
1 Introduction

In solid mechanics, a structure is defined as a connected domain of material(s) (i.e.,
a body) capable of transferring loads from some point(s) of application to some other
point(s) of fixity. These points of application and fixity, and indeed the limits of the
structural domain itself, are defined by the scope and scale of the application being
designed and its relationship to the engineer or designer. For example, during prelim-
inary layout design an entire aircraft wing might be viewed as a structure, while later
in the detailed design process a single rib might be carefully configured as a distinct
structural component. Finally, those developing advanced materials might consider
the distribution of voids and properties at the material level to represent a problem of
“microstructure.”

In engineering terms, all structures that can be designed in 2-D/3-D space have exte-
rior boundaries, and, regardless of scale, the relative spatial placement of material(s)
and voids within these boundaries defines a structure’s topology. Mathematically, two
objects are topologically equivalent if each can be continuously deformed into the
other. Thus, a sphere in three dimensions is topologically equivalent to an ellipsoid
but not to a doughnut, given that a hole would have to be cut in the sphere in the
latter case. The determination of an appropriate, or even optimal, topology is typically
one of the first steps toward developing a structural design. The goal of this book is
to expose the reader to techniques that enable expedient design space exploration to
identify novel, optimal topologies.

Once a topology has been determined, two secondary but important classes of struc-
tural design decision must be addressed, the most common motivations for which are
simplification of engineering representation and definition, as for eventual fabrication.
Shape design in structures refers to the refinement of topology to consider 2-D and
3-D shapes, usually of some canonical type, assigned to particular regions of a struc-
ture. Returning to the mathematical definition above, topological equivalence parti-
tions a set of objects into disjoint sets of shape classes, with each member of a shape
class being a continuous deformation of any object of the same shape class. Therefore,
in shape design, the optimization is restricted to remain inside the given shape class
and is thus greatly limited when compared with topology optimization. Sizing design
is the subsequent process of assigning specific dimensions to these shapes (e.g., radii
of holes and fillets, thickness of features). Therefore, in sizing, only a reduced set of
deformations is allowed, further limiting the scope of the structural optimization.
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2 Introduction

Shape and sizing design are of course critical to the full design of a structure and
will be addressed throughout this book beginning in Section 1.2.4 and much more
rigorously in Chapters 2 and 4 (Sections 2.3 and 4.4.1, respectively). Further, the topol-
ogy, shape, and sizing design phases are also addressed in other resources (Bendsøe &
Sigmund 2003, Querin, Victoria, Alonso, Loyola & Montrull 2017). However, in this
work we focus primarily on that first and most essential challenge: the selection and
representation of topology.

1.1 Structural Topology and Representation

The aim of this overall work is to develop and demonstrate developmental/algorithmic
approaches for structural representation and design that leverage biological analogies,
allowing optimized structures and networks to be developed and evolved. Clearly,
the problem of topological design is not limited to the engineering of solid bodies
for the carrying of mechanical loads; all networks have as a fundamental property
their topology.1 Communication networks, electrical circuits, and fluidic and chemical
processes all rely on selective connectivity between nodes to perform their intended
functions. Topological design/optimization is the process of determining/optimizing
these nodes and connectivities. Our goal is then to provide engineers and designers
with a new set of tools for optimizing topologies across all topics of engineering (solid
mechanics, electronics, communications, fluidics, etc.). Indeed, it will also be shown
that extensions to the graphical and environmental design arts are also possible.

From design to physical realization, all bodies and networks subject to analysis
and/or intended for precise replication must be deterministically represented. In illus-
trating such representation, we consider, in particular, the definition of solid bodies
(e.g., those occupying nonzero two-dimensional area or three-dimensional volume)
as both a general and a motivating case. Such a task is general in that it requires
the consideration of faces or volumes, while the definition of networks and circuits
requires the consideration of only nodes and edges. The task is motivating inasmuch
as it will be seen to represent the majority of examples provided throughout this text.
The topological and geometric representations that will be addressed throughout this
work are illustrated for a two-dimensional domain in Figure 1.1.

A deterministic and quantitatively precise representation of a body allows a finite
array of design variables to define the configuration of that body in such a way that
(i) the effect of design changes on engineering performance can be assessed and (ii) the
body may eventually be realized as a prototype or product. As shown in Figure 1.1,

1 Throughout this work, a structure is defined as an entity composed of material and having nonzero mass
and volume (though it may be represented as two-dimensional). Therefore, it is fundamentally
characterized by its geometric features (e.g., lengths, angles, areas, volumes). A network (or graph) is
purely combinatorial, consisting of nodes and their connections, where the concepts of geometry are
fundamentally irrelevant to functional performance. Note that networks, if assigned geometric
properties, can be interpreted as structures. The fact that topological representation is common to both
structures and networks is central to this body of work, which addresses both.
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Figure 1.1 Approaches to structural and/or network representation used in engineering and
design processes. Representations range from physical to abstract based on the extent to which
design variables explicitly determine the spatial location of material and void regions. This
work focuses on new developmental approaches using bioinspired algorithms.

such representations can be more physical in that design variables directly define the
locations of material(s) and void(s), or they can be more abstract, in that no connection
between the design variables and the resulting connected domain can be explicitly
observed or intuited. Specifically, two classes of representation are proposed:2

2 In the topological modeling community, only three representation options are often considered:
pixel/voxel, graph/mesh, and boundary representation. While ground structure-based and
developmental/algorithmic approaches might be considered as derivative of the other three, they are
considered herein for the distinct and effective manner in which design variables are linked to geometric
and topological configurations via these representations, especially for the purposes of iterative design.
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• Direct Subdomain Specification: In these representations, at least some subset of
the internal variables is 1-to-1 mapped to the actual spatial location of portions of the
body (small material region, segment/ligament, face, etc.). Other associated design
variables might be used to further define the properties of each subdomain.
– Pixel/Voxel representations are the most straightforward of all options in that

they directly specify the type and properties of each material at each point in the
domain, subject to the level of refinement of discretization over a fixed regular
grid. Voids are defined simply as the absence of material. This ultimate generality
comes at the cost of a very high number of design variables, the physical limit
being the continuum hypothesis.

– Graph/Mesh representations consider arbitrary and spatially disparate discretiza-
tions of solid domains into volumetric cells or two-dimensional faces bounded
by edges, the intersections of which are defined by nodes. Some design variables
then directly specify the location of nodes and their connectivity into the afore-
mentioned subdomains, while others specify the properties of materials within
these subdomains. Because graphs are not guaranteed to be physically realizable
(e.g., overlapping domains are mathematically permitted) and because the under-
lying data structure of the design variables can by highly complex for arbitrary
bodies, this approach is rarely used for iterative configurational design, though
it can be highly precise for physical realization once a configuration has been
otherwise optimized.

