MATLAB 2023).
The left panel of Figure 3 illustrates an example of the polyhedral
surface fitted to member galaxies in the main core (DCC 099) of
the Hercules Supercluster (MSCC 474).

The obtained triangulated polyhedral surface defines a
single well-defined boundary around the member galaxies.
Morphological properties of these surfaces, including their geo-
metric and topological characteristics, are determined by the MFs
adapted for triangulated surfaces (e.g. Sheth et al. 2003; Bag et al.
2019):

• The total surface area is computed as

S=
NT∑
k=1

Sk, (16)

where Sk is the area of the k-th triangle, and NT is the total
number of triangles forming the surface.

• The volume enclosed by the surface is the sum of contribu-
tions from NT tetrahedra:

V =
NT∑
k=1

Vk, Vk = 1
3
Sk(nk · Pk), (17)

where Vk is the volume of the k-th tetrahedron with base Sk
in the k-th triangle, with normal vector nk and centroid vec-
tor position Pk, and apex in an arbitrary origin. Note that the
sums of S and V are maximum for sf = 0 and minimum for
sf = 1.

• The integrated mean curvature is calculated as

C = 1
2
∑
j,k

ljkφjkε, (18)

where ljk is the length of the common edge between adjacent
triangles j and k, φjk is the angle between their normals, and
ε = 1 for convex and ε = −1 for concave edges (Sheth et al.
2003).

• The Euler Characteristic and Genus are defined as

χ =NT −NE +NV , G= 1− χ/2, (19)

where NE and NV are the number of edges and vertices,
respectively.

This approach ensures a detailed and versatile morphological anal-
ysis of cores, enabling the characterisation of both their geometry
and topology.
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Figure 3. Left: Polyhedral fit of the optimal surface (with shrink factor, sf = 1) enclosing the distribution of sampled member galaxies in DCC 099, the main core (A2147-A2151-
A2152A-A2153A) of the Hercules Supercluster (MSCC 474). Right: The alternative ellipsoidal fit for the same galaxy distribution. The lighter-colored regions on the ellipsoid
correspond to automatically generated cut planes in the upper XY and right YZ sections, enhancing the 3D visualisation of the surface. The polyhedral and ellipsoidal surfaces
shown are best-fit models of the main overdense body of thecore, not a strict envelope of all its member galaxies. Due to the complex and unrelaxed nature of the structures,
some galaxies, particularly those in the more diffuse or peripheral regions, may fall outside these fitted surfaces.

4.2.2. Alternative method: Ellipsoidal fitting

To validate the polyhedral surface method described above, con-
tinuous ellipsoidal surfaces, whose MFs can be calculated analyt-
ically, were fitted to the same galaxy samples for each core. The
algorithm proposed by Petrov (2015) was used to estimate the
semi-major axes (a, b, c) of the ellipsoid that best represents the
3D galaxy distribution in rectangular coordinates. The fitting pro-
cess was performed iteratively by extracting boundary points using
the boundary function for different values of the shrink factor
(0≤ sf ≤ 1). For each sf, a new set of boundary points was obtained
and used to fit an ellipsoidal surface. The optimal ellipsoid was
then selected based on the maximum goodness of fit, measured by
the Chi-square statistic.

The right panel of Figure 3 illustrates an example of the best
ellipsoidal surface fit for the DCC 099 core. The parameters of the
best fits for each core are presented in columns 2–5 of Table 3. The
parametric equation for an ellipsoid with semi-major axes a, b, and
c is given by:

r(θ , φ)= a(sin θ cos φ)i+ b(sin θ sin φ)j+ c(cos θ)k, (20)

where 0≤ φ ≤ 2π and 0≤ θ ≤ π .
The four MFs for an ellipsoidal body are expressed as follows

(e.g. Lipschutz 1969; Sahni et al. 1998):

V = 4
3
πabc, (21)

S=
∮ √

EG− F2 dθ dφ, (22)

C = 1
2

∮ [
EN +GL− 2FM

EG− F2

]
dS, (23)

χ = 1
2π

∮ [
LN −M2

EG− F2

]
dS, (24)

where:

E= rθ · rθ , F = rθ · rφ , G= rφ · rφ ,
L= rθθ · n, M = rθφ · n, N = rφφ · n,

n is the unit normal vector to the surface at any point,
defined as n= rθ × rφ/|rθ × rφ |. The differential area is dS=√
EG− F2 dθ dφ, and rθ = ∂r/∂θ , rφ = ∂r/∂φ, rθθ = ∂2r/∂θ 2,

rφφ = ∂2r/∂φ2, rθφ = ∂2r/∂θ∂φ are the first- and second-order
partial derivatives of r with respect to θ and φ.

This approach provides an analytical framework for validat-
ing the polyhedral surfaces, enabling a comparativemorphological
analysis of the cores.

4.2.3. Dimensions and global topology of cores

Once the MFs have been determined using both the polyhedral
and ellipsoidal surface methods, the shapefinders can be directly
computed using the definitions in Equations (11)–(15). The result-
ing values of V , S, C, χ , G, and the shapefinders T, B, L, P,
and F for each DCC core, based on polyhedral (with sf = 1)
and ellipsoidal surface fits, are summarized in Tables 3 and 4,
respectively.

The shapefinders T, B, and L, which have units of length, are
particularly useful for estimating the dimensions of the cores. The
smallest shapefinder, T, represents the thickness of the cores; the
intermediate shapefinder, B, is analogous to the breadth (width);
and the largest shapefinder, L, characterizes the length. It should
be noted that L is not the actual physical length of the structure,
but rather a morphological measure related to the integrated cur-
vature of its surface (Einasto et al. 2007a). Thus, L can become
significantly large for irregularly shaped or curved surfaces, with-
out necessarily corresponding directly to a linear extension, as in
elongated structures. Themean andmedian values of these dimen-
sions are presented in Table 5. As shown in the table, the extension
in any dimension of the DCC cores (as measured by T, B, and L)
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Table 3.Minkowski functional and shapefinders for DCC cores (ellipsoidal fits). In this fit all cores have χ = 2, i.e., G= 0.

ID a b c chi2 V S C T B L P F P/F
DCC (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc) (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

