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POTENTIAL OF SEVERAL
ARBITRARILY LOCATED DISKS
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Abstract

The electrostatic field of a set of arbitrarily located circular disks is considered.
A set of governing integral equations is derived by a new method. It is shown
that some integral characteristics can be found without solving the integral equa-
tions. The upper and lower bounds for the total charge are found from a set
of linear algebraic equations whose coefficients are defined by simple geometric
characteristics of the system. Examples considered show sufficient sharpness of
the estimations.

1. Introduction

The problem of charged coaxial disks has been attracting the attention of scien-
tists since the last century. Kirchhoff, Ignatowsky, Nomura, Cooke and others
made a significant contribution to its solution. A comprehensive literature re-
view can be found in [4,5]. There are just a few papers where the problem of
two coplanar disks is considered; among them we know of only one [2] where
some numerical results of sufficient accuracy are given. We are aware of only
one publication [3] treating the problem of two non-parallel disks, whose "cen-
tres" are located in one plane orthogonal to the planes of both disks, by the
Mehler-Fok transform, with consequent use of the small-parameter method. To
the best of our knowledge there are no publications considering the electrostatic
problem of two or more arbitrarily located disks, mainly due to the fact that
existing methods are not capable of solving these problems.

Here, a new approach is suggested providing a direct and elementary deriva-
tion of the set of governing integral equations, which can be solved by iteration.
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[2] Potential of Several Disks 343

One can obtain upper and lower bounds for certain integral characteristics with-
out solving the integral equations. For example, the value of the total charge
can be assessed by solving a set of linear algebraic equations. Two examples are
considered; the first one, involving two disks, in order to compare our results
with those available in the literature, and to establish that the discrepancy be-
tween our central assessment and the total charge evaluated in [2] is less than
0.4%. A new type of spatial configuration of n + 1 disks is considered in the
second example.

2. Formulation of the problem and its solution

Consider a system of n charged arbitrarily-located circular disks. Let â  be
the radius of the ith disk, and Si be its surface. We can single out, without
loss of generality, disk number one and place the origin of the set of cylindrical
coordinates (p, <j>, z) at its centre so that the Oz axis is orthogonal to the disk's
plane. Let the position vector r* indicate the centre of the ith disk, and the unit
vector n,, orthogonal to the disk's plane, indicate its orientation. The problem is
to find the electrostatic potential due to the system of charged disks; that is, to
find a harmonic function V(p, 4>, z), satisfying the following boundary conditions:

V(p, <j>, z) = Vi(p, <f>, z) for {p,<f>, z) c Si] i = 1,2,... , n. (1)

The potential can be represented by a simple layer distribution as follows:

V = Vjf %•<&. (2)

Here, <ft are the (as yet unknown) charge densities, and Ri stands for the distance
between a point of integration inside Si and an arbitrary point in the space.

Now make use of the following integral representation for the reciprocal dis-
tance [1]:

* Jo [{p2 - '•
(3)

where

and
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An obvious simplification of (3) is valid when Zi = 0, namely

1 2 fmm(P'P>) A(-*—,<p — <pi)dx

- 0,-)l1/a ~ » io•pf -2ppicos(<t>-(t>i)]1/2 n Jo \{p2 -x2)(p2-x2)1/2' '

Substituting the boundary conditions (1) for the first disk into (2) and using (3)
and (7) yields the following integral equation:

l~p dx f"1 rdr

[f/o
where the Poisson type L-operator is introduced as

mm = ~
The following well-known properties of the //-operators will be used here

L{k)L{ki) = L(kk!) for k < l.fci < 1; lim L{k)f = / . (10)

Let us apply the operator

L (1) ' f /*<> L(p/r,)
\yj dy JQ y/(y2- p2)

to both sides of (8). Here we have introduced a dummy parameter i], in order to
keep the parameter of the L-operator dimensionless and less than unity. We call
the parameter rj a 'dummy' because it was introduced for some formal reasons
only; it will disappear in the final result, and therefore has no bearing on the
procedure to follow. The result of application of the operator above is

Here, the following rule of change of order of integration was used:
rv rct{p) rciiv) ty
I dp I, dx= I dx I dp.

Jo Jo Jo Jgi(x)

One can easily notice that function ft(x) is inverse to the function ct(p). The
next operator to apply is

L(t/n)d /••» ydy</*?) d n ydy (v\
t dtjt y/iv2-*) \y)
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with the result

L v ^ ff rfc P M ) d fai ydy KMnlyPi,t!i)i{y)}
JJ J dy \qi

d p ydy r (n*\ d [v _pdp_T(

= -V^—TJil 7W^)L\72)*yh -JW=7)L{ph)Vi

(11)

Integration with respect to y can be performed in (11) to give

Kii(*><t>>(>i>4>i,Zi)>lidS1 + - ^ t f i t / i M ) , (12)

where the kernel can be expressed in elementary functions:

Kuit^pu^zi) = W f^i +tan-1

471

and

L{th) d fai ydyJ
(13)

Similar equations can be derived for the other disks, thus forming a set of in-
tegral equations to be solved. One has to remember that each such equation
is valid in the local set of coordinates related to the particular disk. It is also
important to notice that during the derivation we only used the assumption that
5i was a circular disk; (12) would remain unchanged if S%(i > 1) were arbitrary
surfaces. It is possible to prove that the set of equations (12) can be solved by
successive iterations, but the most interesting feature of these equations is the
ability to obtain the estimation for some integral characteristics without solving
the equations.