– Ground Structure-Based representations combine the features of pixel/voxel and
graph/mesh representations in that they define graphs over fixed regular grids.
They are most commonly used in the definition of structures comprised of high
aspect ratio segments or of networks such as circuits, which are entirely edge-
based. Design variables are similar to those in a pixel/voxel representation, defin-
ing which segments are assigned properties and which are not (and are thus
nonexistent).

• Parametric: In these representations, none of the design variables can be explicitly
related to the spatial location of any region of material. Rather, the variables are
used as parameters in mathematical functions or algorithmic processes that then
determine where material is, where it is not, and what material properties should be
considered.
– Boundary Representations define a body by the divisions between material and

void, not by the spatial distribution of material explicitly. In general, this may
be accomplished through any surface representation,3 though in the context of
shape modeling, computer-aided drafting (CAD), and the iterative design con-
sidered herein, this is usually accomplished through the use of mathematical
functions capable of capturing linear/planar, cylindrical, and conic features, in
addition to more generalized features through the use of such functions as nonuni-
form rational basis splines (NURBS). Because these approaches are specifically

3 See, for example, the ubiquitous use of .stl files in additive manufacturing, which use triangular
meshes to define closed surfaces, indicating where the material is and is not to be deposited.
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formulated to define domains of nonzero area and volume, they suffer when local
aspect ratios of regions become very high and are entirely inappropriate for the
representation of edge-based networks.

– Developmental/Algorithmic representations are by far the most abstract in that the
design variables, while fully sufficient to deterministically define a design config-
uration, are in no way linked directly to any observable geometric or topological
feature of a body or network. Rather, they are explicitly used as instructions to
an algorithm that creates or modifies any of the representations described above.
The final configuration is then defined by the design variables as they inform
cyclic developmental processes, each cycle usually increasing the complexity of
the configuration.

1.2 Topology Optimization Toward Preliminary Structural Design

A well-chosen and well-developed structure or network representation allows for inter-
disciplinary technical communication, tractable quantitative design iteration, and ulti-
mately the fabrication of systems and solutions. Of these, this work specifically focuses
on the design implications of structural representation, especially as one seeks to deter-
mine optimal topologies in a rigorous, analysis-driven manner.

1.2.1 The Structural/Network Design Problem

The process of topological structure design is the means by which one answers the
following motivating question:4

How should one best configure material(s) into a geometric form
to perform a needed function or functions subject to some con-
straints and given some metric for ranking design preferences,
known as objectives?

These three design concepts are essential for rigorously posing and efficiently solv-
ing the structure/network design problem and thus should be clearly defined.

• Functions define the purpose of a structure or network, sometimes in the context of
a larger system. In mechanical structures, this usually involves the transfer of loads
from one or more points of application to one or more points of fixity. In compliant
mechanisms, it may involve the transfer of displacements; in other networks, it usu-
ally involves the transfer of information between multiple points. Multifunctional
structures might be tasked with one or more of the above.

4 Alternatively, the process of network topological design is the process of answering the question “How
should one best configure the connectivity between a (sometimes modifiable) set of nodes, and what
should the properties of those connections be, to perform needed functions subject to some constraints
and given some objectives?”
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• Constraints are limits on global or local failure and/or gross dimensional restric-
tions and fixed geometric definitions (e.g., the particular locations of load appli-
cation) that define the feasibility of a solution. They may also include limits on
deformation in mechanical structures or on the loss of information or energy in
other networks.

• Objectives are the goals that allow preferential ranking of designs, such as mini-
mization of cost or of mass, minimization of manufacturing complexity, maximiza-
tion of service life, and so on. Strict constraints can also be recast as less strict pref-
erences in some cases, resulting in additional objectives, such as the minimization
of deflection under load.

To answer our motivating question for a given functional need, an engineer or
designer might take a number of approaches. Let us examine the following simple
example.

Example 1.1 Consider the design of a simple structure intended to carry a shear load,
as illustrated in Figure 1.2, where the function, constraints, and objectives associated
with such a design can be clearly stated as follows:

Function: Transfer a total shear load F across some fixed distance L;

Constraint: Total structure should be at most L × L in size and no local material
failure can occur under load;

Objective: Minimize total mass of material used (i.e., mass of the total structure).

Knowing the largest allowable size and the locations of load application and
structural fixity, a designer might be guided by a number of influences as the
preliminary ideation process begins (Figure 1.2).

• For many problems, some degree of simplistic intuition can provide guidance,
and in this case the simple removal of material relative to the maximum allowed
might allow one to arrive at a sufficiently lightweight design capable of carrying
the required load without failure. Clearly, both the quantitative description of the
design and subsequent fabrication via subtractive manufacturing can be very
straightforward if simple geometric features are considered;

• It is very common for a designer of any engineering system or subsystem to
leverage historical successes in configuring new solutions; the design of new
structures or networks is often strongly influenced by such legacy design;

• Some degree of rigorous quantitative analysis can provide clear guidance toward
optimal geometric configuration. For example, dominant principal stress paths
computed via finite element analysis can provide clear guidance as to where
material is needed and where it is not in a structure;

• Over the past few decades, rigorous methods of topology optimization have been
proposed, demonstrated, and validated toward the automated preliminary design of
structural layouts.
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Figure 1.2 An engineer or designer may be guided by a number of different influences in
configuring an optimal structure or network; this work addresses classical and novel methods
of topological optimization especially for addressing design problems without historical
precedent and for which intuition is lacking.

The relative strength of each influence during preliminary design will ultimately
depend on such considerations as designer experience and design team capabilities,
allowable design cycle cost and time, and problem complexity, among others.

As expected, the design of simple structures performing common functions has been
considered across most engineering disciplines. Initial intuition and historical prece-
dent, confirmed via quantitative analysis, are common throughout the engineering
design landscape. The purpose of this book is to expand the understanding and applica-
tion of the fourth option proposed: the more expansive use of topological optimization
techniques throughout the engineering community. Toward that end, we next provide
a brief review of the more well-known approaches, including their advantages and
disadvantages. A more rigorous quantitative treatment is provided for each approach,
as well as for others, in Chapter 2, but the primary intent overall is to introduce newer
and sometimes much more capable bioinspired alternatives especially suited for
multiobjective design problems. These problems are especially challenging as, being
novel and usually highly nonlinear, they can be solved neither from intuition nor from
precedent.
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1.2.2 Methods of Single-Objective Topological Optimization

The vast majority of topological optimization methods introduced in the literature and
employed throughout industry consider a single-objective, which is most often the
minimization of structural compliance given some constraint on the total volume. In
Chapter 2, we will review the most popular methodologies for single-objective struc-
tural topology optimization while also introducing emerging techniques. With respect
to the introductory concepts of this chapter, it is useful to classify these optimization
methods based on the options for structural representation as shown in Figure 1.3
(cf. Figure 1.1). These are briefly summarized in the following and are described in
more detail in Chapter 2 as noted.

