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Abstract. In this paper, we discuss the structure of the global attractor of a
positively bounded system. In particular, we are concerned with the existence of
connecting orbits and the relation between maximal elliptic sectors and connecting
orbits. For the systems with two singular points a necessary and sufficient condition
for the existence of connecting orbits is given.
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1. Introduction. This article deals with the structure of the set of all bounded
orbits for a positively bounded system in the plane R2. We consider the planar system:

ẋ = X(x, y), ẏ = Y (x, y), (E )

where X and Y are continuous, and assume that solutions of arbitrary initial value
problems are unique. Suppose that the vector field V = (X, Y ) defines a flow f ( p, t). For
two isolated singular points p1 and p2 of System (E), if there exists a p ∈ R2 such that
limt→−∞ f ( p, t) = p1 and limt→+∞ f ( p, t) = p2, then the set f ( p, R) = { f ( p, t)|t ∈ R}
is called a connecting orbit from p1 to p2 (or a heteroclinic orbit). The existence of
connecting orbits plays an important role in the studies of shock-wave solutions
[3, 4]. On the other hand, as special invariant sets, such orbits are crucial objects
of the global structure of dynamical systems. Now the study for the existence of such
orbits is still going on (see [6, 8, 10, 11, 12] and references therein). Among those papers
(e.g., [8, 10, 11, 12]), a crucial condition for the existence of connecting orbits is the
absence of singular closed orbits.

The system (E) is said to be positively bounded, if for each p ∈ R2 there exists
an r = r( p) > 0 such that the positive semi-orbit γ +( p) = { f ( p, t)|t ∈ [0,+∞)} lies in
the closed disc Br = {z ∈ R2|d(z, O) ≤ r}, where O is the origin and d is the ordinary
metric on R2. In [8, 11] it is proved that for a positively bounded system (E) with a finite
number of singular points, if there are no closed orbits and singular closed orbits, then
the system has a connecting orbit. In this paper, we strengthen this result, and using
limit sets of subsets we prove that the set of all bounded orbits is simply connected
and compact. Furthermore, we discuss the relation between connecting orbits and
homoclinic orbits. It is shown that the number of connecting orbits is closely related
to the maximal elliptic sectors. For the system (E) with two singular points we give a
necessary and sufficient condition for the existence of connecting orbits.
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38 CHANGMING DING

2. Preliminaries. Let f : R2 × R → R2 be the flow defined by the vector field V =
(X, Y ) of System (E). For A ⊂ R2 and I ⊂ R we denote A · I = { f ( p, t)|p ∈ A, t ∈ I},
in particular p · t = f ( p, t). A set S is invariant under f provided S · R = S. Throughout
the paper for A ⊂ R2, ClA, ∂A and IntA denote respectively the closure, boundary and
interior of A. Also, Br always denotes the closed disc {p ∈ R2|d( p, O) ≤ r} with radius
r > 0 and center O (the origin).

DEFINITION 2.1. A simple closed curve is called a singular closed orbit if it is the
union of alternating non-closed whole orbits and singular points, and it is contained
in the ω(or α)-limit set of an orbit.

DEFINITION 2.2. For a singular point p in R2, an orbit γ (q) = q · R (q �= p) is called
a homoclinic orbit with respect to p provided limt→−∞ q · t = limt→+∞ q · t = p.

NOTATION. If L is a homoclinic orbit with respect to p, in this paper we always let
DL denote the interior of the bounded region surrounded by L ∪ {p}.

The following famous theorem is fundamental in the qualitative theory of planar
systems (see [7, p. 154]).

POINCARÉ-BENDIXSON THEOREM. Assume that γ +( p) is bounded and ω( p) contains
a finite number of singular points. Then ω(z) is a singular point, or a closed orbit, or a
connected set composed of some singular points and some orbits whose positive semi-orbit
and negative semi-orbit tend respectively to a singular point in ω(z).

PROPOSITION 2.3. Suppose that the system (E) has a homoclinic orbit L with respect
to a singular point p. If there exist no singular points in DL, then any orbit passing through
a point in DL is homoclinic with respect to p.

