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1. Introduction. It is now well-known that decomposable operators have a rich
structure theory; in particular, an operator is decomposable iff its adjoint is [3]. There are
many other criteria for decomposability [8], [9]. In Theorem 2.2 of this paper (see below)
we give several new ones. Some of these (e.g. (ii), (iii)) are "relaxations" of conditions
given in [7] and [8]. Assertion (vi) is a version of a result in [10]. Characterizations (iv)
and (v) are novel in two respects. For instance, (v) states that an operator T can be
"patched" together into a decomposable operator if it has an invariant subspace Y such
that T | 7 and the coinduced operator T/Y are both decomposable. Secondly, in this way
the strongly analytic subspace appears in the theory of spectral decomposition.

Strongly analytic subspaces were introduced in [6], and Snader [13] characterized
them as those Y for which T/Y has (Bishop) property (/3). One purpose of the present
paper is to indicate an intimate connection between decomposable operators and strongly
analytic subspaces. For example, one result that follows easily from [9, Th. 2.3 (iv)] is
that if T is decomposable then T is strongly analytic iff T/Y is decomposable. One result
of the present paper (Corollary 3.10) is that two decomposable restrictions of the same
operator can be "patched" together into a decomposable operator on the full underlying
Banach space if the intersection of the two subspaces is strongly analytic.

We also study strongly analytic subspaces relative to a subclass of decomposable
operators that Shulberg calls "superdecomposable" [12]. We show by example that this
subclass strictly contains strongly decomposable operators.

2. Equivalent conditions for decomposability. In this section we begin with some
preliminaries basic to the paper. Let X be a complex Banach space and let T be a
bounded linear operator on X. We say that T has property (k) if T has the single-valued
extension property (SVEP) and the linear manifold XT(F) is closed if F is a closed set of
the complex plane C (see [3] for details); T has property (/3) [2] if for any sequence
{fn:G—*X} of analytic functions such that (A — T)/n(A)-*0 uniformly on each compact
set in G it follows that/n-»O on such compacta also. It is easy to see that Thas property
(k) whenever it has property (/?).

Now let 7 be a T-invariant subspace. As usual, T \ Y denotes the restriction to Y,
while T/Y denotes the operator coinduced by T on the quotient space X/Y. In [6] Y was
defined to be strongly analytic for T if for each sequence {/„ : G —* X} of analytic functions
such that
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uniformly on compacta in G it also happens that

dist(/B(A),Y)-»O

uniformly on compacta in G. Later Snader proved [13] that Y is strongly analytic iff T/Y
has property (/J).

We say T has the asymptotic spectral decomposition (abbrev. (ASD)) if for each finite
open cover {G,}?=1 of the plane, there exists a system of T-invariant subspaces {A/,}"=1

such that „
X = V M, and o(T | Mt) c G, (1« / *s n). (2.1)

1=1

A simpler version when n =2 will often suffice. For each open cover {G, H} of C,
there are T-invariant subspaces M, N such that

X = MvN, o(T\M)cG, o(T\N)czH. (*)

If in (*), X = M + N, then T is decomposable by [7] and [11]. Moreover, every
decomposable operator T has property (/?) and so XT(F) is closed if F is closed in C. We
also recall that T is strongly decomposable if each restriction T \ XT{F) (F closed) is
decomposable. Finally, it is an open question whether (*) implies (2.1) for all n.

A decomposable operator T is said to be superdecomposable [12] if for closed F and
open G, F c G c C , there exists a T-invariant subspace M such that

and T\M is decomposable. Obviously every strongly decomposable operator is
superdecomposable.

2 . 1 . PROPOSITION. Given T, if T\Y and T/Y both have property Q3), then T has
property (/3).

Proof. Let/n : w - * l b e a sequence of functions analytic on a) satisfying

( A - r ) £ ( A ) - 0 (2.2)

uniformly in norm on each compact subset of co. Let,K = {A: |A - Ao| < r) with K e a and
expand /„ as

Sa-*(A-Ao)* (2.3)
k=a

on a neighborhood of K. By (2.2) and the hypothesis on T/Y, /„-»() uniformly in the
quotient norm of X/Y on K. Moreover, (2.3) implies that

Put En = max ||/n(A)||; then En-*0. By the Cauchy inequality one has
|A—Aol=r
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or equivalently, d\st(ank, Y) «s En/r
k. Now choose bnk e Y such that

\\ank-bnk\\^2Ejrk. (2.4)

It follows from the resulting inquality

IE
ll&n*llas||fln*ll+-pr

that the series

converges in the disc K and hence is analytic there. On the other hand, (2.2) and (2.4)
imply that

(A-r)gn(A) = (A-r)[gw(A)-/n(A)] + (A-r) / n (A)^O (2.5)

uniformly in norm on each compact subset of K. Since T | Y has property (/3) and
gn(A) e Y for A e K, (2.5) implies that gn—»0 uniformly on each compact set in K. Then
(2.4) implies

/„(*)-> 0 (2.6)

uniformly in norm (of X) on each compact set in K. By the Heine-Borel theorem (2.6)
remains valid on every compact set in co. Thus T has property (/3), and the proposition is
proved.