Pixel/Voxel Representation
In general, these methods consider an initially dense domain discretized into many
finite elements (Cook, Malkus & Plesha 1989, Ern & Guermond 2004, Reddy 2019)

Topology Optimization 

Approaches
Summary

Pixel/Voxel

Boundary Representation

Developmental/

Algorithmic

• Solid Isotropic Material with 

Penalization (SIMP)

• Evolutionary Structural 

Optimization (ESO)

• Homogenization

Method

• Genetic Algorithm/SIMP 

Hybrid Method

Local pixel/voxel densities are varied to minimize a 

optimize local “periodic lamina,” resulting in grey

global objective function (e.g., a compliance functional) 

while satisfying global volume constraints (Section 2.1.1) 

f (x,y )=0

Ground Structure-Based

pixels/voxels satisfying some criteria (e.g., stress below 

Heuristic “hard-kill” approach, whereby individual

some value) are removed (Section 2.1.2) 

The SIMP method is combined with a GA such that 

the best features from potentially parallelized SIMP 

optimizations are combined (Section 2.1.4)

• Traditional Ground Structure 

Method (GSM)

• Truss Geometry and 

Topological Optimization

• Level Set Method

• Turtle Graphics

• Spatial Interpretation for the 

Development of Reconfig. 

Structures (SPIDRS)

• Arrangement L-system 

Interpretation

Section properties of truss/frame members comprising a 

preconfigured physically realizable graph are varied to 

minimize a global objective function (Section 2.2.1)

Extension of GSM, whereby the configuration of the 

underlying graph (e.g., locations of nodes) is itself 

modified during the optimization process (Section 2.2.2)

Functions defining the boundaries between solid 

material and void are modified in such a way that best 

minimizes a global objective function (Section 2.3.1)

which provides instructions to a classical “turtle”

Genes evolved by GA are used to define an L-system, 

algorithm drawing branched graphs (Chapter 3)

Uses GA to evolve L-system toward global objectives as 

in Turtle, but graph-generating instructions are uniquely 

intended to provide effective connectivities (Chapter 4)

GA again used to evolve a rewriting language; 

however, recursive process is interpreted in situ to
produce graphs via face/cell division (Chapter 5)

Theories of micromechanics are used to directly 

material removed via postprocessing (Section 2.1.3)

Figure 1.3 A range of single-objective topology optimization approaches has been proposed,
each based on one of the structural representation options as introduced in Figure 1.1.
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1.2 Topology Optimization Toward Preliminary Structural Design 9

with the goal of minimizing an objective function by identifying whether a given
element should consist of solid material or void. Design variables associated with each
pixel/voxel/element may have discrete “0/1” or continuous values designating local
density, depending on the method employed (Bendsøe 1989, Eschenauer & Olhoff
2001). By far the most popular approach is the solid isotropic material with penaliza-
tion (SIMP) method (see Section 2.2.1), which often involves the mathematical mini-
mization of a structural compliance metric via continuous variation of local densities,
these being strongly penalized when taking on values other than 0 or 1. Two other
approaches are heuristic in nature and thus can consider binary density values (i.e.,
full material or void). These include evolutionary structural optimization (ESO) and
the Lamarckian genetic algorithm/SIMP hybrid method.

Evolutionary Structural Optimization (ESO) (see Section 2.2.2) is a “hard-kill”
method based on the idealization that optimal structures are made up of material
regions that are all fully stressed (Xie & Steven 1997a). ESO incrementally removes
“inefficient” material from the design domain based on heuristic criteria such as
elemental stress (Xie & Steven 1997a) or other sensitivity values (Liang, Xie & Steven
2000). A variant known as bidirectional ESO (BESO) also allows for material to be
added in regions where elements have a high criterion value (Querin, Steven & Xie
1998, Querin, Young, Steven & Xie 2000). The Lamarckian genetic algorithm/SIMP
hybrid method (see Section 2.2.4) uses a genetic algorithm (GA) to combine and evolve
the results of possibly parallelized SIMP optimizations. Because GAs (introduced in
Section 1.3.3) are heuristic and do not require gradient information to be calculated or
approximated, a wide range of objectives and constraints can be considered.

Regardless of the method employed, however, all pixel/voxel approaches suffer
from important challenges. Given that each 2-D pixel or 3-D voxel is associated with
its own design variable, the dimensionality of the design space increases rapidly when
considering that a higher resolution of the design space (which results in more accurate
simulated results) requires an increased number of pixels/voxels (Deaton & Grandhi
2014, Kobayashi 2010). This problem is greatly compounded for three-dimensional
structures, for which SIMP optimization requirements in terms of computational
resources and time can explode (Aage, Andreassen, Lazarov & Sigmund 2017).
At the same time, density-based methods alternatively suffer from a phenomenon
known as “checkerboarding,” resulting from high numerical stiffness of such patterns.
This formation of adjacent solid/void elements arranged in a checkerboard pattern
(Bendsøe 1989, Bourdin 2001, Deaton & Grandhi 2014), and indeed the generation of
nonphysical or nonoptimal solutions, becomes prevalent at volume fractions that are
prevalant in engineering practice (e.g., the ∼10% volume fraction found in aerospace
structures such as wings). These approaches are also notoriously mesh-dependent,
meaning different optimal topologies can result from identical design domains of
different discretization refinements. Finally, “gray” material resulting from local
densities other than 0 or 1 can arise when the design conflict between mass and
stiffness is weak and often requires postprocessing or “interpretation,” which may
greatly reduce the gains of the optimized, nonmanufacturable solution obtained with
the density-based method.
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The ESO/BESO implementations have also been shown to break down for simple
structural problems (Zhou & Rozvany 2001) and utilize heuristic criteria that may
not relate to the objective function (Rozvany 2009). Both ESO and the Lamarckian
genetic algorithm/SIMP hybrid method approaches can result in singularities in asso-
ciated finite element matrices (Deaton & Grandhi 2014), which can be avoided when
discrete 1/0 design variables are replaced with continuous variables, but this results
in the formation of gray “transition” material between solid and void regions (Guest,
Prévost & Belytschko 2004, Sigmund 2007, Guest, Asadpoure & Ha 2011, Kawamoto
et al. 2011). Various regularization techniques have been created to prevent numerical
issues and control the quality of final results, such as filtering methods (Sigmund 1997,
Sigmund & Petersson 1998, Bourdin 2001, Lazarov & Sigmund 2011), length-scale
constraints (Guest et al. 2004, Guest 2009, Lazarov & Wang 2017), and projection
schemes (Guest et al. 2004, Sigmund 2007, Guest et al. 2011, Kawamoto et al. 2011,
Wang, Lazarov & Sigmund 2011).