001 5.20 6.37 12.75 9.4 1772.8 783.5 108.5 6.78 7.21 8.63 0.0306 0.0897 0.341

002 3.67 5.88 10.09 11.0 914.3 517.5 88.6 5.30 5.83 7.05 0.0484 0.0941 0.514

003 3.55 3.85 11.83 11.0 679.7 448.4 87.1 4.54 5.14 6.93 0.0618 0.1479 0.418

004 2.52 5.95 8.34 12.2 525.2 387.8 76.5 4.06 5.06 6.09 0.1100 0.0916 1.200

005 2.99 7.35 8.80 10.2 811.5 508.8 81.9 4.78 6.20 6.52 0.1295 0.0246 5.251

006 2.98 5.57 9.39 19.7 654.1 431.4 81.4 4.54 5.30 6.47 0.0763 0.0999 0.763

007 5.25 6.04 7.64 10.3 1017.6 498.3 80.9 6.12 6.15 6.44 0.0025 0.0226 0.110

008 2.53 4.84 12.62 14.4 649.1 484.0 90.4 4.02 5.35 7.19 0.1418 0.1467 0.966

009 4.32 8.69 11.72 10.8 1845.7 840.6 110.1 6.58 7.63 8.76 0.0736 0.0689 1.067

010 2.71 4.78 7.58 4.0 412.8 307.4 69.1 4.02 4.44 5.50 0.0492 0.1063 0.462

011 4.07 7.18 16.28 12.3 1995.8 958.2 122.4 6.24 7.82 9.74 0.1121 0.1090 1.028

012 3.76 5.92 9.38 20.6 877.3 493.0 86.1 5.33 5.72 6.85 0.0349 0.0897 0.389

013 3.48 4.66 12.25 13.4 833.8 514.7 92.0 4.85 5.59 7.32 0.0702 0.1339 0.523

014 6.60 8.71 10.70 7.5 2582.3 939.3 111.0 8.24 8.46 8.83 0.0128 0.0214 0.601

015 4.63 8.55 9.35 9.9 1554.3 705.3 96.2 6.61 7.32 7.65 0.0514 0.0220 2.332

016 3.26 6.27 8.42 11.8 723.9 443.6 76.9 4.89 5.76 6.12 0.0815 0.0301 2.699

017 2.78 5.85 7.19 6.2 492.3 346.9 67.8 4.25 5.11 5.40 0.0911 0.0278 3.274

018 7.01 9.54 11.98 14.1 3361.2 1128.1 126.1 8.93 8.94 10.03 0.0003 0.0573 0.006

019 3.67 9.05 14.73 4.6 2054.1 1015.2 121.9 6.07 8.32 9.70 0.1567 0.0762 2.056

020 3.24 4.63 21.88 5.3 1377.5 864.6 132.4 4.77 6.52 10.54 0.1545 0.2351 0.657

021 2.77 7.08 9.70 6.4 798.6 526.2 88.1 4.55 5.96 7.01 0.1345 0.0807 1.665

022 3.03 5.86 11.41 14.4 849.9 538.2 91.5 4.73 5.87 7.28 0.1074 0.1068 1.006

023 2.09 6.65 12.55 8.6 732.9 596.8 95.8 3.68 6.22 7.62 0.2565 0.1011 2.535

024 4.88 8.50 18.43 4.0 3210.1 1294.6 140.6 7.43 9.20 11.19 0.1060 0.0975 1.086

025 2.04 7.65 14.64 25.4 959.1 779.0 108.8 3.69 7.15 8.65 0.3193 0.0948 3.367

026 4.88 8.20 12.82 5.3 2152.0 909.7 115.1 7.09 7.89 9.16 0.0535 0.0742 0.721

027 4.63 6.56 14.26 10.5 1820.0 837.3 113.5 6.52 7.37 9.03 0.0615 0.1010 0.609

028 2.74 4.06 10.49 4.3 490.0 368.9 78.8 3.98 4.68 6.27 0.0803 0.1454 0.552

029 3.58 9.21 13.93 9.4 1930.0 973.0 118.7 5.95 8.19 9.45 0.1584 0.0715 2.216

030 3.93 5.86 10.24 10.3 991.5 538.2 90.2 5.52 5.96 7.18 0.0378 0.0930 0.406

031 3.75 7.72 16.40 16.0 1993.3 993.1 123.8 6.02 8.01 9.85 0.1421 0.1030 1.379

032 3.30 6.00 11.24 18.6 934.2 555.9 92.5 5.04 6.00 7.36 0.0875 0.1012 0.864

033 5.62 6.43 12.78 4.1 1939.5 821.4 110.7 7.08 7.41 8.81 0.0230 0.0857 0.269

034 2.58 5.24 12.45 16.0 708.0 510.8 91.5 4.15 5.57 7.28 0.1458 0.1328 1.097

035 5.06 6.82 14.57 6.3 2110.9 909.9 117.7 6.95 7.73 9.36 0.0524 0.0957 0.548

036 4.12 5.84 6.74 10.9 681.6 388.0 71.5 5.27 5.42 5.69 0.0145 0.0237 0.613

037 3.19 4.46 16.68 8.2 996.6 645.5 109.0 4.63 5.91 8.68 0.1219 0.1892 0.644

038 4.06 4.55 17.10 9.1 1325.4 743.6 114.9 5.34 6.47 9.14 0.0952 0.1711 0.556

039 3.16 6.41 17.99 4.2 1528.7 894.5 122.7 5.12 7.28 9.76 0.1739 0.1456 1.194

040 4.59 6.62 10.21 17.4 1304.7 626.2 96.1 6.25 6.51 7.65 0.0206 0.0803 0.256

041 5.37 5.91 11.96 22.7 1592.0 718.8 103.9 6.64 6.91 8.26 0.0201 0.0890 0.226

042 2.55 4.14 10.62 15.5 471.5 368.4 78.9 3.84 4.66 6.28 0.0972 0.1474 0.659

043 4.45 6.97 22.20 11.9 2886.9 1295.0 148.6 6.68 8.71 11.83 0.1313 0.1519 0.864

044 3.16 6.37 10.71 12.0 904.6 549.0 91.1 4.94 6.02 7.25 0.0982 0.0931 1.054
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Table 3. (Continued)

ID a b c chi2 V S C T B L P F P/F
DCC (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc) (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

045 3.85 4.64 10.74 12.4 805.1 476.6 86.9 5.06 5.48 6.92 0.0392 0.1159 0.338

046 4.84 5.56 13.01 10.5 1469.6 707.7 104.7 6.22 6.75 8.33 0.0405 0.1048 0.386

047 4.10 8.26 13.89 15.7 1976.0 923.7 116.8 6.41 7.90 9.29 0.1040 0.0805 1.291

048 2.29 4.90 10.50 25.9 494.9 399.0 80.4 3.72 4.95 6.40 0.1424 0.1273 1.118

049 4.55 6.22 37.33 23.4 4436.1 2003.7 211.2 6.64 9.48 16.81 0.1762 0.2786 0.632

050 3.95 5.17 14.64 4.2 1253.6 685.0 106.4 5.48 6.43 8.46 0.0794 0.1362 0.583

051 4.35 4.59 7.15 4.1 599.5 356.4 73.3 4.85 5.04 5.83 0.0190 0.0728 0.260

052 2.16 4.96 24.22 3.6 1092.5 890.6 139.4 3.67 6.38 11.09 0.2689 0.2693 0.998

053 4.38 9.25 18.12 9.1 3082.4 1312.7 140.3 7.04 9.35 11.17 0.1407 0.0886 1.588

054 2.36 4.43 6.39 2.5 281.0 237.7 56.7 3.54 4.19 4.51 0.0836 0.0366 2.279

055 4.63 6.58 56.54 1.4 7221.0 3142.8 295.9 6.89 10.61 23.55 0.2127 0.3785 0.562

056 4.46 10.21 29.55 5.9 5645.3 2264.3 193.9 7.47 11.67 15.43 0.2189 0.1389 1.575

057 2.69 6.61 12.14 9.0 907.6 606.8 96.4 4.48 6.29 7.67 0.1674 0.0990 1.690

058 3.39 6.54 8.52 8.0 794.0 469.8 79.0 5.07 5.94 6.29 0.0791 0.0286 2.758

059 2.06 5.01 8.04 8.7 348.3 308.2 69.3 3.39 4.44 5.51 0.1344 0.1079 1.246

060 2.73 3.93 7.44 4.6 335.5 263.8 65.0 3.81 4.05 5.17 0.0301 0.1220 0.247

061 2.69 5.32 8.16 6.5 489.8 354.8 73.8 4.14 4.80 5.87 0.0743 0.0999 0.743

062 2.68 4.42 8.96 9.0 446.0 336.0 73.5 3.98 4.57 5.84 0.0689 0.1225 0.562

063 2.94 4.53 20.94 9.2 1170.7 787.7 126.7 4.45 6.21 10.08 0.1647 0.2371 0.694

064 4.53 6.66 17.50 22.3 2219.3 1011.8 127.5 6.57 7.93 10.14 0.0933 0.1222 0.763

065 1.84 5.32 12.39 14.3 510.9 475.3 88.5 3.22 5.36 7.04 0.2493 0.1352 1.844

066 5.34 5.96 12.71 13.1 1699.3 760.5 107.2 6.70 7.08 8.53 0.0278 0.0927 0.300

067 5.37 8.16 11.13 11.8 2044.6 836.5 109.7 7.33 7.62 8.73 0.0194 0.0679 0.285

068 4.81 5.66 7.31 8.6 835.3 438.8 76.0 5.71 5.76 6.05 0.0050 0.0240 0.211

069 3.71 5.88 10.13 15.7 928.6 521.6 88.9 5.34 5.86 7.08 0.0466 0.0940 0.495

070 5.94 9.10 15.81 11.0 3588.9 1276.1 136.3 8.43 9.36 10.84 0.0518 0.0736 0.704

071 5.92 9.58 11.42 19.0 2720.2 1004.9 114.9 8.12 8.74 9.14 0.0370 0.0223 1.660

072 4.15 6.27 9.36 10.0 1021.5 534.3 89.1 5.73 5.99 7.09 0.0223 0.0835 0.267

073 3.55 6.78 13.28 11.9 1344.5 727.9 105.6 5.54 6.88 8.41 0.1083 0.0996 1.087

074 3.21 8.87 14.64 10.3 1748.3 961.2 118.8 5.45 8.08 9.45 0.1943 0.0779 2.492

075 2.36 5.80 11.46 5.9 659.6 500.1 88.7 3.95 5.63 7.06 0.1752 0.1120 1.563

076 2.52 8.00 13.39 3.0 1135.1 770.7 106.9 4.41 7.20 8.50 0.2398 0.0828 2.894

077 3.46 6.66 11.97 4.4 1159.2 647.5 99.1 5.37 6.53 7.89 0.0975 0.0942 1.034

078 2.66 5.52 11.49 7.0 710.2 497.7 88.9 4.28 5.59 7.07 0.1331 0.1170 1.137

079 5.53 7.54 24.08 7.5 4215.3 1604.0 163.7 7.88 9.79 13.03 0.1081 0.1416 0.763

080 3.18 7.40 12.84 0.7 1269.2 731.1 104.8 5.20 6.97 8.33 0.1452 0.0889 1.632

081 5.36 6.88 7.63 13.4 1182.6 550.6 84.9 6.44 6.48 6.75 0.0032 0.0205 0.157

082 2.65 9.83 24.82 23.1 2715.5 1686.5 164.4 4.83 10.25 13.08 0.3595 0.1213 2.961