2.2. THEOREM. For an operator T the following are equivalent:

(i) T is decomposable;
(ii) for every pair of open sets G and H with G a H, there exists a T-invariant

subspace Y such that

o(T\Y)<=C-G, o{TIY)aH; (2.7)

(iii) T has property (jS) and T* has the SVEP such that for every open disc D the
spectral manifold Xr* (C — D) is norm closed;

(iv) there exists a T-invariant subspace Y such that T \ Y and T/Y are both
decomposable;

(v) there exists a T-invariant subspace Y such that T | Y and T* | YL are
decomposable;

(vi) T has property (k) and for each open G,

cC-G. (2.8)

Proof. The conclusion will be reached through the sequences of implications

(i)=>(u)=>(iii)=>(i), ( i )O(iv)«(v) and (i)O(vi).

(i) => (ii). Let G and H be open sets such that G c / / . Since T is decomposable, one
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has

X = XT(C-G) + XT(H).

Let Y = XT(C - G). Then o(T | Y) c C - G. Since T/Y is similar to

[T\XT(H)]/[YDXT(H)],

We see that o(T \Y)czH, hence T satisfies (2.7).
(ii) => (iii). Let G, H be open discs such that GcH. Then (2.7) implies [9, Theorem

2.3 (hi, a)].
Put Gi = C - H, H1 = C- G, so that Gu Hx are open sets with G, <= Ht. It follows

from (2.7) that there is a ^invariant subspace Z such that
o(T | Z) c C - Gi = # ,

and hence [9, Th. 2.3 (iii, b)] is satisfied. By [9, Th. 2.3], T has property (0) and T* has
the SVEP such that X$ .(.F) is closed for F closed. In particular, AT£<(C - £>) is closed for
each open disc D; hence (iii) holds.

(iii) =>(i) Since X$.(C-D) is closed, we have ~X~AD)^ = A^.(C - D) by
[9, Theorem 2.3]: hence

a{T*lX*T.{£ -D)) = o(T\ XT{D)) a D.

From this and the evident inclusion

one obtains, by [3, Theorem 5.8], that T* has property (0). Applying [9, Theorem 2.3]
again, we infer that Tis decomposable.

(i) O (iv) <=> (v) Since it is easily seen that (iv) and (v) are equivalent, it suffices to
prove (i)O(iv).

If (i) holds, then Y={0} satisfies (iv). Conversely, suppose for some T-invariant
Y,T\Y and T/Y are decomposable. Since it follows from [4] that T | Y and T/Y both
have property (/3), by Proposition 2.1, Thas property ()8). From the duality relations

T* | Yx = (T/Y)*, T*/YL = (T | Y)*

and [3, Theorem 8.1], it follows that T* | Yx and T*/Y± are both decomposable; hence
both have property (/S) [4]. Again Proposition 2.1 implies that T* has property (/3). By
[9, Theorem 2.3 (iv)] T is decomposable.

(i)O(vi). Since (i)=> (vi) is evident, we suppose that (vi) holds. We prove that, for
every T-invariant subspace Z satisfying XT(G) c Z, one has

o(T\XAG))ao{T\Z). (2.9)

Let x G XT(G) and let x(-) be the local resolvent of T at x. For A e pT{x) (the local
resolvent set) x(A) G XT(G) and x = (A - 7>(A). Now let Ao e p(T | Z). For A e pr(jc)

(A - r)*(Ao; T | Z)*(A) = i?(A0; T \ Z)(A - T)x(A) = K(A0; T | Z)x
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and since the first expression is analytic on pT(x), it follows that

or, equivalently,

R(ko;T\Z)xeXT{G). (2.10)

By (2.10) XT(G) is invariant under R(k0; T | Z), so (2.9) follows by [3, Proposition 4.2].
In particular

a(T\XT(G))co(T\XT(G))c:G. (2.11)

By (2.7), (2.11) and [3, Theorem 5.17] T is decomposable. Theorem 2.2 is thus proved.
By means of Theorem 2.2(iv) we give a very easy proof of the following well-known

fact.

2.3. COROLLARY. / / operators Tt{i = 1, 2) are decomposable on Banach spaces Xh

then 71 © T2 is decomposable on X1@X2.

Proof. Let 5 = 7\ © T2. Then S/Xi is similar to T2 and is therefore decomposable.
Since S\X1 = T1 the result follows from Theorem 2.2(iv).