Ground Structure-Based
The ground structure method (GSM; see Section 2.3.2) is based on the concept of
incrementally updating a pre-existing graph by computing the sensitivities of a given
structural performance metric to the section properties (e.g., thickness, area, etc.) of
each line segment in that graph. As such, it only considers structures consisting of slen-
der structural members (trusses or frames). The topology of the domain is then evolved
by varying sectional properties of members to such an extent that they can essentially
be removed from the structure (Ben-Tal & Bendsøe 1993, Bendsøe, Ben-Tal & Zowe
1994, Lee, Mueller & Fivet 2016). While GSMs are adept at finding solutions to truss
and frame problems, the quality of optimized results strongly depends on the quality
and refinement of the initial graph, where meaningful refinement can quickly increase
the number of design variables required as well as the computational time needed
to analyze initially dense configurations (Bendsøe et al. 1994, Hagishita & Ohsaki
2009). Combining the sizing optimization of the GSM with shape optimization in the
form of node placement optimization can mitigate the need for initially dense ground
structures (Achtziger 2007). Similar to BESO, a method known as the growing GSM
(GGSM) allows for both the addition and removal of structural members, allowing
for the initial ground structure to remain relatively sparse (Hagishita & Ohsaki 2009).
Further, an extension to GSM whereby the initial graph can itself be incrementally
modified through changes in nodal locations is discussed in Section 2.3.3.

Boundary Representation
The single approach to topology optimization based on this approach for quantifying
structural configurations discussed herein is second in popularity only to SIMP. Known
as the level set method (see Section 2.4.1), it optimizes over the space of parameters
defining the scalar-valued level set function that is used to define domain boundaries
(i.e., the interface of solid and void) (Sethian & Wiegmann 2000, Osher & Fedkiw
2003, Wang, Wang & Guo 2003, van Dijk, Maute, Langelaar & van Keulen 2013,
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Deaton & Grandhi 2014). This allows for the convenient treatment of topological
changes, as structural boundaries can be modified by using the physical problem and
optimization conditions to control the output of the level set function. A level set
function can be parameterized using finite element method (FEM) basis functions
(Wang et al. 2003, Allaire, Jouve & Toader 2004, Amstutz & Andrä 2006, Xing, Wei
& Wang 2010, van Dijk, Langelaar & Keulen 2012), radial basis functions (RBFs)
(de Ruiter & van Keulen 2004, Wang & Wang 2006, Luo, Tong, Wang & Wang 2007,
Kreissl, Pingen & Maute 2011), or Fourier series (Gomes & Suleman 2006), which
determine the design freedom and precision of the material boundaries.

One challenge this approach faces is that performance analysis requires the mapping
of a parameterized level set function to a structural model, which can impact the accu-
racy of the structural response and the quality of the final result of the optimization
process. Currently utilized methods for this mapping procedure include conforming
discretization (unique remeshing; most accurate but computationally expensive) (Ha &
Cho 2008, Allaire, Dapogny & Frey 2011), immersed boundary techniques (extended
FEA approaches; accurate but difficult to implement) (Kreissl et al. 2011, van Dijk
et al. 2012), and density-based mapping (mapping of boundaries onto pixel/voxel rep-
resentation; accurate with regularization techniques) (Wang et al. 2003, Allaire et al.
2004, de Ruiter & van Keulen 2004). Further, the level set method suffers from a
poor rate of convergence, convergence to local minima, and difficulties in dealing
with constraints (van Dijk et al. 2013), some of which can be prevented by using
regularization techniques such as sensitivity and density filtering (Luo, Wang, Wang &
Wei 2008, van Dijk et al. 2012, Zhu, Zhang & Fatikow 2015). Finally, as mentioned in
Section 1.1, this approach can be ineffective as local aspect ratios become very high,
as in structures composed of slender truss or frame components.

Developmental/Algorithmic
These approaches to topological design optimization are among the newest and com-
prise the primary topic of this work. They employ a number of different algorithms
to develop a graph, and thus a structure, by executing generative actions based on
instructions associated with a rewriting language. The inputs to the language then
comprise the design variables of the optimization problem such that an algorithm seeks
to find a set of instructions that generates the best-performing structure (or network)
depending on functional goals. Turtle graphics, the simplest of these approaches, is
used to introduce all critical algorithmic concepts in Chapter 3. The spatial interpre-
tation for the development of reconfigurable structures (SPIDRS) algorithm generates
much better-performing networks and is described in Chapter 4. Finally, arrangement
L-system interpretations, which also generate high-performance solutions, are devel-
oped in Chapter 5.

All the various single-objective methods of topological optimization summarized
above can be classified as gradient-based and gradient-free depending on whether
they employ an explicit dependence on the derivatives of the objective function
considered. SIMP, ground structure, and level set methods are all gradient-based

https://doi.org/10.1017/9781009026635.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009026635.001


12 Introduction

methods, meaning that they can be numerically efficient but may have difficulties with
problems containing multiple local optima, discontinuous design spaces, or discrete
variables (Deb 1999). They also can explicitly consider a single-scalar-objective
(and thus its derivatives) at a time. On the other hand, ESO, GA bitmap methods,
and the three developmental algorithms are all gradient-free, specifically relying on
metaheuristics to guide the search for better designs, while not being mathematically
limited to a single scalar objective. This may require a large number of structural
analyses compared to gradient-based methods, but it makes these methods robust
against local optima or discontinuous design spaces. The choice of gradient-based or
gradient-free algorithm will also have critical implications as one extends to consider
multiple objectives simultaneously, as is the focus of this work and is described in the
following sections.

1.2.3 Extension to Multiobjective Topological Optimization

While single-objective approaches have been and will continue to be used for a wide
range of structural design problems, the optimization process is made considerably
more difficult when the underlying problem has multiple performance objectives.
These objectives are often conflicting, leading to a compromised topology if pursued
simultaneously (Chen & Wu 1998). Thus, multiobjective topology optimization
problems rarely possess a single “optimal” solution but instead exhibit a series
of solutions that are classified as Pareto-optimal. To classify as such, a solution
cannot be outperformed in all objectives by another design (Cohon 2003). This book,
in particular, focuses on new bioinspired approaches for multiobjective topology
optimization using algorithmic approaches, which are also briefly summarized in
Figure 1.3 and comprise much of the remainder of this text. However, there are several
existing multiobjective topology optimization approaches that should also be quickly
reviewed prior to proceeding with the introduction of new algorithms.