083 5.48 7.38 11.44 18.5 1942.6 806.2 108.3 7.22 7.44 8.61 0.0145 0.0732 0.199

084 3.83 6.77 16.83 12.9 1830.0 927.4 122.0 5.91 7.59 9.71 0.1241 0.1223 1.014

085 6.77 7.55 8.39 11.6 1801.7 720.4 96.9 7.43 7.50 7.71 0.0045 0.0137 0.332

086 6.37 9.83 13.13 22.0 3447.7 1184.9 129.5 8.72 9.14 10.31 0.0232 0.0598 0.388

087 4.74 8.88 13.82 14.2 2444.0 1020.8 121.7 7.18 8.38 9.69 0.0770 0.0724 1.064

088 5.59 6.94 12.95 10.4 2109.1 869.0 113.4 7.28 7.65 9.02 0.0253 0.0820 0.309
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Table 3. (Continued)

ID a b c chi2 V S C T B L P F P/F
DCC (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc) (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

089 5.68 10.76 13.70 14.7 3514.5 1253.8 133.0 8.40 9.42 10.58 0.0568 0.0582 0.977

090 4.67 6.91 9.30 16.0 1260.8 601.4 93.7 6.28 6.41 7.46 0.0100 0.0752 0.133

091 7.20 8.63 9.46 13.2 2466.3 892.0 107.8 8.27 8.29 8.57 0.0012 0.0168 0.072

092 6.13 9.23 11.98 9.3 2844.1 1032.3 121.1 8.26 8.52 9.63 0.0154 0.0613 0.251

093 6.73 7.67 12.68 14.4 2745.7 1000.4 120.1 8.23 8.32 9.55 0.0057 0.0687 0.083

094 6.02 9.98 13.07 6.9 3295.6 1165.1 128.4 8.48 9.06 10.22 0.0331 0.0600 0.551

095 4.59 8.08 12.91 9.4 2012.1 885.2 113.9 6.81 7.77 9.06 0.0653 0.0767 0.851

096 4.63 8.55 11.58 17.0 1925.0 842.9 110.2 6.85 7.64 8.77 0.0547 0.0688 0.795

097 4.35 5.70 7.99 17.4 833.1 449.0 77.2 5.56 5.80 6.15 0.0214 0.0285 0.751

098 2.28 8.71 13.37 15.2 1115.2 816.0 108.8 4.10 7.50 8.65 0.2930 0.0716 4.089

099 5.59 9.59 14.49 20.3 3261.4 1198.7 131.2 8.16 9.13 10.44 0.0563 0.0667 0.843

100 2.32 6.00 16.48 5.5 965.7 724.8 111.0 3.99 6.52 8.83 0.2403 0.1504 1.597

101 1.52 4.18 6.46 4.9 173.1 201.4 52.4 2.57 3.84 4.17 0.1969 0.0413 4.763

102 2.42 3.37 9.69 5.2 332.5 288.1 71.1 3.46 4.04 5.66 0.0781 0.1659 0.470

103 3.98 5.03 7.93 2.8 668.0 392.5 77.0 5.09 5.10 6.13 0.0012 0.0915 0.013

104 4.18 5.05 11.66 5.8 1033.7 563.0 94.0 5.50 5.98 7.48 0.0415 0.1112 0.373

105 2.97 5.87 13.15 6.6 963.6 610.8 98.8 4.73 6.18 7.86 0.1326 0.1199 1.105

does not exceed 10 h−1
70 Mpc for either surface method. These

results are consistent with those of Einasto et al. (2007a), who
reported similar scales for the densest central regions of superclus-
ters constrained to high-mass fraction areas, which coincide with
their cores.

Although the polyhedral and ellipsoidal surface fits share the
same boundary-point selection process, the mean (and median)
values of T, B, and L obtained with these two methods differ
significantly. These differences stem from the intrinsic nature of
each approach. The polyhedral fit with sf = 1 yields a more com-
pact representation of the surface enclosing the member galaxies
of the cores, capturing (via triangulation) finer substructures and
morphological details that are typical of dynamically evolving
regions. Consequently, this compactness produces smaller values
of T, B, and L, since, by construction, surface area and volume
are minimal at sf = 1 (and increase toward sf = 0). In contrast, the
ellipsoidal fit enforces a smoother, global shape that encloses most
of the coremember galaxies within an ellipsoidal boundary, which
systematically returns larger values for the shapefinders.

This dual strategy (compact polyhedral fits for structural detail
and ellipsoidal fits for global extent) provides a robust morpho-
logical characterisation of the cores: the results of the polyhedral
fit can be interpreted as a lower bound on the dimensions of
these structures, while those of the ellipsoidal fits serve as an
upper bound. The ellipsoidal method is included for comparison
because it is a conservative technique widely used in the literature.
Furthermore, exploratory tests (not included in themanuscript for
brevity) employing intermediate shrink factors (e.g. 0≤ sf < 1) in
polyhedral fits confirm that the qualitative classification, in partic-
ular the dominance of filamentary morphologies, remains consis-
tent and does not critically depend on the specific choice of sf.

Figure 4 shows scatterplots of the three characteristic dimen-
sions (T, B, and L from Table 4) of the DCC cores versus their

extensive mass (Mc
ext, defined as the sum of the virial masses of

the member galaxy systems of a core, and presented in Table 5
of Paper I). Statistical correlations were evaluated using a Pearson
test with a 95% confidence level. The correlation coefficients for T,
B, and L with mass were 0.70, 0.64, and 0.40, respectively. These
correlations are statistically significant with a significance level of
αs = 0.05. These results suggest that the dimensions of the cores
are positively correlated with their mass: more massive structures
tend to exhibit greater thickness, breadth, and length. This find-
ing is consistent with previous studies by Shandarin et al. (2004),
which reported similar trends in superclusters.

On the other hand, a standard interpretation of the genus in
the cosmology literature defines it as (e.g. Shandarin et al. 2004):

G= (number of holes)− (number of isolated regions)+ 1, (25)

where ‘holes’ are considered complexmathematical objects that, in
three-dimensional structures, typically manifest as tunnels cross-
ing the structure from one side to the other, as in a toroidal shape.
The term ‘isolated regions’ refers to the number of disconnected
parts of the fitted surface that define the structure’s boundaries.
Thus, Equation (26) can be rewritten as:

G=Ntunn −Nis,surf + 1, (26)

where Ntunn and Nis,surf represent the number of tunnels and
isolated surfaces, respectively (e.g. Bag et al. 2019).

Visual inspections using basic rotation in 3D and rendering
tools available in standard scientific software (e.g. MATLAB and
Python libraries) revealed that the DCC cores exhibit significant
substructure patterns, frequently containing tunnels and isolated
systems. The top panel of Figure 5 shows the distribution of G
values obtained from the fitted polyhedral surfaces of the DCC
cores, as presented in Table 4. The wide range of G values (from
−1 to 8) reflects the diversity of complex three-dimensional shapes
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Table 4.Minkowski functional and shapefinders for DCC cores (polyhedral fits).