For example, the estimation of the total charge can be made in the following
manner. Multiplying both sides of (11) by tdtd(j> and integrating over the surface
of the first disk, one gets

± *,- SH.«=\ r r
Pi * Jo Jo
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Introducing a new quantity bi{p) as

f1/2 2 ^ } (15)
with an obvious property Ci(p)bi(p) = ppi, expression (14) can be rewritten in
the form

(16)

Evoking the mean value theorem, which is valid when qi does not change sign,
expression (14) can be evaluated as follows:

L r—\ / / . —1 Ol , o _ •!• / / v\\PiV)P
ni^JJs, bi(ai) * 7r2 y0 Jo \Z(a2-

t=2 "

where Qi stands for the total charge of the zth disk, and

i r2* p v1(p^)p
* 8 Jo JO V(al -

The physical meaning of bn is obvious: it represents half of the sum of distances
from a point inside Si to the closest and the farthermost points of the first disk's
edge.

Equations similar to (17) can be derived for the other disks, and the following
set of linear algebraic equations with respect to the total charges Qi can be
written:

2 "

where

<-atvk(p,<fi)pdpd<t>l z - 2 *
= —o / /

i-2 Jo Jo

= \ {[(

V(ak ~P)

ak + pikf + 4 1 1 / 2 + l(ak ~ Pik? + 4 1 1 / 2 } • (22)

Of course, the exact values of pik and Zik are not known, but the fact that
{pik, z%k) C Si allows us to obtain upper and lower bounds for the total charges,
by solving the set (2) for the extreme points. It will be shown in the next
section that in many cases this estimation is sufficiently sharp and can be used
for verification of the accuracy of various approximate solutions. Notice also
that in the case vk(p, <j>) = vk = const.,

Mkvk(p, 4>) = vk/y/(al - p2), Bk = -vkak. (23)
7T
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Since bkk = a* the set of equations (20) can be rewritten in a uniform manner

i^~1rL=Bk, k = l,2,...,n. (24)

The possibility of assessing the integral characteristics in such a simple manner
is not limited to the quantity of total charge. One can multiply (11) by tmdtd<j>
and integrate over the surface Si. The result can always be expressed in terms of
elementary functions. For example, in the case m = 2, the result of integration
is

r
Jo

f j 2 f f
o Jo ~£JJs,

2

=j. r r
2TT JO JO

_ ai
— c o s h " — I vi (p, 4>)p dp d<j>.

Here, one can again evoke the mean value theorem and get upper and lower
bounds for the quantities of interest.

3. Examples

EXAMPLE 1. The simplest example to consider is the case of two disks of
radii Ri and i?2> lying in two planes intersecting at an angle a, and whose centres
are lying in one plane orthogonal to the line of intersection at the distances li
and I2 from the line. Let the disks be conductors charged to the potentials V\
and V2 respectively. The total charges Qi and Q2 are to be determined. The
set of equations to be solved has the form

Qi + -<32sin~x —i- = -

2 a2
-Qisin 1 —
7T D12

where

6 \\ {[(/9 + x? + (ii ^i) - 2(/2 + x)(/i - fli) cos a)1'2

+ [{h + x)2 + (/1 + fli)2 - 2(h + x)(h + R^cosa]1'2}

612 = \ {[{h + y)2 + (h - fl2)
2 - 2{h + y)(h - Rt) cos a]1/2

+ [('1 + V? + (h + fl2)
2 - 2(/i + y)(l7 + Ra) cosa]1/2} (26)
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with -R2 < x < R-2, and —Ri < y < R\. The extreme points give the upper
and the lower bounds for the total charges. It is logical to consider the central
estimation corresponding to x = y = 0. Calculations show that in some cases
the central estimation is very close to the exact result.