Pareto-optimal solutions for topology optimization problems have been obtained by
implementing the algorithms listed in Section 1.2.2 within an extended scheme. This
applies to both gradient-based and gradient-free approaches. In the former, consider-
ation of a single scalar quantity to be minimized/maximized is usually essential, and
thus any desire for the maximization and/or minimization of multiple objectives must
be accomplished by mapping these into a single scalar value. This is most commonly
achieved using the method of weighted sums, where the single scalar quantity for
which derivatives are computed is taken to be the sum of each desired performance
objective multiplied by some predetermined weight based on relative importance or
other factors (Turevsky & Suresh 2011, Zhu, Zhang & Fatikow 2014). Variants of the
weighted sums method known as compromise programming (Chen & Wu 1998) and
physical programming (Lin, Luo & Tong 2010) have also been used for multiobjec-
tive topology optimization. However, the determination of suitable weights is non-
trivial (Das & Dennis 1997, Messac, Sundararaj, Tappeta & Renaud 2000, Messac &
Ismail-Yahaya 2001) and often requires a general intuition for the problem beforehand
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1.2 Topology Optimization Toward Preliminary Structural Design 13

(Tamaki, Kita & Kobayashi 1996). The single scalar value goal of gradient methods
also dictates that a single optimal topology can be determined per optimization, such
that each design along a desired Pareto frontier must be generated by an individual
optimization process using a unique combination of objective weights. Furthermore,
gradient methods using weighted objective functions have been shown to fail in cap-
turing Pareto-optimal solutions for problems with non-convex Pareto frontiers (Das &
Dennis 1997, Chen & Wu 1998, Messac et al. 2000, Messac & Ismail-Yahaya 2001).

As the name suggests, gradient-free optimization approaches do not require gradient
information and instead solely use function evaluations of the objective function(s) to
converge to a solution. One of the most common non-gradient methods, and the one
most commonly utilized in topology optimization, is the GA, which is described in
more detail in Section 1.3.3. GAs are motivated by the principles of natural selec-
tion and represent an optimization procedure that only requires a means of mapping
design variable values to performance metric(s). (Tamaki et al. 1996, Deb 1999). This
mathematical and algorithmic concept and its essential role in the overall bioinspired
design approach captured in this work is introduced in Section 1.3. In short, GAs begin
with a randomly generated set (or “population”) of design solutions that are evalu-
ated, assigned a fitness value based on their performance, and then modified by three
operators borrowed from the fundamental ideas of genetics (selection, crossover, and
mutation) to create a new and hopefully better population (Hare, Nutini & Tesfamariam
2013). This process continues until some specified termination criterion is met.

GAs are attractive when considering multiobjective topology optimization because
they work with a population of solutions rather than a single solution, meaning that
the set of solutions comprising the Pareto frontier can be obtained simultaneously.
Their stochastic behavior also generally allows for these algorithms to better search
the global design space, thereby avoiding convergence to local minima. Additionally,
the lack of reliance on gradients makes GAs an appealing option when dealing with
discrete design variables and discontinuous design spaces (Deb 1999), and GAs are
perfectly suited to parallel processing, especially advantageous when using massive
parallel architectures.

GAs are clearly essential to such previously listed algorithms as the Lamarckian
genetic algorithm/SIMP hybrid method but have also been successfully coupled with
other topology optimization approaches, including the level set (Guirguis, Hamza,
Aly, Hegazi & Saitou 2015, Yoshimura, Shimoyama, Misaka & Obayashi 2016),
ESO/BESO (Liu, Yi, Li & Shen 2008, Zuo, Xie & Huang 2009), and ground structure
methods (Prasad & Diaz 2005). Sigmund has argued against their use in problems
where the topology is represented explicitly by the design variables (e.g., SIMP,
ESO/BESO) (Sigmund 2011), citing their computational cost relative to gradient-
based methods and the necessity of using coarse meshes that cannot correctly represent
the underlying physical response of the structure. However, as will be introduced in
Chapter 2 and then demonstrated throughout the remainder of this work, they are
essential to the use of developmental algorithms in topology optimization (see also
Section 1.3).
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(a) Bounding spatial domain (b) Approximate topologically optimized solution

t1

t2

r1

r2

(c) Preliminary geometrically
parameterized design (d) Dimensionally optimized final part

Figure 1.4 Stages of the topological design process applied to a generic structural part. Note
that the details of (b) strongly depend on the topology optimization algorithm selected
(cf. Figure 1.3).

1.2.4 From Preliminary Topology to Detailed Design

Regardless of the algorithm chosen or whether one or more objectives is considered,
topology optimization is becoming more commonly implemented at the preliminary
stage of structural design (see Section 1.2.1). In most cases, topology optimization
can determine optimal geometric configurations without well-defined initial conditions
and/or a historical intuition as to the best solution. This is exemplified in Figure 1.4,
which illustrates how the design process of a generic structural part can include a
topological optimization step but also shows how such a step is not sufficient for full
component definition (i.e., as for traditional manufacturing). Therefore, it is impor-
tant to comment briefly on the relationship between topological optimization and full
design.

Given a spatial design domain, a material system or system(s) to be considered,
and a series of predefined boundary conditions that define the function of the
component (Figure 1.4(a)), topology optimization can be used to determine an optimal
distribution of material within the design domain that maximizes the performance
of the structure (e.g., here, its stiffness) while satisfying the specified boundary
conditions and not exceeding preexisting dimensional limits. The resulting “optimal”
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topological configuration (Figure 1.4(b)) can then be interpreted by designers expe-
rienced in parameterized design optimization and/or manufacturing limitations to
generate a parametric geometric representation (Figure 1.4(c)). Additional studies
(experimental, numerical, etc.) considering additional objectives, constraints, safety
factors, etc. can then be performed to arrive at a finalized design (Figure 1.4(d))
having optimized thicknesses, fillet radii, and other dimensional features. In this way,
employing topology optimization early in the preliminary design phase can lead to
well-defined structures performing functions unique to a given design team.

1.3 Bioinspiration in Topological Design: The “EvoDevo” Approach

To this point, we have introduced the concepts of structural (or network) represen-
tation and topological design. Existing approaches for accomplishing the latter have
been introduced, and the ideas of gradient-based, gradient-free, single-objective, and
multiobjective optimization have all been addressed. The novelty and uniqueness of the
content provided in this book is to propose generative approaches that hold promise for
negating many of the disadvantages of these other methods, especially in the context
of highly nonlinear, nonintuitive, multifunctional systems.