ID V S C χ G T B L P F P/F

DCC (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

001 474.5 567.2 125.0 1 0.5 2.50 4.53 6.63 0.28 0.18 1.53

002 185.0 344.6 94.6 −2 2 1.61 2.51 3.63 0.21 0.18 1.19

003 94.1 268.2 156.9 −13 7.5 1.05 1.46 1.70 0.16 0.07 2.18

004 60.3 187.0 111.4 −3 2.5 0.96 1.67 2.53 0.26 0.20 1.31

005 79.4 212.2 132.7 1 0.5 1.12 1.59 7.04 0.17 0.62 0.27

006 98.2 210.5 88.4 −2 2 1.40 2.34 2.38 0.25 0.00 34.38

007 170.7 354.4 113.7 −4 3 1.44 2.26 3.11 0.22 0.15 1.39

008 40.3 137.2 93.4 0 1 0.88 1.46 3.71 0.24 0.43 0.57

009 156.9 267.3 110.3 3 −0.5 1.76 2.42 5.85 0.15 0.41 0.38

010 106.4 208.9 72.0 −4 3 1.43 1.52 2.90 0.03 0.30 0.10

011 59.9 212.2 142.7 4 −1 0.84 1.48 5.67 0.27 0.58 0.46

012 131.3 316.2 132.4 −4 3 1.24 2.38 2.63 0.31 0.04 6.37

013 65.0 180.7 101.6 1 0.5 1.07 1.77 5.39 0.24 0.50 0.48

014 241.0 378.5 149.3 0 1 1.91 2.53 5.94 0.14 0.40 0.34

015 408.8 507.1 111.8 0 1 2.41 4.44 4.53 0.29 0.00 31.30

016 76.5 179.3 93.7 3 −0.5 1.28 1.91 4.97 0.19 0.44 0.44

017 59.7 172.8 88.7 1 0.5 1.03 1.94 4.70 0.30 0.41 0.73

018 567.5 757.6 194.7 −7 4.5 2.24 2.81 3.89 0.11 0.15 0.70

019 233.0 328.0 121.8 3 −0.5 2.13 2.69 6.46 0.11 0.41 0.28

020 79.1 170.9 67.4 −3 2.5 1.38 1.53 2.53 0.04 0.24 0.19

021 118.2 216.1 85.3 3 −0.5 1.64 2.53 4.52 0.21 0.28 0.75

022 49.0 191.9 152.2 −5 3.5 0.76 1.26 2.69 0.24 0.36 0.67

023 33.1 129.4 93.2 0 1 0.76 1.38 3.71 0.28 0.45 0.63

024 525.9 600.6 153.1 2 0 2.62 3.92 12.18 0.19 0.51 0.38

025 91.7 191.8 95.6 1 0.5 1.43 2.00 5.07 0.16 0.43 0.38

026 315.8 411.2 118.5 3 −0.5 2.30 3.46 6.29 0.20 0.28 0.69

027 219.7 399.3 182.1 −2 2 1.65 2.19 4.83 0.14 0.37 0.37

028 63.1 178.7 78.9 2 0 1.05 2.26 6.28 0.36 0.47 0.77

029 202.8 437.7 164.7 0 1 1.38 2.65 6.55 0.31 0.42 0.74

030 267.5 431.1 111.6 −5 3.5 1.86 1.97 3.86 0.02 0.32 0.09

031 313.1 520.0 149.6 1 0.5 1.80 3.47 7.94 0.31 0.39 0.80

032 151.2 332.3 151.4 −1 1.5 1.36 2.19 4.82 0.23 0.37 0.62

033 242.3 465.2 119.5 2 0 1.56 3.89 9.51 0.42 0.41 1.01

034 124.8 252.9 92.8 0 1 1.48 2.72 3.69 0.29 0.15 1.94

035 213.9 374.8 99.4 0 1 1.71 3.76 3.95 0.37 0.02 15.13

036 101.6 247.7 102.2 0 1 1.23 2.42 4.06 0.32 0.25 1.28

037 102.5 179.3 68.5 1 0.5 1.71 2.61 3.63 0.20 0.16 1.26

038 306.0 370.0 100.6 0 1 2.48 3.67 4.00 0.19 0.04 4.56

039 173.3 271.6 93.0 3 −0.5 1.91 2.91 4.93 0.20 0.25 0.80

040 210.7 516.7 176.3 −11 6.5 1.22 1.87 2.93 0.20 0.22 0.94

041 440.0 595.9 120.7 −2 2 2.21 3.20 4.93 0.18 0.21 0.85

042 76.1 202.6 94.4 1 0.5 1.12 2.14 5.01 0.31 0.40 0.77

043 143.8 313.7 151.5 2 0 1.37 2.07 12.05 0.20 0.70 0.28

044 124.6 280.6 122.4 −6 4 1.33 1.94 2.29 0.18 0.08 2.31

045 230.2 363.8 95.9 −1 1.5 1.89 3.05 3.79 0.23 0.10 2.16
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Table 4. (Continued)

ID V S C χ G T B L P F P/F

DCC (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

046 121.1 324.1 130.8 −1 1.5 1.12 2.47 4.16 0.37 0.25 1.48

047 288.0 556.8 205.8 −6 4 1.55 2.70 3.27 0.27 0.09 2.83

048 97.5 217.1 98.7 −2 2 1.34 2.19 2.62 0.23 0.08 2.72

049 206.5 460.3 196.5 −14 8 1.34 1.73 2.34 0.12 0.14 0.85

050 194.4 328.0 92.5 1 0.5 1.77 3.54 4.90 0.33 0.16 2.06

051 146.9 227.8 78.2 2 0 1.93 2.91 6.22 0.20 0.36 0.55

052 9.7 69.2 76.0 −4 3 0.42 0.91 1.51 0.36 0.24 1.47

053 507.0 521.8 144.1 1 0.5 2.91 3.62 7.64 0.10 0.35 0.30

054 30.9 106.3 77.6 0 1 0.87 1.36 3.09 0.22 0.38 0.57

055 142.3 330.8 140.5 0 1 1.29 2.35 5.59 0.29 0.40 0.71

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

056 78.7 244.6 139.0 2 0 0.96 1.76 11.06 0.29 0.72 0.40

057 34.7 140.8 114.2 −2 2 0.73 1.23 3.03 0.24 0.42 0.59

058 127.6 303.0 96.4 −6 4 1.26 1.53 3.14 0.09 0.34 0.28

059 66.8 171.7 87.1 1 0.5 1.16 1.97 4.62 0.25 0.40 0.63

060 81.3 162.8 55.5 1 0.5 1.49 2.93 2.94 0.32 0.00 116.18

061 64.5 142.9 75.6 2 0 1.35 1.89 6.01 0.16 0.52 0.31

062 77.9 190.1 100.2 −5 3.5 1.22 1.77 1.89 0.18 0.03 5.40

063 68.7 227.9 123.4 −6 4 0.90 1.84 1.96 0.34 0.03 11.02

064 313.0 532.5 159.8 −3 2.5 1.76 3.33 3.63 0.30 0.04 7.05

065 55.5 163.6 107.0 2 0 1.01 1.52 8.52 0.20 0.69 0.28

066 122.6 282.7 134.5 3 −0.5 1.30 2.10 7.13 0.23 0.54 0.43

067 733.0 684.7 112.9 2 0 3.21 6.06 8.99 0.30 0.19 1.57

068 234.4 360.0 82.9 1 0.5 1.95 4.34 4.40 0.37 0.00 56.21

069 148.9 317.5 132.3 −1 1.5 1.40 2.39 4.21 0.26 0.27 0.95

070 590.2 716.5 144.8 2 0 2.47 4.94 11.52 0.33 0.39 0.83

071 393.1 667.1 168.6 −2 2 1.76 3.95 4.47 0.38 0.06 6.21

072 126.0 284.2 107.0 1 0.5 1.33 2.65 5.68 0.33 0.36 0.91

073 134.6 317.7 129.6 −2 2 1.27 2.45 3.43 0.31 0.16 1.88

074 282.4 402.4 131.7 3 −0.5 2.10 3.05 6.98 0.18 0.39 0.46

075 48.5 127.7 87.0 0 1 1.13 1.46 3.46 0.12 0.40 0.31

076 169.8 287.3 109.5 3 −0.5 1.77 2.62 5.81 0.19 0.37 0.51

077 75.9 191.3 88.5 1 0.5 1.19 2.16 4.69 0.28 0.36 0.78

078 66.1 160.2 78.4 −2 2 1.23 2.04 2.08 0.24 0.00 27.03

079 415.6 568.3 128.0 2 0 2.19 4.44 10.18 0.33 0.39 0.86

080 96.6 205.3 99.4 0 1 1.41 2.06 3.95 0.18 0.31 0.59

081 136.5 277.3 121.9 −2 2 1.47 2.27 3.23 0.21 0.17 1.21

082 123.9 307.6 142.1 −1 1.5 1.20 2.16 4.52 0.28 0.35 0.80

083 254.0 486.2 154.9 −7 4.5 1.56 2.24 3.13 0.17 0.16 1.06

084 167.5 362.4 163.0 −3 2.5 1.38 2.22 3.70 0.23 0.25 0.92

085 214.8 417.1 153.4 −8 5 1.54 2.03 2.71 0.13 0.14 0.94

086 416.3 589.0 175.5 −1 1.5 2.12 3.35 5.58 0.22 0.24 0.90

087 451.9 590.4 140.1 0 1 2.29 4.21 5.57 0.29 0.13 2.11

088 227.7 466.2 187.2 −1 1.5 1.46 2.48 5.96 0.25 0.41 0.63

089 310.6 577.7 214.1 0 1 1.61 2.69 8.52 0.25 0.51 0.48
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Table 4. (Continued)