Proof. Take a point z ∈ DL. Since DL is an invariant and bounded set, we get
ω(z) �= ∅. If there exists a regular point q ∈ ω(z), let J denote a transversal at q of the
flow. Then the positive semi-orbit γ +(z) crosses J in the same direction successively at
ti with 0 < t1 < t2 < · · · (ti → +∞) and z · ti tends monotonously to q along J (see
[7, chapter 7]). Thus a simple closed curve consisting of the solution arc z · [ti, ti+1]
and a segment of J between z · ti and z · ti+1 surrounds a bounded region Z ⊂ DL.
Hence a (negative or positive) semi-orbit of z · ti or z · ti+1 lies in Z; from the Poincaré-
Bendixson Theorem it follows that there exists at least a singular point in Z, giving
a contradiction. Thus we conclude ω(z) = {p}. Similarly α(z) = {p} holds, and now it
follows that the orbit γ (z) is homoclinic with respect to p. This completes the proof.

DEFINITION 2.4. For two homoclinic orbits L1 and L2 with respect to a singular
point p, if L1 ⊂ DL2 holds or there exists another homoclinic orbit L with respect to
p satisfying L1 ∪ L2 ⊂ DL, we say that L1 and L2 are in the same class. By a maximal
elliptic sector we mean the union of {p} and the set consisting of all homoclinic orbits
in the same class with respect to p.

DEFINITION 2.5. If A is a subset of R2, the ω-limit set of A is defined to be the set
ω(A) = ⋂

t≥0 Cl{A · [t,∞)} (see [2] for the definition of ω(A) in a more general setting
and its basic properties).

LEMMA 2.6 [2]. If A · [0,+∞) is compact and A is connected, then ω(A) is a compact
and connected set. Furthermore it is the maximal invariant set in A · [0,+∞).
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LEMMA 2.7. Assume that all singular points lie in Int Br for an r > 0. If the system
(E) is positively bounded, then ω(Br) is compact and connected.

Proof. By Lemma 2.6 we only need to prove that there is a λ > 0 such that for
every p ∈ Br the semi-orbit γ +( p) = p · R+ is contained in Bλ, i.e., Br · [0,+∞) ⊂ Bλ.
Actually, we may suppose that there are no closed orbits outside IntBr. Now for each
p ∈ ∂Br, since γ +( p) is bounded, it follows that ω( p) is a closed orbit or contains a
singular point. Thus, if γ +( p) leaves Br at p, we assert that γ +( p) meets with ∂Br again
at time tp > 0, since all singular points lie in IntBr and each closed orbit enters IntBr.
If γ +( p) does not leave Br at p, we define tp = 0. By the compactness of the circle ∂Br,
there is a T > 0 such that for each p ∈ ∂Br, 0 ≤ tp ≤ T holds. So we conclude that
Br · [0,+∞) ⊂ Br · [0, T ]. Because Br · [0, T ] is compact, it is easy to find a λ > 0 such
that Br · [0, T ] ⊂ Bλ. The proof is complete.

THEOREM 2.8. For a positively bounded system (E), if the set of singular points is
bounded and there exist no closed orbits outside Bδ for some δ > 0, then the set of all
bounded orbits is simply connected and compact.

Proof. We take an r > 0 such that all the singular points and closed orbits lie in
IntBr. Since the ω-limit set of each p in R2 is a closed orbit or contains at least a
singular point, we have γ +( p) ∩ Br �= ∅ and ω( p) ∩ IntBr �= ∅. Now if the orbit γ ( p)
is bounded, we assert that γ ( p) ⊂ Br · [0,+∞). In fact, as the above argument we
also have α( p) ∩ IntBr �= ∅ for the bounded orbit γ ( p). Thus for every p · t ∈ γ ( p)
there exists a τ > 0 such that ( p · t) · (−τ ) ∈ Br, and it follows that p · t ∈ Br · τ ⊂
Br · [0,+∞), so γ ( p) ⊂ Br · [0,+∞) holds. Since ω(Br) is the maximal invariant set in
Br · [0,+∞), we get γ ( p) ⊂ ω(Br). On the other hand, by Lemma 2.7 all the orbits in
ω(Br) are bounded, so ω(Br) is just the set of all bounded orbits, and it is compact
and connected. The simple connectedness is directly derived from the fact that ω(Br)
is the maximal invariant set in the simply connected set Br · [0,+∞). In fact, any loop
C in ω(Br) surrounds a bounded region which is also contained in ω(Br), so C is
contractible.