1.3.1 Motivation for Bioinspiration

Regardless of the tools utilized, the preliminary stage of structural design (cf. Figures
1.2 and 1.4) is largely influenced by designers’ previous experience with or intuition for
the problem at hand (Kaldate, Thurston, Emamipour & Rood 2006, Fantini 2007). A
closer inspection of several of the methods described in Sections 1.2.2 and 1.2.3 reveals
that topology optimization is no different. SIMP, level set, and GSM implementations
all require an initial volumetric constraint, meaning that designers must have knowl-
edge of approximately how much material they want to use. Each of the three methods
is also typically reliant upon gradient-based optimization approaches, which require
that for multiobjective problems the objectives be combined into a single scalar score
using the method of weighted sums or similar. However, as previously mentioned,
the determination of these weights is nontrivial and still requires that designers have
a level of intuition regarding the desired outcome of the solution (Tamaki, Kita &
Kobayashi 1996). SIMP and GSM implementations also employ direct subdomain
specification (cf. Figure 1.1), meaning that the design variables directly define the
topology of the structure. As such, the accuracy of the analysis and thus of the resulting
topology is a function of the domain discretization, and both methods are plagued by
rapidly increasing design space dimensionality and computation time when accurate
solutions are required. For simple structural problems with a limited design space such
as the example shown in Figure 1.4, such topology optimization methodologies may
be sufficient. However, the maturation of adaptive material technology and a growing
interest in developing structures or other networks with increased multifunctionality
may begin to render these methods ineffective.
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The goal of designing structures with multiple functionalities is inherently mul-
tiobjective, and the vast design space associated with these problems renders intu-
ition formation extremely difficult. The use of traditional approaches (SIMP, GSM,
etc.) would require a single objective to be formulated from multiple objectives (e.g.,
through the method of weighted sums), practically limiting designers to a small subset
of all potential solutions. Furthermore, multifunctional systems typically respond to
various stimuli such as stress, heat, electrical current/voltage, magnetic field, mois-
ture, or light, and the complex physics models required to accurately analyze these
responses greatly complicate the derivative calculations necessary for gradient-based
topology optimization approaches. Therefore, there is a growing need for an inherently
multiobjective preliminary design approach capable of exploring a vast design space
to identify well-performing solutions to problems for which designers have little/no
intuition or experience.

As the title of this monograph indicates, we propose bioinspired solutions to the
various shortcomings of the currently established topological optimization approaches.
The tools introduced and demonstrated herein, while varying in their details and util-
ities, all fall under a common framework that abstracts the design process into a bio-
logical analogy that is described in the following section.

1.3.2 The Evolutionary-Developmental Approach to Systems Design

In biological systems, the problem to be solved is “sufficient procreation toward prop-
agation of a species,” which requires survival (and even good health) of population
members despite the presence of resource limitations, adverse environmental condi-
tions, predators, intraspecies competition, and other challenges. As a means of formally
introducing such bioinspiration into the design processes of interest, we here introduce
the evolutionary-developmental or EvoDevo approach. As will be described, this anal-
ogy goes beyond simple “survival of the fittest” in terms of the selection, crossover,
and mutation that comprise the common GA approach to optimization (introduced in
Section 1.3.3). Rather, it also considers how genes, environment, heredity, and the laws
of nature combine to drive the unique development of each new individual seeking
survival. The full EvoDevo approach thus combines the developmental processes that
govern spatial configuration (topological layout) with the evolutionary processes that
improve populations over time, permitting great diversity in the context of straightfor-
ward algorithms. It is the development in particular that defines the unique topology
optimization schemes described in Chapters 3–6 of this book.

As is appropriate for biological analogies to design, the EvoDevo approach is best
suited for multiobjective optimization. In nature, individuals must perform a diver-
sity of tasks associated with survival and procreation (e.g., hunting, courting, etc.)
as they avoid critical pitfalls (disease, death, etc.). Some engineering designs must
likewise perform multiple tasks without failure. In this work we will often focus on
such multifunctionality, especially considering the optimization of networks, structural
and otherwise, that seek multiple objectives and satisfy multiple constraints across
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Figure 1.5 The EvoDevo abstraction considering both the living and nonliving aspects of the
natural world, these concepts being interpreted for engineering design throughout this section.

multiple tasks.5 This makes EvoDevo an effective alternative to traditional topological
design approaches for multifunctional structures and systems.

The EvoDevo abstraction that captures the considerations of a multiobjective design
problem at the highest level is depicted in Figure 1.5. Note that as we introduce these
concepts and those that follow, we will use biological phrasing to represent engineering
design concepts. At the top of the structure is the Ecology object, which is the cyber
ecosystem within which design development and evolution occur. It represents the
many choices of the designer in setting up a particular problem to be solved and, in
this analogy, requires definition of two subobjects: the Environment, which represents
the nonliving considerations within nature (physical laws and rigid constraints in engi-
neering), and the Biota, which represents the relationships between living, and thus
evolving, life-forms in nature (diversity of design options in engineering).

The Environment object abstracts the unchanging and impartial world that surrounds
communities of living individuals. For us, it captures the designer specifications that
apply to all processes and all individual designs. This object contains a Physics subob-
ject, which includes the definition(s) of the physical phenomena to be considered, the
mathematical models to be applied to these phenomena, the computational approaches
employed in analyzing the models, and all physical constants. Also important are the
Resources available to all designs and their assessment, including feasible ranges of
all considered material properties, gross limitations on geometric parameters, and even
computational resources (licenses, cores, time, etc.) available to the design problem.

On the other hand, the Biota object represents the relations of individuals to one
another as populations of living entities evolve over time. While the Environment can
be described as a negative directing force or constraint of evolutionary change, biotic

5 To expand on the analogy, consider that a predatory bird’s wing, for example, must enable both efficient
soaring flight and high-speed controlled dives in adults, while permitting the compactness needed to fit
inside an egg of minimum volume prior to hatching. Likewise, an airplane wing must generate lift at
very low drag, carry these lifting loads without failing, and store fuel, among many other functions. In
designing any engineering solution, multiple quantitative performance metrics can then be defined,
many of them being contradictory with respect to designer’s goals (e.g., a strong and robust wing that is
also light).
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competition helps populations to discover, propagate, and enhance the better individual
designs over the poorer. Charles Darwin famously posited the predominance of biotic
competition in organisms’ “Struggle for Existence” to justify the idea of progress in
nature (Gould 2002). In the Biota object, all evolving entities and the manner(s) in
which some come to take preeminence over others (e.g., for the sake of final selection)
are specified. Let us consider each subobject in terms of the guiding biological analogy
and associated engineering design implication:

• Population(s): In nature, a population is defined as a collection of individuals of
the same species; there may be many species (and thus many populations) in rela-
tionship with each other in a given ecology. In design, a population then represents
a collection of individual designs associated with a given concept; there may be
multiple design concepts (parameterized in a number of different ways) in the search
for an optimal design.

• Task(s): Living organisms must complete a number of tasks to survive and procre-
ate (e.g., eat, fight, court, travel, etc.), and their performance in these tasks rela-
tive to their peers and with respect to their environment determines their success.
Engineered designs must likewise perform functions, where in this monograph we
especially consider multifunctional designs as inspired by natural systems.

• Constraint(s): The performance of some tasks in nature must meet at least a
minimum standard to allow survival and procreation. Animals must procure
sufficient caloric intake and avoid contact with deadly predators, for example; these
are limitations placed on them by their environment and biota. Most individual
engineering designs are likewise developed to satisfy strict criteria, where failure
to do so renders a design “infeasible.”