ID V S C χ G T B L P F P/F

DCC (h−3
70 Mpc

3) (h−2
70 Mpc

2) (h−1
70 Mpc) (h−1

70 Mpc) (h−1
70 Mpc) (h−1

70 Mpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

090 185.3 328.0 140.5 1 0.5 1.69 2.33 7.45 0.15 0.52 0.30

091 418.6 534.7 153.6 1 0.5 2.34 3.48 8.15 0.19 0.40 0.48

092 445.6 643.3 157.0 −2 2 2.07 4.09 4.16 0.32 0.00 37.72

093 471.3 682.7 178.6 −13 7.5 1.67 2.07 3.82 0.10 0.29 0.35

094 271.7 471.7 164.5 0 1 1.72 2.86 6.54 0.24 0.39 0.63

095 403.3 567.3 166.7 0 1 2.13 3.40 6.63 0.22 0.32 0.71

096 221.2 423.5 160.8 1 0.5 1.56 2.63 8.53 0.25 0.52 0.48

097 192.5 384.6 130.8 −12 7 1.30 1.50 2.94 0.07 0.32 0.22

098 89.0 256.5 146.0 1 0.5 1.04 1.75 7.74 0.25 0.63 0.40

099 424.6 743.9 226.8 −13 7.5 1.71 2.12 3.27 0.10 0.21 0.50

100 102.2 191.2 84.3 0 1 1.60 2.26 3.35 0.17 0.19 0.88

101 16.1 66.5 56.8 3 −0.5 0.72 1.17 3.01 0.23 0.44 0.52

102 29.0 131.6 84.0 −3 2.5 0.66 1.56 1.91 0.40 0.09 4.09

103 50.6 147.0 92.7 1 0.5 1.03 1.58 4.91 0.21 0.51 0.41

104 76.2 236.6 114.0 −6 4 0.96 1.81 2.07 0.30 0.06 4.54

105 96.0 184.9 98.3 4 −1 1.55 1.88 3.91 0.09 0.35 0.26

Table 5. Mean (with standard deviation) and median values for the T,
B, and L shapefinders estimated from polyhedral and ellipsoidal surface
fits to the DCC cores. Median values are given as asymmetric ranges with
�Q1 =Median−Q1 and�Q3 =Q3 −Median as lower and upper indices,
where Q1 and Q3 are the 25th and 75th percentiles, respectively.

Polyhedral surfaces Ellipsoidal surfaces

Shapefinder Mean± sth Median+�Q3
−�Q1 Mean± std Median+�Q3

−�Q1

T (h−1
70 Mpc) 1.52± 0.50 1.43+0.34

−0.24 5.70± 1.51 5.45+1.34
−0.92

B (h−1
70 Mpc) 2.47± 0.91 2.26+0.61

−0.43 6.75± 1.52 6.48+1.33
−0.83

L (h−1
70 Mpc) 4.88± 2.31 4.40+1.67

−1.19 8.07± 1.80 7.89+1.42
−1.06

exhibited by these structures. Interpreting the genus as a structural
feature of such surfaces is not unique and becomes non-trivial
when the regions have highly intricate geometries (e.g. Shandarin
et al. 2004).

For this analysis, the genus obtained from ellipsoidal surface
fits was not considered, since ellipsoids are topologically home-
omorphic to spheres, which have genus G= 0. As a result, a
meaningful topological study based on this type of surface fit is
not feasible.

Various non-integer values of G were obtained because the
genus was computed using the formula G= 1− χ/2, where χ is
the Euler characteristic. Since χ can take odd values depending on
the discretisation and resolution of the surface representation, G
is not always an integer. However, genus is fundamentally a topo-
logical invariant that describes the number of handles or holes in
a surface, and it is conventionally defined for integer values. Non-
integer values are difficult to interpret in this context, as they do
not correspond to well-defined topological classes. Therefore, we
restrict our analysis to integer values as defined in Equation (26).
Under this criterion, about 10% of the DCC cores are topologi-
cally isomorphic to a sphere (i.e. G= 0), ∼18% to a toroid (i.e.

G= 1), and ∼10% to a pretzel (i.e. G= 2). Higher genus values
indicate increasingly complex topologies. Structures with nega-
tive genus (about 11% of the cores) can be interpreted as coarser
configurations with multiple isolated member systems.

Additionally, the bottom panel of Figure 5 shows the distribu-
tion of all genus values (both integer and non-integer) versus the
extensivemass of cores, though no significant statistical correlation
can be inferred from this relationship. This suggests that the topo-
logical complexity of cores is not directly governed by their mass,
possibly due to the influence of other structural and dynamical
factors.

4.2.4. The spectrum of shapes of the cores

In addition to MFs and shapefinders, Tables 3 and 4 present the
morphological parameter P/F, which enables the statistical anal-
ysis of the shapes of the cores. The shapefinder formalism allows
for classifying cores into two basic morphological types:

1. Pancakes (oblate structures), with P/F> 1, and
2. Filaments (prolate structures), with 0≤P/F≤ 1.

Here, ribbon-like objects were excluded, as defining the range
P/F≈ 1 for this morphology is somewhat arbitrary (e.g. Costa-
Duarte et al. 2011). The distribution of the morphological param-
eter P/F, referred to as the shape spectrum, for the DCC cores is
shown in Figure 6. Outliers (15 data points from polyhedral fits
and 9 from ellipsoidal fits) were excluded from the analysis. The
polyhedral surface fits reveal that about 75% of the cores can be
classified as filaments, while the remaining ∼25% can be identi-
fied as pancakes. The ellipsoidal fits corroborate these findings,
indicating that approximately 62% of the cores have filamen-
tary morphologies, while ∼38% exhibit pancake-like shapes. The
shape spectrum obtained from both methods confirms a statistical
tendency of DCC cores towards filamentary morphologies.
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Figure 4. Length, breadth, and thickness (T, B, andL shapefinders) versus extensive
massMc

ext for DCC cores. The three solid blue lines correspond to the best linear fit in
each case. The slopemand vertical interceptbof eachfit are displayed in theupper-left
inset of the corresponding panel. The units of each axis must be understood in terms
of h−1
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Despite the differences in the values of the characteristic
dimensions (see Table 5) obtained from polyhedral and ellipsoidal
surface fitting, the analyses of planarity and filamentarity remain
consistent for both methods. Since these quantities are defined
as combined ratios of T, B, and L (see Equations 14 and 15),
their stability suggests that both fitting approaches preserve the
overall structural characteristics of the cores (see Section 4.2.4).
This reinforces the robustness of our morphological classifica-
tion, regardless of the specific method used to estimate absolute
dimensions. Therefore,pt while the polyhedral fit provides a more
precise morphological description, the ellipsoidal fit remains a
useful comparative reference within the framework of large-scale
structure studies.

Since filaments are the most common features in rich super-
clusters (e.g. Einasto et al. 2007a; Cautun et al. 2014), it is
reasonable to expect that cores, being internal substructures of
superclusters, tend towards these morphologies. This is consis-
tent with the hierarchical growth these structures experience, as
cores are primarily ‘nourished’ through the filaments to which they
are connected. Filaments act as massive channels for transporting

matter in the Universe (e.g. Libeskind et al. 2018, and references
therein), primarily along directions of maximum anisotropic grav-
itational attraction (e.g. Zeldovich 1970), in this case towards cores,
which are the densest regions within superclusters.

On the other hand, pancake-like cores are less common in rich
superclusters but represent another class of structures that can
evolve into compact, virialised objects. Pancake cores are more
prevalent in lumpy, less filamentary superclusters and are often
isolated or disconnected from other parts of their host superclus-
ters.

The predominantly anisotropic morphologies (flattened and
elongated) of cores are indicative of their current quasi-linear
dynamical stage, as predicted by the Zeldovich model (e.g. Araya-
Melo et al. 2009). As cores evolve, their morphologies change,
leading to various intermediate shapes over time. According to
the Zeldovich formalism, which defines a morphological sequence
linked to stages of an anisotropic gravitational collapse (see, e.g.
Cautun et al. 2014), cores that are mostly filaments are the largest
bound structures closest to becoming virialised objects, as they
only need to collapse along a single axis (the longest of the three).
In contrast, pancake-shaped cores still need to collapse along two
axes before reaching virialisation. However, since they are already
bound structures with significant overdensities, their collapse and
future virialisation are inevitable.

The evolution of cores rarely occurs in isolation within the LSS.
As previously noted, most cores are dense filaments or located
at filament intersections within superclusters, constantly accret-
ing matter from their surroundings. The boxplot in Figure 7
shows that filamentary cores (0≤P/F≤ 1) are relatively more
massive than pancakes (P/F> 1). The mass distribution of fila-
ments extends towards higher values, while pancake masses are
distributed within a narrower, lower-mass range. Pancake-like
cores are often surrounded by less dense regions, as evidenced by
density contrast analyses and connectivity studies between cores
and their host superclusters. As core richness increases with mass,
these results align with Costa-Duarte et al. (2011), who found
that filaments in superclusters tend to be richer than pancakes on
average.