2.4 REMARK. If T | Y and T/Y both have property (/J), T need not be decom-
posable. For example, let T be right shift on the Hilbert space X = /2(l^), and let Y = TX.
Then T | Y has property (/3) and 77 Y' = 0 so it also has property (j8). But T is not
decomposable. This example also answers the following question negatively. If T \ Y has
property (/8) and T/Y is decomposable, then is T decomposable? However, the following
question is open. If T/Y is decomposable and T \ Y has (ASD) with property (/3) then is
T decomposable?

3. Applications. In this section we prove some results in which strongly analytic
subspaces play important roles in spectral decompositions. Theorem 3.3 generalizes and
sharpens [8, Theorem 8] from the reflexive to the case of arbitrary Banach spaces. We
also give some theorems complementing one of Shulberg [12] concerning superdecom-
posable operators. Most of these results involve strongly analytic subspaces. For example
if T is superdecomposable with strongly analytic subspaces (Definition 3.6), then T* is
also. One interesting consequence of this set of ideas is the following. Although as
remarked in §2 every strongly decomposable operator is superdecomposable, the
converse is false. Hence superdecomposable operators form a strictly larger class than
strongly decomposable operators. Our last theorem (Theorem 3.9) is another result on
"patching" together a decomposable operator from "parts", in which strong analyticity is
an important hypothesis.

3.1. PROPOSITION. Let X = M v N with M strongly analytic for T and N T-invariant.
Then

o(T/M)czo(T\N). (3.1)
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Proof. For every fixed x e X there exist sequences {yn} in M and {zn} in N such that

x = lim (yn + zn). (3.2)

Write /n(A) = fl(A; 7 | N)zn for A e p ( r | N). Then 2B = (A - r)/B(A) and

x = \\m{yn + {k-T)fn{k)) for each kep{T\N). (3.3)
n—*oo

Let f = 77A/ and let x denote a coset in A7A/. Then (3.2) and (3.3) imply

x = lim (A - t)/n(A) = lim zn(k e p(T | N)). (3.4)

Since in fact zn = (A - t)fn(k), (3.4) holds uniformly on p(T \ N). By the fact that M is
strongly analytic (i.e. T/M has property ()3)) one obtains that /n(A) converges to a
function/(A) uniformly on every compact subset of p(T \ N). Now (3.4) implies

hence A - f is surjective for A e p(T | A'). Since f has the SVEP, by [3, Corollary 2.5]
Aep(r/Af), hence (3.1) holds.

3.2. PROPOSITION. Let X = M v N with M strongly analytic for T and N T-invariant,
and let T have the SVEP. Then for every subset E with o(T\N)C)E = 0 one has
XT(E) e M.

Proof. For x eXT(E), it follows from Proposition 3.1 and the inclusions oT/M(x)c
oT(x)c E that

aTIM{x) c O{TIM) DEczo(T\N)nE = 0;

hence x = 0, or x e M. This proves the desired inclusion.

The next theorem generalizes [8, Th. 8] to the case of arbitrary Banach spaces.

3.3. THEOREM. / / T has the (ASD) with either M or N in (*) strongly analytic for T,
then T is decomposable and T* is superdecomposable.

Proof. Let G, H be open such that G c / / . By (*) there are T-invariant subspaces M
and N with

X = MvN, o(T\M)^C-G, and a(T\N)czH,

where we suppose that M is strongly analytic. By Proposition 3.1 o(T/M) c o(T \N)cH.
Hence T is decomposable by Theorem 2.2(ii). By [3, Theorem 8.1], T* is also
decomposable. Now, let F be closed and G be open with F c G . Put K = C - G,
H = C-F. Then K is closed, H is open and KczH. Since {G, H) covers C, there are
T-invariant subspaces M, N such X = M v N, o{T \ M) cz H and o(T \ N) c G with M
strongly analytic. It follows that M c XT{H), so

X*T.(F)=XT(H)±<zM±. (3.5)
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But Proposition 3.1 implies that o(T/M) c o(T \N)czG, or equivalently, a(T* \ ML) a
G H e n c e M±<zX*T.{G). (3.6)

Since M is strongly analytic for T, i.e. T/M has property (/3), and T* | Mx(= (T/M)*)
also has property ()3) by restriction, we have that T*/M± is decomposable by
[9, Theorem 2.3]. Now (3.5) and (3.6) complete the proof that T* is superdecomposable.

Shulberg [12] proved that if T is strongly decomposable, then T* is superdecom-
posable. By the predual theorem [3, Theorem 9.6] we can prove the "dual" of Shulberg's
result.