REMARK. Actually the set of all bounded orbits is a global attractor, since by
Lemma 2.7 it is easy to see that ω(Br) attracts each bounded subset (see [9]).

Finally, we recall the concept of first prolongational limit set (see [1]). The set
J+(x) = {y ∈ R2|there exists a sequence {xi} in R2 and a sequence {ti} in R+ such
that xi → x, ti → + ∞ and xi · ti → y} is called the first positive prolongational limit set
of x.

3. Connecting orbits. In the sequel, we suppose that the system (E) has only a
finite number of singular points {p1, p2, . . . , pn} (n ≥ 2).

LEMMA 3.1. For x ∈ R2, if ω(x) is a compact set with two or more singular points,
then there exists at least one connecting orbit in ω(x).

Proof. From the Poincaré-Bendixson Theorem, it follows that for each p ∈ ω(x)
both ω( p) and α( p) are singular points. Thus if there exist no connecting orbits in ω(x),
all the orbits in ω(x) are homoclinic orbits and singular points. If ω(x) contains only a
finite number of homoclinic orbits, obviously it is contradictory to the connectedness
of ω(x). Let ρ = min{d( pi, pj)|1 ≤ i < j ≤ n} > 0 and define Ci = {z ∈ R2|d(z, pi) =
ρ/2}. Now we see that only a finite number of homoclinic orbits in ω(x) intersect each
Ci (see [7, Lemma 8.2]), it is also contradictory to the connectedness of ω(x). So we
are done.
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COROLLARY 3.2. For x ∈ R2, if J+(x) is a compact set with two or more singular
points and without closed orbits in it, and also each homoclinic orbit in J+(x) is not
contained in the limit set of a point in J+(x), then there exists at least one connecting
orbit in J+(x).

Proof. For p ∈ J+(x), ω( p) is not a closed orbit. If ω( p) is not a singular point, ω( p)
has two or more singular points, otherwise ω( p) contains a homoclinic orbit. Thus,
by Lemma 3.1, a connecting orbit lies in ω( p) ⊂ J+(x). A similar argument works
for α( p). Now we only need consider the case that for each p ∈ J+(x) both ω( p) and
α( p) are singular points, which is just the situation we met in the proof of Lemma 3.1.
Observe that now J+(x) is a compact and connected set, i.e., J+(x) is a continuum (see
[1]). The proof follows from the connectedness of J+(x) as in the proof of Lemma 3.1.

LEMMA 3.3. Let L be a homoclinic orbit with respect to a singular point p and
suppose DL contains at least one singular point. If there exist no closed orbits in DL

and the closure of each homoclinic orbit is not a singular closed orbit, then there exists a
connecting orbit in DL.

Proof. Assume that DL contains singular points {q1, q2, . . . , qm}. Let Si be the
union of {qi} and all the homoclinic orbits with respect to qi (i = 1, 2, . . . , m). At
first we consider the case Si = {qi} for some i, i.e., there are no homoclinic orbits
with respect to qi. Since no closed orbit lies in DL, let q′ ∈ DL satisfy q′ · t → qi as
t → +∞ or t → −∞ (see [7, Lemma 8.1]). Without loss of generality we may suppose
q′ · t → qi as t → +∞; then consider α(q′). Certainly α(q′) is not a closed orbit, and
also α(q′) contains no homoclinic orbits. Thus by the Poincaré-Bendixson Theorem,
α(q′) is a singular point or α(q′) is a connected set with two or more singular points,
and so γ (q′) is a connecting orbit or α(q′) contains a connecting orbit (Lemma 3.1).
Next, we consider the case Si �= {qi} for all i. If there exists a point p′ ∈ ClDL\(∪m

i=1Si)
such that γ ( p′) is not homoclinic with respect to p, by a similar argument as above it
follows that γ ( p′) is a connecting orbit or a connecting orbit lies in ω( p′) ∪ α( p′). If
for each p′ ∈ ClDL\(∪m

i=1Si), γ ( p′) is homoclinic with respect to p, let z ∈ ∂(∪m
i=1Si) be

a regular point and J+(z) be the first positive prolongational limit set of z. Now J+(z)
is a continuum and contains two or more singular points (one is p). From Corollary
3.2 it follows that there is a connecting orbit in J+(x). The proof is complete.