Finally, we ptestimate the fraction of cores with approximately
spherical shapes (i.e. P≈F≈ 0). Allowing a tolerance of up to
0.05 in both P (planarity) and F (filamentarity), only ∼8% of the
DCC cores are approximately spherical based on ellipsoidal fits.
None of these cores fall within this range when using polyhedral
surface fits. Decreasing the tolerance further reduces the fraction
of cores with comparable axes (a≈ b≈ c). The virtual absence of
spherical objects underscores the relative youth of the cores, which
may reflect the fact that the primordial density field did not con-
tain spherical overdense regions (e.g. Bardeen et al. 1986; Kravstov
& Borgani 2012), and that the early stages of contraction and
gravitational collapse occur in strongly flattened and elongated
geometries (e.g. Zeldovich 1970; Araya-Melo et al. 2009; Cautun
et al. 2014).

5. Entropy analysis

According to the standard model of structure formation, gravita-
tional collapse occurs anisotropically, progressing from flattened
and elongated configurations to a more compact triaxial struc-
ture in a virialised state (e.g. Shandarin et al. 2004; Cautun et al.
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Figure 5. Top: Distribution of (genus)G values for DCC cores. Bottom: Distribution ofG values versus the extensive massMc
ext of DCC cores.
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Figure 6. The ‘shape spectrum’ of DCC cores. Distribution of the shape statisticP/F in the sample of cores excluding outliers and using two surface fit (polyhedral and ellipsoidal)
methods. The structures are classified as filaments if 0≤P/F≤ 1 or as pancakes ifP/F> 1.

2014). This collapse along different axes leads to a continuous
redistribution of mass, shaping the evolving density profiles of
these structures (e.g. Araya-Melo et al. 2009). In the case of cores
– highly overdense regions within superclusters – their internal

structure is primarily shaped by the spatial distribution of their
member galaxy systems, as traced in optical observations. As cores
dynamically evolve, it is expected that smaller groups accrete
onto richer clusters, which in turn merge, gradually dissolving
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Figure 7. Boxplots of extensive massMc
ext for the two morphological classifications of DCC cores, filaments (0≤P/F≤ 1) and pancakes (P/F> 1), based on the polyhedral

(poly-fit) and ellipsoidal (ell-fit) fits surfaces. Filaments have a relatively greater mass than pancakes.

substructures and leading to a more homogeneous (spatial and
velocity) galaxy distributions similar to those in relaxed massive
clusters. The most massive cluster (MMC) within each core could
eventually become the main gravitational centre, around which
the virialised structure of the coremay form.

The evolution of structures in the Universe is shaped by a
complex combination of fundamental physical laws and stochastic
processes, often challenging our understanding (e.g. Lynden-Bell
1967; Saslaw 1980; Padmanabhan 1990; Binney & Tremaine 2008).
This complexity increases further when considering environmen-
tal interactions, as matter and energy exchanges can significantly
influence their dynamical evolution. One of the most significant
principles influencing the evolution of any physical system is the
second law of thermodynamics, which asserts that the entropy of
an isolated system increases over time, reaching its maximum at
equilibrium – the most evolved state possible for a system of given
mass and energy. In this context, entropy directly correlates with
the degree of dynamical evolution of a physical system, making it
a relevant parameter for characterizing the dynamical state of the
cores (or any other galaxy system or structure).

Entropymeasures the randomness and absence of macroscopic
motions or special configurations such as substructures within a
system (e.g. Landau & Lifshitz 1980). In this sense, it indicates how
close a system is to dynamical relaxation (equilibrium). However,
entropy remains a state function related to the thermodynamic
properties of macroscopic systems, which are still challenging to
describe and interpret in systems dominated by gravity due to their
unique behaviors (see Zúñiga et al. 2024b, for further discussion).

5.1. TheHZ-entropy estimator

To quantitatively characterise the evolutionary state of galaxy
systems within an entropy-increasing framework, a continuous
entropy estimator has been introduced (see Zúñiga et al. 2024b),
defined as:

HZ ≡ ln

(
Mvir
4
3πR

3
vir

1
ρ0

)
+ β

2
ln

(
β

2
σ 2
v

σ 2
v0

)
, (27)

where Mvir, Rvir, and σv denote the virial mass, virial radius, and
line-of-sight galaxy velocity dispersion of a system, respectively.
The parameter β accounts for the velocity anisotropy of galaxies

(β = 3 for Maxwellian distributions, e.g. Tully 2015). The con-
stants ρ0 = (1014M�/Mpc3)h270 and σv0 = 1 km s−1 are fiducial
reference values for density and velocity dispersion used to render
the arguments of the logarithms dimensionless. The HZ estima-
tor is a physically motivated, dimensionless quantity that traces
the net change in specific entropy (�s) experienced by a system
from its formation to the present epoch. Since it is defined in terms
of (optical) observational parameters, it can be readily computed
once a sufficient number of member galaxies are identified.

The HZ estimator was first tested on a sample of 70 well-
sampled galaxy clusters in the Local Universe (the Top70 cluster
sample,e Caretta et al. 2023). The test results suggest a strong cor-
relation between HZ and the dynamical state of clusters (Zúñiga
et al. 2024b). Specifically, HZ correlates with the level of gravi-
tational assembly, yielding lower values for dynamically younger,
substructured clusters and higher values for more relaxed, evolved
systems. Furthermore, HZ exhibits a robust correlation with other
continuous dynamical indicators derived from both optical and
X-ray observations.

5.2. Entropy of cores

The use of the HZ estimator can be extended to the study of struc-
tures larger than clusters due to self-similarity. Gravity-dominated
systems are expected to follow a comparable evolutionary path on
a global scale (e.g. simulation results indicate that supercluster-
scale structures tend to evolve into very rich cluster-like systems,
Araya-Melo et al. 2009). Based on its successful application to
characterise the dynamical state of galaxy clusters (Zúñiga et al.
2024b), we propose here to extend the use of the HZ estimator to
larger structures, such as superclusters and their cores. To this end,
we generalise the HZ estimator as follows:

HZ = ln
(

ρ̄

ρ0

)
+ β

2
ln

(
β

2
σ 2
v

σ 2
v0

)
, (28)

where ρ̄ and σv represent the average mass density (e.g. ρ̄ =
Mext/V) and the line-of-sight galaxy velocity dispersion of the
structure under study, respectively. This generalisation avoids

eSee www.astro.ugto.mx/recursos/HP_SCls/Top70.html.
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using virial parameters when estimating entropy for non-relaxed
systems.

Using the average densities and galaxy velocity dispersions esti-
mated for the cores (see Table 5 of Paper I and Table 1) and
superclusters (see Table 3 of Paper I and Table 6), we computed the
HZ-entropy for each of these structures. The HZ values obtained
for the completeMSCC-supercluster sample are listed in column 6
of Table 6, while theHZ values for DCC cores are shown in column
12 of Table 1.

To compare evolutionary states of galaxy systems and struc-
tures at different scales, we took the HZ-entropy values for the
Top70 cluster sample from Table 2 of Zúñiga et al. (2024b). These
clusters, among the best-sampled galaxy systems in the nearby
Universe, belong to MSCC superclusters and cover a broad range
from poor to rich systems (with ICM temperatures from 1 to 12
keV).

The top panel of Figure 8 displays boxplots of HZ-entropy dis-
tributions for clusters, cores, and superclusters. It is evident that
clusters exhibit higher entropies (median value of 15.4), consis-
tent with systems near virial equilibrium. In contrast, superclusters
show the lowest entropies (median value of 11.1), indicating
their less advanced evolutionary state among the studied galaxy
structures. Meanwhile, cores present intermediate entropy val-
ues (median value of 12.9), supporting the hypothesis that these
regions are dynamically more evolved than their rich host super-
clusters.

5.3. Relaxation probability of cores

To complement the entropy-based approach, we evaluate the
relaxation probability parameter, Prelax, as defined in Zúñiga et al.
(2024b). This parameter provides an independent method for
assessing the dynamical state of galaxy structures based on the dis-
tribution of their member galaxies in phase space. virialised cores
are expected to exhibit spatial and velocity distributions similar to
those of relaxed galaxy clusters. These distributions are typically
modeled using profiles derived from equilibrium assumptions,
such as the King profile for radial distributions, uniform azimuthal
distributions, and Gaussian velocity distributions (e.g. Saslaw &
Hamilton 1984; Sarazin 1986; Adami et al. 1998; Sampaio &
Ribeiro 2014).