The problem of two non-parallel disks was considered in [3] using the Mehler-
Fok transform. The following result was obtained for the total charge Q\ on the
assumption that

/ x i / s i n - < l and / i 2 / s i n - < l ; Hi=Ri/h, Hi

/2 V s i n 2 a/2 7r3sin
3a/2

y ^ / i 2 (2 + 3sina/2) 4(2 - 9sin2 a/2)]
2 247rsin3a/2 2 247rsin3a/2 J

It is of interest to compare the results given by (25-26) with those by Ruk-
hovets and Uflyand (27). Calculations were performed for the case Ri = R? = 1,
Vi = V2 = 1, a = TT/4, /I = l2 = I- The value of Q\ = nQi/2 versus / is presented
in Figure 1. The upper and the lower bounds are given by the solid and the
dashed lines respectively. The solid circle line gives the central estimation; the
small circle line represents the results of evaluating (27). As one can see, (27)
gives good results for I > 2.5; the results sharply deviate from the admissible zone
for / < 2. Our term 'admissible zone' indicates the interval between the upper
and the lower bounds. The central estimation gives reasonably good accuracy
in the whole range 0 < / < oo, except the narrow interval near I = 1 where the
worst possible error is about 25%.

The real value of the error can be found only by comparison with the exact
result, which is not available at the moment, but there is a reason to believe
that the error is much smaller than the value quoted above. This belief is based
on the only numerical computations known to us, which claim to be accurate,
namely those due to Kobayashi [2], who solved the problem of two equal coplanar
disks kept at constant unit potentials. The case of coplanar disks is covered by
(25-26) taking a = n. The comparison of our results with those by Kobayashi is
given in Table 1. The central estimation error was evaluated with respect to the
Kobayashi result which was assumed to be exact. The error value is surprisingly
small, but the fact that the error sign changes indicates that Kobayashi's results
are not exact. Indeed, it may be proved that the exact value of 621 is greater
than 2/, due to the charge interaction (repulsion in this case); therefore, the
central estimation in (25) is, in fact, a very close upper bound. This means that
the error sign should be negative, and changing monotonically (decreasing) as
the distance between the disks increases. The only definite conclusion which can
be drawn from this comparison is that our very simple approach gives the same
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Figure 1. Two nonparallel disks at unit potential

accuracy as the method using the double series expansions, infinite systems of
linear algebraic equations whose coefficients are given by complicated integrals
involving special functions.

TABLE 1. Evaluation of the total charge (two equal coplanar disks)

Distance
Between
Centres

2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0
5.0
7.0

10.0
CO

Upper Bound
for the Total
Charge

0.8221338
0.8317164
0.8402998
0.8480356
0.8550458
0.8614294
0.8751494
0.8863767
0.9036683
0.9261093
0.9452202
1.

Lower Bound
for the Total
Charge

0.5000000
0.6145749
0.6637918
0.6993975
0.7272786
0.7500000
0.7924057
0.8221338
0.8614294
0.9036683
0.9338098
1.

Central
Estimate

0.7500000
0.7689962
0.7851738
0.7991486
0.8113602
0.8221338
0.8442654
0.8614294
0.8863767
0.9163737
0.9400541
1.

Kobayashi's
Results

0.75272
0.77014
0.78545
0.79898
0.81096
0.82162
0.84370
0.86093
0.88602
0.91619
0.9399
1.

Error of the
Central
Estimate

%
.36
.15
.04

- . 0 2
- . 0 5
- . 0 6
- . 0 7
- .06
- . 0 4
- . 0 2
- .007
0

EXAMPLE 2. Consider the case of n + 1 disks with their centres located at
the plane z = 0. The plane of the first disk is horizontal, its centre being placed
at the coordinate system origin, and its radius being ao- This disk will be called
central. The centres of the remaining n equal disks are located at the vertices
of a regular polygon, their planes being orthogonal to the line connecting the
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coordinate's origin with the vertex, the length of this line being /. Let the central
disk be charged to a potential Vo, the rest being kept at a potential V\, and their
radii being oi. Due to the symmetry of the system, the problem of finding the
total charge at each disk can be reduced to a set of just two linear algebraic
equations:

9 °
<9o + -nQi sin l ao/bo = -

7T 7T

-Vi^, (28)
•K

where, from elementary geometrical considerations,

x,i = 2ft J j sin 2irk/n + (ft — ai)sin — -, ft = Itann/n
fc=i n

y,i = 2ft ^ cos 27rfc/n + (ft — ai)cos27r(i — l)/rc + (ft + x),

t-2

Xji = 2ft ^ J sm2nk/n + (h + ai) sm2n(i — l)/n,
fc=i
t-2

F,i = 2ft y ^ cos 2nk/n + (ft + ai)cos27r(i — l)/n + (ft + a;),
fc=i

with — a,\ < x < a\ and — a^ < y < UQ. The central estimation corresponds to
the case x = y = 0. Note that the accuracy of the central estimation improves, as
the ratios 1/a.o and l/ai increase, tending to the exact results when these ratios
tend to infinity.

As one can see, the new approach allows a very simple treatment of compli-
cated problems. The method is not limited to circular disks; it can be modified
for other surfaces. For example, a system of arbitrarily located spherical caps
can be treated in a similar manner.
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