THEOREM 3.4. If the positively bounded system (E) with two or more singular points
has no closed orbits, and the closure of each homoclinic orbit is not a singular closed orbit,
then the system has at least a connecting orbit.

Proof. Let M be the set of all bounded orbits. By Theorem 2.8 M is compact and
connected. It is also an invariant set. We take a regular point z ∈ ∂M and consider the
limit set ω(z). Of course ω(z) is not a closed orbit. If there exist regular points and a
unique singular point in ω(z), it follows from the Poincaré-Bendixson Theorem that
ω(z) contains a homoclinic orbit. It is a contradiction. Otherwise, if there exist two
or more singular points in ω(z), it follows from Lemma 3.1 that there exists at least
one connecting orbit in ω(z). If ω(z) is a singular point, we consider α(z). Similarly we
conclude that there is a connecting orbit in α(z) or α(z) is a singular point. In the latter
case, γ (z) is a connecting orbit if ω(z) �= α(z). We consider the case ω(z) = α(z) = {p};
now γ (z) = L is a homoclinic orbit with respect to p. Since ∂M is an invariant set,
it follows ClL = L ∪ {p} ⊂ ∂M. If there exist singular points in DL, the existence of
connecting orbits follows from Lemma 3.3. If there exist no singular points in DL,
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collapse ClDL to the point p and continue the above process for the quotient flow.
Thus, either we find a connecting orbit or we finally get a quotient space M′ of M and
a quotient flow f ′ = f |M′×R with the same singular points of the flow f such that for
any q ∈ ∂M′, γ (q) is not homoclinic for f ′. Since the connected set M′ contains at least
two singular points, there exist regular points on ∂M′. So now any orbit of a regular
point on ∂M′ is a connecting orbit, which corresponds to a connecting orbit of the
flow f on M. This completes the proof.

LEMMA 3.5. If the system (E) has no closed orbits or singular closed orbits, then each
bounded semi-orbit tends to a singular point.

Proof. This is straightforward from the Poincaré-Bendixson Theorem, since now
the limit set of an orbit contains no homoclinic orbits and singular closed orbits.

THEOREM 3.6. For a positively bounded system (E) with n isolated singular points, if
there exist no closed orbits, singular closed orbits and homoclinic orbits, then the number
of connecting orbits is either n − 1 or uncountable.

Proof. Choose an r > 0 such that ω(Br) is the set of all bounded orbits; we at first
prove that in ω(Br) there exist at least n − 1 connecting orbits. By Lemma 3.5 we know
all the orbits in ω(Br) are singular points and connecting orbits. If there are at most
n − 2 connecting orbits in ω(Br), it is impossible for them to connect all the n singular
points and become a connected set ω(Br) (Theorem 2.8). Thus the system (E) has at
least n − 1 connecting orbits. Next, if the system has n connecting orbits in ω(Br), then
there exist k (2 ≤ k ≤ n) singular points and k connecting orbits which constitute a
Jordan curve C. Let D be the bounded region surrounded by C; then D is an invariant
subset with nonempty interior, and it follows that each orbit in D is a connecting orbit
or a singular point. Thus, there are uncountably many connecting orbits in D. This
completes the proof.

THEOREM 3.7. Suppose connecting orbits H1, H2 and two singular points {p1, p2}
constitute a Jordan curve C surrounding a bounded region D, assume that the system (E)
has no singular points in D and let σ be the number of all maximal elliptic sectors in D
with respect to p1 or p2. Then the number of connecting orbits in ClD is infinite or σ + 1.

Proof. For each p ∈ D, from an argument similar to the proof of Proposition 2.3
it follows that both ω( p) and α( p) are singular points, i.e., γ ( p) is a homoclinic orbit
or a connecting orbit. Now assume that the number of connecting orbits in D is
finite, and suppose that connecting orbits G1, G2 in IntD and {p1, p2} circle a simply
connected region W containing no other connecting orbits. Thus for any p ∈ W , γ ( p)
is a homoclinic orbit. If there exist two homoclinic orbits L1, L2 in W with respect to
p1 and p2 respectively, we denote by Si the union of all the maximal elliptic sectors in
W with respect to pi for i = 1, 2. Clearly, we have ∂S1 ∩ ∂S2 �= ∅. Take z ∈ ∂S1 ∩ ∂S2;
it is easy to see that J+(z) contains p1 and p2. Now by Corollary 3.2, a connecting orbit
lies in J+(z) ⊂ W , giving a contradiction. So one of S1 and S2 is empty. Without loss of
generality we assume that all the orbits in W are homoclinic with respect to p1. Now it
is easy to see that all the homoclinic orbits in W are in the same class, i.e., IntW ∪ {p1}
is a maximal elliptic sector. Hence, we conclude that if the number of connecting orbits
in ClD is σ + 1, there exist just σ maximal elliptic sectors in D.
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COROLLARY 3.8. For two connecting orbits H1 and H2 running from p1 to p2 in the
same direction, if H1, H2 and {p1, p2} surround a region D with no singular points in it,
then there exists another connecting orbit H between p1 and p2.