The Prelax parameter is determined by comparing the observed
probability density functions (PDFs) of galaxies within a core to
equilibrium models. This approach mirrors that used in Zúñiga
et al. (2024b) for galaxy clusters. Briefly, the raw observational
coordinates of member galaxies, namely the triples (RA, Dec, z)
of right ascension, declination, and redshift, are distributed within
a solid angle that can be approximated by a cylinder with a circu-
lar base in the plane of the sky and depth along the line of sight.
Within this cylinder, each galaxy’s position can be expressed as
(r, θ , z), where r represents its projected distance from the core
centroid, θ its azimuthal angle relative to the local north direc-
tion in the projected sky distribution, and z its redshift, serving
as a proxy for radial velocity. Assuming statistical independence,f
the galaxy distribution in each core can be described by an empir-
ical joint PDF, f̄rθz = f̄r(r)f̄θ (θ)f̄z(z). Here, f̄r(r), f̄θ (θ), and f̄z(z)

fThis assumption is supported by the low fraction of galaxies exhibiting a strong cor-
relation between r and z, which carry negligible statistical weight and show no significant
correlations between r, z, and θ (see Zúñiga et al. 2024b).

represent the observed PDFs for the radial-r, azimuthal-θ , and
redshift-z variables, respectively.

To estimate these observed PDFs, we apply a smoothing tech-
nique using a kernel density estimator over normalized galaxy
counts within bins of width �r = 0.35 h−1

70 Mpc, �θ = 12◦, and
c�z = 250 km s−1 for the r, θ , and z variables, respectively. These
bin widths were chosen from a range of test values to optimise the
fit of the distribution functions during histogram smoothing. A
standard Gaussian smoothing kernel is applied using the same bin
widths over the intervals [0, Rh], [0, 360◦], and [zmin, zmax] for f̄r ,
f̄θ , and f̄z, respectively. Here, zmin and zmax are the minimum and
maximum redshifts of the galaxies in the structure, and

Rh ≡ 2N(N − 1)∑
i�=j R

−1
ij

, (29)

represents the harmonic radius of the structure calculated from
the projected distances Rij (in Mpc) between its N sampled galax-
ies (see column 10 of Table 1). Since f̄r , f̄θ , and f̄z depend on
the dynamical state of the structure, they describe the current
distributions of its member galaxies.

To define the equivalent relaxed PDFs for each variable in
each core (or supercluster), we adopt a simple reference equilib-
riummodel. virialised cores are assumed to exhibit spherical galaxy
distributions with a homogeneous core-halo configuration and
isotropic velocities, lacking net angular momentum. For simplic-
ity, we use the King-type radial, continuous uniform, and normal
distributions f eqr (r), f eqθ (θ), and f eqz (z) from Zúñiga et al. (2024b) as
equilibrium models for the r, θ , and z variables, respectively. The
similarity between observed and relaxed PDFs is quantified using
the Hellinger distance (0≤H(f̄k, f eqk )≤ 1; Hellinger 1909), where
lower Hellinger distances indicate distributions closer to equi-
librium, corresponding to higher relaxation probabilities since
Prelax ≡ 1−H.

ThePrelax values computed for DCC cores are shown in column
13 of Table 1. Additionally, the bottom panel of Figure 8 illus-
trates the Prelax distributions for the Top70 clusters, DCC cores,
andMSCC superclusters. For superclusters, these values were esti-
mated similarly (see column 7 of Table 6), while the Top70 cluster
values are from Zúñiga et al. (2024b). Consistent with the HZ-
entropy analysis, the relaxation probability results also support
the hypothesis that cores, with an average 〈Prelax〉 = 0.64, represent
galaxy structures in an intermediate evolutionary state. Clusters,
being the most relaxed structures, exhibit 〈Prelax〉 = 0.83, while
superclusters, the least relaxed, have 〈Prelax〉 = 0.56.

6. Estimations of core virial masses

To quantify the mass content of cores, two complementary
approaches were employed. First, the extensive mass Mc

ext (pre-
sented in Table 5 of Paper I) that provide a lower limit for the total
mass of cores. This is because Mc

ext excludes contributions from
the dispersed componentg and additional dark matter potentially
present at the scale of these structures beyond that contained in
clusters.

gThe dispersed component refers to those galaxies that, while located within the cores,
are not members of galaxy systems.
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Table 6. General properties of the MSCC superclusters in the sample.

ID Msc
ext Vsc ρsc =Msc

ext/Vsc σv HZ Prelax

MSCC (1014h−1
70 M�) (103 h−3

70 Mpc
3) (1010h270M�Mpc−3) (km s−1) (nats)

(1) (2) (3) (4) (5) (6) (7)

1 143.24 150.4 9.5 2 155 12.51 0.45

27 19.59 73.8 2.6 1 159 9.68 0.53

33 201.42 268.3 7.5 1 685 11.65 0.54

39 41.84 57.0 7.3 858 9.94 0.55

55 32.53 24.7 13.1 1 240 11.45 0.65

72 66.25 60.5 10.9 1 074 10.90 0.44

75 72.06 100.0 7.2 2 121 12.19 0.58

76 59.68 450.6 1.3 2 636 11.04 0.65

117 91.11 129.3 7.0 1 849 11.82 0.50

175 65.23 122.5 5.3 1 522 11.06 0.57

184 37.19 204.1 1.8 1 927 10.57 0.59

211 7.44 27.6 2.6 792 8.74 0.46

219 77.87 257.6 3.0 1 949 11.11 0.58

222 47.46 107.8 4.4 1 547 10.91 0.61

223 7.23 12.9 5.6 982 10.01 0.44

229 30.21 368.0 0.8 2 450 10.38 0.58

236 155.02 158.6 9.7 1 720 11.97 0.52

238 177.01 1412.2 1.2 4 230 12.16 0.63

248 16.37 197.8 0.8 2 012 9.89 0.57

264 16.77 202.4 0.8 1 760 9.56 0.55

266 43.29 29.5 14.6 1 136 11.33 0.52

272 23.93 36.3 6.5 813 9.70 0.74

277 103.33 103.8 9.9 1 602 11.81 0.57

278 107.07 268.7 3.9 1 625 10.93 0.57

283 80.42 290.3 2.7 1 408 10.21 0.49

295 159.78 153.8 10.3 938 10.51 0.55

310 251.39 351.5 7.1 3 108 13.14 0.66

311 142.23 294.4 4.8 1 468 10.87 0.55

314 26.85 3.4 78.5 1 104 12.94 0.57

317 48.89 77.2 6.3 2 745 12.70 0.55

323 106.49 174.0 6.1 1 646 11.39 0.54

333 33.33 12.8 25.9 932 11.41 0.53

335 55.74 57.8 9.6 1 731 11.97 0.56

343 66.17 21.8 30.3 1 121 12.03 0.43

360 39.88 299.3 1.3 1 142 8.95 0.49

386 77.39 146.9 5.2 1 895 11.5 0.59

389 171.33 191.0 8.9 2 062 12.34 0.67

407 12.81 92.1 1.3 1 593 9.83 0.54

414 298.68 242.0 12.3 2 285 12.91 0.59

419 96.06 70.5 13.6 1 287 11.57 0.58

422 7.35 199.9 0.3 1 806 8.81 0.49

430 48.33 95.3 5.0 1 505 10.98 0.66

440 83.57 244.3 3.4 1 581 10.71 0.57

441 15.35 130.7 1.1 1 205 8.96 0.56

454 172.79 249.3 6.9 1 720 11.63 0.67
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Table 6. Continued.

ID Msc
ext Vsc ρsc =Msc

ext/Vsc σv HZ Prelax

MSCC (1014h−1
70 M�) (103 h−3

70 Mpc
3) (1010h270M�Mpc−3) (km s−1) (nats)

(1) (2) (3) (4) (5) (6) (7)

457 173.07 177.1 9.7 1 348 11.36 0.60

460 169.83 163.9 10.3 1 490 11.67 0.58

463 312.36 326.1 9.5 2 194 12.56 0.65

474 120.34 64.2 18.7 1 182 11.68 0.63

484 24.74 4.4 56.3 556 10.90 0.54

509 39.05 176.9 2.2 2 029 10.89 0.57

574 104.17 412.6 2.5 3 349 12.28 0.55

579 24.52 121.2 2.0 1 201 9.50 0.53

Figure 8. Distributions of HZ-entropy (top panel) and probabilityPrelax (bottom panel) values for clusters (the Top70 sample), cores (from DCC), and superclusters (fromMSCC).

The second approach estimates core masses using the virial
mass estimator for clusters (e.g. Biviano et al. 2006):

Mc
vir =

βπ

2G
σ 2
v Rh. (30)

These calculations were based on the harmonic radii Rh and line-
of-sight velocity dispersions σv of the galaxy distributions within
the cores (see columns 5 and 10 of Table 1), assuming weak
anisotropy β = 2.5. The resulting Mc

vir values, shown in column
11 of Table 1, provide an estimate of the total dynamical mass.