• Objective(s): The success with which some tasks are completed by a living individ-
ual may increase or decrease the probability of procreation rather than allowing it or
preventing it outright. Healthier (e.g., better nourished and less diseased) organisms
produce more progeny, for example. In engineering design, an objective is a score by
which individuals can be ranked and a “best” option is eventually selected for contin-
ued development. The consideration of multiple objectives, if applicable, explicitly
precludes the down-selection of a single design but rather focuses the designer on
a rational population of potential best choices (as during preliminary design).

Of course, the most complex entity in the entire ecology is the individual, a collec-
tion of which comprises a population. In nature, the unique definition of any individual
is the result of both developmental and evolutionary processes; the information flow
associated with these in the context of engineering topological design is illustrated in
Figure 1.6. In traditional genetic design optimization of engineered systems, one will
often formulate the modeled configuration of a given individual based directly on the
design variables, neglecting the explicit consideration of developmental processes. As
an engineering design text, this work likewise seeks to link design variables (genes) to
expressed performance (fitness), but we intentionally propose a unique approach
in which the development of the configurational layout as informed by genetic
information is critically important. The inclusion of this developmental step is the
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Figure 1.6 Population object and subobjects, specifically as interpreted in the context of
engineering topology optimization.

essence of the EvoDevo approach and represents the primary bioinspiration driving
this work.

As shown in Figure 1.6, the configurational definition of a design results from
Evolved genetic information (Evo) as acted upon by a Developmental process (Devo).
Together these result in the observable characteristics of the individual and, ultimately,
the fitness thereof. Specifically, the EvoDevo approach taken throughout this book
begins with the array of Genes (known as the Genome), which is determined through
evolutionary processes and fully represents the uniqueness of a given individual. How-
ever, the genome alone is far from sufficient to fully define an individual and the full
EvoDevo approach proceeds as follows:

1. Just as the position of every atom (or even every cell) in a natural organism is not
defined by the genome but rather by the execution of chemical reactions and other
physical processes based on genetic information, so too can information represent-
ing a unique engineering design be translated into a set of rules (i.e., a grammar)
for developing a configurational layout. In the methods that follow, this will be
achieved through the definition of the characters and rules of an L-system (see
Chapter 3) or arrangement L-system (see Chapter 5).

2. Given these rules, the configurational (e.g., geometric) layout can then be accom-
plished in one of two interpretation methods. In nature, developmental processes
(e.g., cellular division and differentiation) are directly informed by genetic infor-
mation as they occur; in this way, the rules of development are iteratively applied
directly to an iteratively changing configuration that, once complete, represents an
individual. This direct grammar-to-layout approach in nature motivates the arrange-
ment L-system topological representation described in Chapter 5. Alternatively, for
reasons of algorithmic and conceptual simplicity, one can imagine an intermedi-
ate step during which gene-informed rules are fully interpreted into a long and
highly complex set of layout-building instructions, which only upon completion are
interpreted into a layout. This approach will be considered in Chapter 3 on Turtle
graphics and Chapter 4 on the so-called SPIDRS algorithm, the former being quite
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straightforward to implement and the latter being much more capable as a network
design tool.

3. The expressed phenome represents the observable characteristics of an individual
(i.e., the body or physical extents of a living organism). In engineering design,
it represents more than configurational layout information and a modeling pro-
cess is required to assign other design-specific descriptors (e.g., localized material
properties, section dimensional properties, the connectivity/connection properties
at nodes, etc.) to the layout. A complete Model of an individual engineering design
then represents the fullness of its unique essence as subjected to applied conditions
associated with the Environment of the Ecology and the Task(s) (cf. Figure 1.5)
for which performance is to be assessed. In this work, for example, an FEA model
might be used to fully represent a design (i.e., its geometry and material composi-
tion) assessed against a function of interest (i.e., via applied far field and boundary
conditions).

4. The final expression of an individual is its performance when assessed against
Task(s) of interest. This analysis of the model provides the overall fitness relative
to the Objectives and Constraints of the Ecology (cf. Figure 1.5).

To summarize in the context of engineering topological design, an array of genes
known as a genome (the design variables) is translated into a grammar (development
rules) that are then interpreted either directly or via instructions into a layout (geo-
metric or network configuration). The layout is then modeled via the consideration
of additional information, and the resulting model is analyzed under a set of imposed
conditions to provide a final fitness (functional performance).

Given that the fitness of each individual is compared against the objectives and
constraints of the Ecology such that better-performing individuals can be separated
from poorer-performing alternatives, the evolutionary programming then acts on the
population to evolve it between generations, as described in more detail below. Here
we use crossover, selection, and mutation to discover, enhance, and propagate good
features in the population. This is the ultimate goal of the design process. Relative to
other more traditional approaches, it is the development process explicitly considered
herein that is key for the effective search using a GA, as it is responsible for both the
improved quality of design solutions and the accelerated convergence of the overall
methodology (Pedro, Kobayashi, Coimbra, & da Silva 2008, Kobayashi, Pedro, Coim-
bra & da Silva 2009, Kobayashi, Pedro, Kolonay & Reich 2009, Kolonay & Kobayashi
2010, Pedro and Kobayashi 2011, Stanford, Beran & Kobayashi 2012). The fact that
this bioinspired process is indeed effective for the design of a wide range of engineering
networks (structural, fluidic, electrical, etc.) is the foundational thesis of this book and
will be repeatedly demonstrated.

1.3.3 Genetic Algorithm Overview

Evolutionary algorithms in general are applied to a wide range of application areas
from engineering, to art, to biology, to physics, and others. In the field of structural
topology optimization, these algorithms have been used to improve the exploration
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of complex search spaces (Chapman, Saitou & Jakiela 1994, Kane & Schoenauer
1996, Schoenauer 1996, Jakiela, Chapman, Duda, Adewuya & Saitou 2000, Tai &
Chee 2000, Azid, Kwan & Seetharamu 2002, Fanjoy & Crossley 2002, Hamda, Jouve,
Lutton, Schoenauer & Sebag 2002, Tai, Cui & Ray 2002, Cappello & Mancuso 2003,
Wang & Tai 2004, Madeira, Rodrigues & Pina 2005, Tai & Akhtar 2005, Wang & Tai
2005a, Wang & Tai 2005b, Wang, Tai & Wang 2006, Tai & Prasad 2007, Balamurugan,
Ramakrishnan & Singh 2008, Guan & Chun 2009, Zuo et al. 2009, Madeira, Pina &
Rodrigues 2010).