3.4. THEOREM. If T* is strongly decomposable, then T is superdecomposable.

Proof. Let F be closed and G be open with F czG, and let H be open with
F<=HcHczG. Since T* is strongly decomposable, T*/X^.(K) is decomposable, where
K = C-H, and hence T \XT{H) is decomposable. Obviously XT(F)cXT(H)aXT(G);
hence (**) is satisfied and the proof is complete.

3.5. REMARK. By [14, Theorem 3], Albrecht's example [1] of a decomposable
operator T which is not strongly decomposable has adjoint that is strongly decomposable.
Hence the predual T is superdecomposable by Theorem 3.4. Moreover, XT(G) is strongly
analytic for T for each open G, so T also satisfies the hypothesis of Theorem 3.3. We can
then infer the following:

(i) superdecomposable operators need not be strongly decomposable;
(ii) the hypotheses of Theorem 3.3 are not strong enough to guarantee that the

operator is strongly decomposable.

Now two questions arise.

(1) Does decomposability imply superdecomposability?
(2) Is superdecomposability preserved under duality?

We give a partial answer to Question 2. To do this we introduce the following
definition.

3.6. DEFINITION. If T is superdecomposable such that the intermediate space M in
(**) may be chosen strongly analytic, then we say that T is (sa)-superdecomposable.

3.7. THEOREM. If T is (sa)-superdecomposable, then so is T*.

Proof. Since T evidently satisfies the hypotheses of Theorem 3.3, T* is superdecom-
posable. Let M be the T-invariant subspace of Definition 3.6, so that T \ M is
decomposable and M is strongly analtyic. By duality T*IML is decomposable; hence A/x

is strongly analytic. Now (3.5) and (3.6) above show that Mx satisfies Definition 3.6, and
so T* is (sa)-superdecomposable. The converse of Theorem 3.7 is not clear because the
intermediate subspace in Definition 3.6 need not be weak* closed. But we do have the
following sharpening of Theorem 3.4.
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3.8. THEOREM. If T* strongly decomposable, then T is (sa)-superdecomposable.

Proof. Referring to the proof of Theorem 3.4, we see that T/XT(H) is decom-
posable since T* \ Xr-(K) is. Hence XT{H) is strongly analytic for T, and thus T is
(sa)-superdecomposable.

Our next theorem generalizes Corollary 2.3.

3.9. THEOREM. Let Yx, Y2 be invariant under T. If

(i) Y, + Yz is closed,
(ii) T | Yt is decomposable (i = 1, 2),
(iii) Y, f~l y2 is strongly analytic for T (or T \ (y, + Y2)),

then T \(Y1 + Y2) is decomposable.

Proof. Let 5 = T | (Yx + Y2), Y = Y, n Y2. By (ii) S \ Y,(i = 1, 2) is decomposable, so
it also has property (j8), and 5 | Y has this same property by restriction. Since Y is
strongly analytic for S, again S/Y has property (/3). By Proposition 2.1, S has property
03).

Next we prove that 5* has property Q3). Decomposability of T | Y, (/ = 1, 2) implies
that of 7"717- as well; hence Yf- is strongly analytic for T*. By [5, Theorem IV.4.8]
Yt + Yf is closed in X*; hence, by [6, Proposition 7], Yf fl Y2 is strongly analytic for
T*, and thus ^ / ( Y j 1 n Y^) has property ()3). But

5* = [ r I (Y, + Y2)]* = T*I{Y, + Y2)
x = T*/(Yf n Yf).

Since we have thus shown that 5 and S* have property (/3), 5 is decomposable by
[9, Theorem 2.3(iv)].

3.10 COROLLARY. Let Yr, Y2 be invariant under T such that

(i) X=Yt + Y2,
(ii) T \Yjis decomposable (i = l,2),
(iii) Yj D Y2 is strongly analytic for T.

Then T is decomposable and Yx (i = 1,2) is strongly analytic for T.

Proof. T is decomposable by Theorem 3.9. Since 77Y, is similar to (T \ Yj)IYx D Y2,
where i,j = 1,2 and i±j, and by hypothesis Yx n Y2 is strongly analytic for T,
(T I Yj)lYx D Y2 has property (/3), so that T/Y, also has property ()3), and hence Y, is
strongly analytic for T.

3.11 REMARK. The explicit statement of [6, Proposition 7] referred to in the proof of
Theorem 3.9 is as follows. If Yt(i = 1, 2) are strongly analytic and Yx + Y2 is closed, then
Yx n Y2 is also strongly analytic. The converse of this is false. If Yx, Y2, and Y, D Y2 are
strongly analytic, Yx + Y2 need not be closed. Radjabalipour [10, Example 3] defines a
strongly decomposable operator T for which XT(FX) + XT(F2) is not closed, but in this
case XT(Fi), (i = 1, 2) and XT(FX D F2) = XT(FX) n XT(F2) are strongly analytic.
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