However, given that cores are not fully virialised structures, the
computed Mc

vir may deviate from the true values, particularly in
the presence of substructures (e.g. Biviano et al. 2006). The most
reliable estimates arise when cores approach dynamical relaxation.

Figure 9 illustrates the relationship betweenMc
vir andMc

ext for
the DCC cores. The correlation between these parameters is quasi-
linear, with a Pearson correlation coefficient of 0.93. This trend
suggests that most of the matter within cores resides in their mem-
ber galaxy systems. The dynamical evolution of cores appears to
be driven by the gravitational influence of these systems, which
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Figure 9. Relationship between the extensivemassesMc
ext and the virial massesMc

vir (in units of h
−1
70 ) of the DCC cores. Left:Mc

vir vs.Mc
ext plot. The solid blue line represents the

best linear fit f (M)= aM+ b to the data, with a= 1.027, b= −0.917, and a goodness of fit Rsquare = 0.995. Right: residual plot. The length of the vertical dashed lines expresses
the distance between the data and the fit (zero) line.

act as attractors, accreting surrounding matter such as individual
galaxies, gas, and dark matter. This mechanism explains why the
dispersed component of galaxies and external dark matter con-
tribute minimally to the total dynamical mass. Consequently, the
relationshipMc

ext ≈Mc
vir generally holds, indicating that, before a

single virialised structure is formed, all the matter in the cores falls
into the potential wells of their member systems, which dominate
the macroscopic dynamics towards equilibrium.

One notable outlier, corresponding to DCC 019 (a core of
MSCC 222), deviates significantly from the linear trend. Unlike
other structures such as DCC 016 and DCC 077, which exhibit
pairwise gravitational binding among some member systems,
DCC 019 appears unbound under any of the analyses conducted
in Paper I. Its virial mass is significantly overestimated due to
this lack of cohesion. Nonetheless, DCC 019 was included in
the DCC catalogue owing to its high density contrast (R= 46.6,
�cr = 14.1), suggesting a high probability of eventual binding and
virialisation.

7. Discussion and conclusions

The results presented in this study provide a comprehensive explo-
ration of the physical and dynamical properties of cores within
the large-scale structure of the Universe. By analyzing their – pro-
jected and velocity – galaxy distributions, morphology, entropy,
and mass estimates, we have deepened our understanding of these
intermediate structures and their role in the cosmic web. Below,
we summarise and discuss the key findings with respect to these
aspects.

The study of the galaxy distributions and velocity dispersions
within cores shows that these structures are still far from being
isotropic or dynamically relaxed. The radial velocity distribu-
tions indicate a mix of bound and infalling galaxies, supporting
the view that cores are transitional regions between virialised
galaxy clusters and unbound superclusters. These dynamical states
underscore the importance of the local gravitational potential and
environmental effects in shaping galaxy orbits within cores.

The morphological analysis of cores reveals a diversity in their
shapes and internal configurations, ranging from irregular and
flattened structures to elongated and nearly spherical distribu-
tions (less frequent). Notably, a significant proportion of cores

exhibit filamentary morphologies, consistent with theoretical pre-
dictions from the Zeldovich approximation, which describes the
anisotropic collapse of structures along preferred axes in the cos-
mic web. These filamentary configurations suggest that many cores
are in an intermediate evolutionary stage, where matter accre-
tion and interactions along the connected filaments dominate
their dynamics. The influence of the large-scale environment is
further evident in the presence of substructures, which reflect
recent mergers, accretion processes or ongoing dynamical evo-
lution. These findings underscore the role of morphology as a
diagnostic tool for understanding both the relaxation state and the
formation history of cores.

We note, however, that part of the observed tendency towards
filamentary morphologies could, in principle, arise even in ran-
domly distributed galaxy samples when analysed with the same
polyhedral and ellipsoidal fitting procedures. Although a quanti-
tative assessment of this effect lies beyond the scope of the present
work, such a comparison would provide a useful benchmark for
future studies aimed at disentangling intrinsic morphological fea-
tures from those induced by statistical fluctuations or projection
effects.

The entropy analysis reveals a dynamical evolution of cosmic
structures, with entropy values increasing from superclusters to
cores and galaxy clusters. This evolutionary trend, as reflected
in the distributions of our entropy estimator HZ , aligns with
the hierarchical formation model, in which structures evolve
anisotropically and gradually move towards dynamical relaxation.
Clusters exhibit the highest median entropy – and relaxation
probability – consistent with their more advanced evolutionary
stage and near-virialised states. In contrast, superclusters, still in
early collapse stages and characterized by strong substructure and
anisotropy, display the lowest median entropy values. The inter-
mediate entropy values observed for cores suggest that they occupy
an evolutionary stage between their less-evolved supercluster
hosts and highly evolved galaxy clusters. This interpretation is
consistent with the fact that cores, as overdense regions within
superclusters, are dynamically evolving structures where member
galaxy systems (clusters and groups) undergo continuous merging
and accretion of smaller ones, gradually dissolving substructures.
Moreover, the generalized HZ estimator highlights the impor-
tance of average density and velocity dispersion in quantifying the
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entropy of non-virialised systems, offering a practical and robust
tool for exploring the dynamical states of large-scale structures.

Mass estimates for cores were obtained using both extensive
mass calculations, based on the sum of the virial masses of member
galaxy systems, and virial mass estimates derived from the velocity
dispersion and projected radii of galaxies. The strong correlation
between these mass estimates (Mc

ext ≈Mc
vir) suggests that most of

the matter in cores is contained within their galaxy systems, with
limited contributions from dispersed components or additional
dark matter. This result supports the idea that cores are dominated
by their constituent systems, which drive the local dynamics.

Taken together, these findings provide a unified picture of cores
as dynamically evolving structures that bridge the gap between
smaller, virialised systems and the larger, globally unbound super-
cluster environment. The interplay between gravitational forces,
matter accretion, and dynamical relaxation governs their evolu-
tion, making them key sites for studying the hierarchical assembly
of cosmic structures.

The main conclusions of this work are:
• More than half of the cores exhibit projected galaxy distri-

butions consistent with the King density profile, indicating a
tendency to evolve towards core-halo structures. This high-
lights their intermediate evolutionary status, as they begin to
resemble the density profiles of more relaxed clusters.

• Although cores are gravitationally bound structures, analy-
sis of the spatial and velocity distribution of their member
galaxies reveals that these structures are not yet dynami-
cally relaxed. Only about 30% of the studied cores show
line-of-sight velocity distributions consistent with an under-
lying normal distribution, while the remaining ∼70% do not.
Since a relaxed Maxwellian distribution of galaxy velocities
in three dimensions requires each velocity component to fol-
low a normal distribution, the lack of Gaussianity in the radial
velocities suggests that cores have not yet reached dynamical
equilibrium, as expected.

• The velocity dispersions of cores are systematically lower than
those of rich galaxy clusters, even though they have com-
parable or greater masses. This reflects the fact that cores
are not virialised systems, so they do not exhibit a direct
mass-velocity relationship like relaxed clusters.

• Morphological studies reveal that cores aremainly filamentary
structures which, according to the Zeldovich approximation
for large-scale structure growth, are currently in a quasi-
linear dynamical stage of evolution. Given their high density
contrasts, cores have a high probability of undergoing gravita-
tional collapse along their remaining uncollapsed dimension
(i.e. the last axis of contraction), eventually transforming into
virialised structures.

• The morphology of cores exhibits significant diversity, reflect-
ing their dynamical states and formation histories. Many
cores display anisotropic accretion patterns and substructures,
which suggest that they are still in the process of consolidating
mass and transitioning towards more relaxed configurations.

• The cores are in a transition stage between structures in
the linear evolutionary phase and fully developed virialised
objects in the nonlinear stage. These results are supported
by the entropy and relaxation probability analyses, which
confirm the hypothesis that the cores are structures in an

evolutionary stage intermediate between superclusters and
relaxed rich clusters.

• This work emphasises the relevance of entropy as a diagnostic
tool for understanding the dynamical state and evolutionary
history of cosmic structures. It provides a quantitative frame-
work to compare galaxy systems and larger structures across
different scales and stages of evolution.

• Mass estimates indicate that most of the matter within cores is
concentrated in their member galaxy systems. This highlights
the efficiency of accretion processes in consolidating mat-
ter into gravitationally bound structures capable of surviving
cosmic expansion.

• Within most cores, member galaxy systems may have cleaned
up their surroundings, accreting the surrounding matter (e.g,
individual galaxies, gas, and dark matter). This would explain
why neither the dispersed component of galaxies nor the dark
matter outside the clusters contribute significantly to the total
dynamical mass, so that in generalMc

ext ≈Mc
vir holds.

This study contributes to the broader understanding of cores
within the cosmic web and lays the groundwork for future investi-
gations into their role in galaxy evolution and large-scale structure
formation.
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