Relative to the previous discussion, evolutionary optimization algorithms are bio-
logical metaphors that can produce high quality designs by identifying, recombining,
and enhancing the best features present in a continuously adapting population of indi-
vidual designs. Throughout this book, we will only make use of GAs , taken to be those
heuristic approaches that specifically apply the processes of selection, crossover, and
mutation to sequential populations of designs such that new, and hopefully improved,
generations continue to be generated. The execution of such an algorithm encompasses
all aspects of Figures 1.5 and 1.6. In the context of the GAs employed in this mono-
graph, evolution starts with a population of individuals, often generated via a random
or quasi-random manner (e.g., via Latin hypersquare sampling (Liefvendahl & Stocki
2006)), and then proceeds with the following steps:

1. Each member of a full population, being uniquely described by its individual geno-
type, is subject to the four-step translation–interpretation–modeling–analysis pro-
cess described above such that all fitnesses can be quantified. In the context of
engineering, this will involve the calculation of one or more performance metrics
based on the physical response in question (e.g., structural, fluidic, electromagnetic,
thermal).

2. The relative fitnesses of all members of a population are then compared, and a
selection algorithm ranks the individuals, determining the best performers based
on some predetermined criteria that may consider both response preferences and
diversity preservation.

3. Selected designs are then assigned to pairs and their genotypic content combined
and used to create one or more offspring based on a number of potential crossover
algorithms.

4. Finally, the genotypes of the new offspring are most often subject to mutation to
further increase design diversity. Sufficient crossover and mutation operations will
eventually lead to a new population of desired size.

The cyclic evolutionary process continues when this new population is likewise eval-
uated to quantify its relative fitnesses. As this process emulates natural selection, pop-
ulations tend to improve in the relative performance of their individuals until designs
converge toward optimal configurations.

For the purpose of mathematically defining the kind of multiobjective optimization
problem that will be solved throughout this text using the EvoDevo approach, we
formally introduce the following four classes of variables:
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• Design Variables: These are the components of x that represent all genotypic con-
tent subject to definition by a designer. In the methods on which this overall text
is based, these will be shown in the following chapters to be either (i) aspects of
the grammar (i.e., L-system) to be defined in the following chapters, (ii) graphing
algorithm parameters, or (iii) physical parameters of the system to be modeled,
especially as related to interpretation of genotype into phenotype (i.e., the modeling
step of Figure 1.6).

• Bounds: These are the upper limits xub and lower limits xlb on x such that xlb
i ≤ xi ≤

xub
i ∀ i. In the current explorations, these will be defined in a straightforward manner

relative to the L-system assumed or guided by a priori understandings regarding
physical parameters (cf. Resources in Figure 1.5).

• Objectives: These components of the set f are the performance metrics with respect
to which the designer has a preference (i.e., either minimize or maximize) but for
which no strict requirements apply. Given an unchanging physical model consider-
ing an unchanging set of operational conditions, the objectives are fully defined by
the selection of x such that one may express them as f (x) (cf. Figure 1.5).

• Inequality Constraints: These components of g quantify the satisfaction of strict
design requirements by exploiting the fact that each requirement considered can be
strictly expressed in the form gi ≤ 0. For example, if the maximum Mises stress σ̄
calculated within a structure must be held to below a known failure stress σf , then
the ith inequality constraint could be written as gi = σf − σ̄ ≤ 0. As with the
objectives, these constraints (cf. Figure 1.5) may be expressed as g(x).

Note that a set of equality constraints (i.e., hi = 0) can also be considered but are rarely
of utility in the design of engineered structures except as may be included implicitly
in the calculation of f or g.

With these variables defined, the multiobjective optimization problem can then be
stated as follows:6

f∗ = min
x

f (x) = f (x∗),
such that xlb ≤ x ≤ xub,

g(x) ≤ 0.

(1.1)

A design f∗ = f (x∗) is said to satisfy Equation 1.1 if there is no x � x∗ such that

fi(x) ≤ fi(x∗) ∀ i.

Such a point cast into the space spanned by f is known as “nondominated.” In the
idealized case of full convergence, the set of all such nondominated points is known
as the “Pareto frontier” (see, for instance, Coello 2002).

The evolution of sequential populations of 10 designs from an initial randomized
guess toward a converged Pareto frontier is schematically shown in Figure 1.7. With

6 Here we assume preference for the minimization of all objectives. This is without the loss of generality
as any preference for maximization (e.g., maximum compliant displacement or maximum strength)
can be mathematically converted to a preference for minimization via multiplication of such an objective
by (−1).
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Figure 1.7 Schematic illustration of the evolution of a population of designs toward
simultaneous minimization of two competing objectives f1 and f2. The idealized converged set
of all such points accomplishing this goal (i.e., satisfying Equation 1.1) is known as a “Pareto
frontier,” the performance of which may not be reached by even the most evolved designs
(black points).

reference to the general process for a GA previously described, designs that are on or
near the current approximation of the Pareto frontier and that do not violate constraints
(not shown) are retained for crossover, leading to an ever-improving population. Note
that both simultaneous minimization of the components of f (x) and an even distribu-
tion of points along the resulting frontier (i.e., the maintenance of diversity) are both
goals of many multiobjective GAs, including the widely used NSGA-II algorithm (Deb
2001). In general, as the true Pareto frontier is unknown, a genetic optimization process
will terminate before its final population performs at this highest possible level, as
shown in Figure 1.7.

1.4 Summary of This Book

The remainder of this book seeks to introduce and describe how various algorithmic
schemes can be used to implement an EvoDevo approach for the design of multifunc-
tional structures and other networks with the advantages of compact representation
and complete general applicability across system physics and number of functions or
objectives considered.

• To provide a comprehensive introduction to existing topological optimization
approaches, Chapter 2 first demonstrates the formulations and features of many of
the options listed in Figure 1.3 in addition to others;
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• The concepts of L-systems, straightforward graphical interpretation, and GA-based
optimization over such a framework are introduced in Chapter 3;

• Chapter 4 then shows how L-systems and optimization can be applied to produce
much more effective networks in two and three dimensions by developing a novel
graphical interpretation scheme (SPIDRS);

• A distinctive approach whereby execution of the rewriting process is manifested
directly as graphical development rather than as character string modification (the
arrangement L-system, cf. Figure 1.6) is then presented in Chapter 5;

• Finally, Chapter 6 demonstrates the use of the various bioinspired algorithms pre-
sented in solving a range of multiobjective multiphysical problems.

Most importantly, it will be shown that the most widely accepted methods of topo-
logical optimization (i.e., SIMP and level set) can be outperformed by bioinspired
approaches for a range of structural design problems, especially when low area or
volume fraction designs are most suitable or multiple physical (and especially non-
structural) responses are of interest. It will also be shown that classical sensitivity
approaches, such as the GSM can also leverage bioinspired approaches as the latter
are capable of generating high-performing but nonintuitive ground structure configu-
rations.
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