Proof. Suppose, on the contrary, there exist no connecting orbits in IntD. It
follows from Theorem 3.7 that there is a unique maximal elliptic sector in D. However,
according to the continuity of dependence on initial conditions, H1 and H2 tend to p2

in the reverse direction. This contradicts the condition of Corollary 3.8.

In the following, we suppose that all singular points are elementary. The next
lemma holds for any planar systems.

LEMMA 3.9. If p is an elementary singular point, i.e., the Jacobian at p is nonzero,
and the system has no closed orbits, and no homoclinic orbit is contained in the limit set
of an orbit, then there exist no homoclinic orbits with respect to p.

Proof. Suppose that there exists a homoclinic orbit L with respect to p. Since p is
elementary, it is a saddle point and there are just two positive and two negative base
solutions (see [7, p. 162]) for a sufficiently small circle C with center p. Now let u and
v be the two intersecting points of L and C, which divide C into two parts C1 and
C2. Further, according to the behavior of solutions near a saddle point we have that
the remaining two base solutions lie in DL or R2\DL, and without loss of generality
we may suppose that no base solutions intersect C1. By the continuity of dependence
on initial conditions, an orbit passing through a point z1 ∈ C1 (sufficiently near u) will
intersect C1 at z2 and z3 successively. Since the system has no closed orbits, we have
z1 �= z3. Thus the solution arc from z1 to z3 and a segment of C1 constitute a Jordan
curve H. Let W be the torus region surrounded by H and L ∪ {p}. Since in W there
are no closed orbits and singular points, a semi-orbit of z1 or z3 lies in W and tends to
∂DL, so its limit set contains L. This is a contradiction.

THEOREM 3.10. For a positively bounded system (E) with n elementary singular
points, if there exist no closed orbits and singular closed orbits, then the number of
connecting orbits is either n − 1 or uncountable.

Proof. It follows from Lemma 3.9 that the system (E) has no homoclinic orbits.
So by Theorem 3.6 we know that the theorem is true.

4. Systems with two singular points. In this section we discuss systems with two
singular points. Let S always be the set of all bounded orbits.

THEOREM 4.1. For a positively bounded system (E) with two singular points, if there
exist no closed orbits and homoclinic orbits, then S is composed of singular points and
connecting orbits.

Proof. By Theorem 2.8, S is compact and connected. For any x ∈ S, suppose that
x is not a singular point, and consider the limit set ω(x). Firstly we prove that ω(x)
has at most one singular point. If not, since two different singular points separate, it
follows from the connectedness of ω(x) that there exists a regular point p in ω(x). Let J
be a transversal at p and suppose the positive semi-orbit γ +(x) crosses J successively at
ti with 0 < t1 < t2 < · · · (ti → +∞) and x · ti tends to p. Thus the simple closed curve
consisting of the solution arc x · [ti, ti+1] and a segment of J separates ω(x) from the
negative semi-orbit γ −(x). Now it follows from the Poincaré-Bendixson Theorem that
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there exists another singular point in α(x), a contradiction since we find three singular
points. Further, we assert that there exist no regular points in ω(x), otherwise ω(x)
has a homoclinic orbit. Hence ω(x) is just a singular point, and also is α(x). Since the
system has no homoclinic orbits, γ (x) is a connecting orbit and the theorem follows.

THEOREM 4.2. Assume that the positively bounded system (E) has two singular
points, but no closed orbits. Then the system has a connecting orbit if and only if for any
homoclinic orbit L neither L ⊂ ω(x) nor L ⊂ α(x) (x ∈ S) holds, i.e., L is not contained
in the limit set of a point in S.

Proof. Suppose that the system has a connecting orbit H between singular points
p1 and p2. Without loss of generality, let L be a homoclinic orbit about p1. If L ⊂ ω(x)
for some regular point x ∈ S (of course x �∈ H), let J be a transversal at a point p
on L. Then the positive semi-orbit γ +(x) crosses J successively at ti and x · ti tends
monotonically to q. Since L ∪ H ∪ {p1, p2} is an invariant and connected set, thus
a simple closed curve consisting of the solution arc x · [ti, ti+1] and a segment of L
separates α(x) and L ∪ H ∪ {p1, p2}. Now α(x) contains at least a singular point, hence
we find three singular points, a contradiction. A similar argument works for the case
L ⊂ α(x).

We shall now prove sufficiency. Each homoclinic orbit L is not contained in the
limit set of a point in S. Thus the result follows immediately from Theorem 3.4 and
Lemma 3.3.

COROLLARY 4.3[8]. For a positively bounded system (E), if there exist no closed
orbits and singular closed orbits then the system has a connecting orbit.

Proof. Since a homoclinic orbit in the limit set of a point in S is a singular closed
orbit, the result follows directly from Theorem 4.2.

THEOREM 4.4. For a planar system (E) with two singular points, if there exist
no homoclinic orbits, then the possible numbers of connecting orbits are zero, one and
uncountable.

Proof. Suppose that there exist two connecting orbits γ ( p) and γ (q) between p1

and p2. Then γ ( p) ∪ γ (q) ∪ {p1, p2} constitutes a simple closed curve surrounding a
bounded region W . Since p1 and p2 lie in the boundary of W , there exist no singular
points and closed orbits in W . Choose a point z ∈ W arbitrarily. From the proof of
Theorem 4.1 it follows that γ (z) is a connecting orbit. So all the orbits in W are
connecting orbits.

REMARK 4.5. Theorem 4.4 is true for any planar systems. Moreover by Theorem 4.4
if the system has a finite number (more than two) of connecting orbits, then there
exists at least a homoclinic orbit. On the other hand, if the system admits homoclinic
orbits, we think that the number of connecting orbits can be any positive integer. In
the following we give a system with two connecting orbits and another system with
uncountable connecting orbits. Systems with a unique connecting orbit are trivial.

EXAMPLE 1. To give an example with two connecting orbits, we consider the
Liénard system [5, p. 33]:

ẋ = y −
(

1
3

x3 − 3
2

x2
)

, ẏ = −x3. (4.1)
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In the phase-portrait of (4.1) (see [5, p. 34]) there is a maximal elliptic sector S consisting
of all homoclinic orbits with respect to O = (0, 0). Define a smooth function φ : R2 →
R satisfying φ(x, y) ≥ 0 and φ(x, y) = 0 only at a point p ∈ IntS; then the following
system has two singular points p and O:

ẋ =
[

y −
(

1
3

x3 − 3
2

x2
)]

· φ(x, y), ẏ = −x3 · φ(x, y). (4.2)

Now the homoclinic orbit passing through p of (4.1) becomes two connecting
orbits and a singular point p of (4.2), and the other orbits of (4.1) remain
unchanged.

EXAMPLE 2. Consider the following planar system in polar coordinates:

ṙ = r(1 − r), θ̇ = sin2 θ

2
+ (r − 1 + |r − 1|). (4.3)

This system has exactly two singular points, O = (0, 0) and p = (1, 0). The circle
C = {(r, θ )|r = 1} is an invariant set, which is composed of a homoclinic orbit L
and a singular point p. Obviously the system (4.3) is positively bounded, and for
any point x outside the disc B1 = {(r, θ )|r ≤ 1} we have ω(x) = C. Thus C is a
singular closed orbit, and the results of [8, 12] do not work. However, the segment
Op is also invariant, and it is not difficult to see that for any x ∈ IntB1 the relation
L ⊂ ω(x) or L ⊂ α(x) doesn’t hold. By Theorem 4.2 we conclude that the system has a
connecting orbit. In fact, any orbit passing through a point in IntB1\{O} is a connecting
orbit.

ACKNOWLEDGEMENT. The author sincerely thanks the referee for many valuable
suggestions and corrections, especially for pointing out a mistake in the original
statement of Lemma 2.7.
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