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Abstract

We study four discrete-time stochastic systems on N, modeling processes of rumor
spreading. The involved individuals can either have an active or a passive role, speaking
up or asking for the rumor. The appetite for spreading or hearing the rumor is represented
by a set of random variables whose distributions may depend on the individuals. Our
goal is to understand—based on the distribution of the random variables—whether the
probability of having an infinite set of individuals knowing the rumor is positive or not.
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1. Introduction

Until a few decades ago, epidemic and rumor models were treated under the same class of
models. While there is a clear similitude among the status of the individuals in the models
(susceptibles are ignorants, immunes are stiflers, and infected are spreaders), the rates at which
individuals change their status might be qualitatively different (see [16]). Generally speaking,
the production of stiflers is definitely more complex than the production of immune individuals.

Recently, the mathematics of rumors has generated a good deal of interest. The focus used
to be on deterministic or stochastic models, modeling homogeneously mixed populations living
on spaces with no structure, as in the Maki–Thompson (see [15] and [18]) and Daley–Kendall
(see [5] and [17]) models. Possible variations that can be found in the recent literature include
competing rumors (see [11]), more than two people meeting at a time (see [10]), moving agents
(see [12]) and rumors through tree-like graphs (see [13] and [14]), complex networks (see [9]),
grids (see [1]), and multigraphs (see [2]).

Still, the most important question for both models, epidemic and rumor, is, in terms of a
rumor model: if a spreader (an individual who wants to see the rumor spread) is introduced
into a reservoir of ignorants, under what conditions will the rumor spread to a large proportion
of the population, instead of dying out quickly? Another important question is: if the rumor
does not die out quickly, what is the final proportion of individuals hit by the rumor?

We study discrete-time stochastic systems on N = {0, 1, 2, . . . } whose dynamics are as
follows. First, assume that at time 0 all vertices of N are declared inactive, except for the
origin, which is active. The origin immediately exerts an influence on its neighboring vertices,
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activating a contiguous random set of vertices placed on its right. In general, this is the behavior
of every vertex when it is activated.

We consider both homogeneous and heterogeneous versions of what we call the radius of
influence of a vertex. In the homogeneous version, as a rule, in the moment after activation, each
vertex behaves in the same (random) manner as the origin, independent of it and of everything
else. We also deal with a heterogeneous version where each vertex, if activated, has a distinct
distribution for its radius of influence.

We say that the process survives if the number of vertices activated is infinite. Otherwise
we say that the process dies out. We call this the firework process, associating the activation
dynamic of a vertex to a rumor process. Vertices become spreaders as soon as they are activated.
The instant after activation, they propagate the rumor and immediately become stiflers.

A possible variation is what we call the reverse firework process. In this process a vertex,
instead of being hit by a rumor, defines a set of neighbors on its left to which it asks once
whether anyone in this set has heard the rumor. We also deal with homogeneous and hetero-
geneous versions of this variation. The models are shown to be qualitatively different in some
pertinent cases.

Our main interest is to establish whether each process has positive probability of survival,
which is equivalent to a rumor propagation. To this end, we use the distribution of the random
variable which defines the radius of influence of each active vertex.

The paper is organized as follows. In Section 2 we present the main results. Section 3
brings the proofs of the main results together with auxiliary lemmas and useful inequalities. In
Section 4 we present examples where some conditions can be verified.

2. Main results

2.1. Firework process

Let {ui}i∈N be a set of vertices of N such that 0 = u0 < u1 < u2 < · · · , and let {Ri}i∈N

be a set of independent random variables assuming values in R+ whose joint distribution is P.
The firework process can be formally defined in the following way. At time 0, an explosion of
size R0 occurs at the origin, activating all vertices ui ≤ R0. As a rule, at every discrete time t

all vertices uj activated at time t − 1 generate an explosion (whose radius of influence is Rj ),
and they do this just once, activating the vertices ui (only those vertices which have not been
activated before) such that uj < ui ≤ uj +Rj . Observe that, except for the set of vertices {ui},
all other vertices are nonactionable, meaning that the random variable associated with them is 0
almost surely.

If, for all uj activated at time t − 1, there are no vertices ui such that uj < ui ≤ uj + Rj ,
the process dies out. This means that the rumor reaches only a finite number of individuals.
If, on the other hand, the process never stops, we say that it survives, meaning that the rumor
reaches an infinite number of individuals. We call the process homogeneous if all the Ri have
the same distribution and ui = i for all i. Otherwise we call it heterogeneous. We focus on the
cases P(Ri < 1) ∈ (0, 1) for all i.

Let us consider the following monotone decreasing event and its limit:

Vn = {the vertex un is hit by an explosion},
V = lim

n→∞ Vn.
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2.1.1. The homogeneous case.

Theorem 2.1. For the homogeneous firework process, consider

an =
n∏

i=0

P(R < i + 1).

Then ∞∑
n=1

an = ∞ if and only if P(V ) = 0.

Moreover,

P(V ) ≥
∞∏

j=0

[
1 −

j∏
i=0

P(R < i + 1)

]
, (2.1)

P(V ) ≤ 1 − P(R = 0) −
∞∑

k=1

[
P(R = k)

k−1∏
j=0

P(R ≤ j)

]
. (2.2)

Corollary 2.1. For the homogeneous firework process, suppose that

L = lim
n→∞ nP(R ≥ n).

We have

(i) if L > 1 then P(V ) > 0,

(ii) if L < 1 then P(V ) = 0,

(iii) if L = 1 and there exists N such that, for all n ≥ N ,

P(R ≥ n) ≤ 1

n − 2
,

then P(V ) = 0.

Remark 2.1. Consider a homogeneous firework process with R assuming values in N. Observe
that, in this case, if E[R] < ∞ then L = 0. Consequently,

E[R] < ∞ �⇒ P(V ) = 0.

The following result gives a criterion for the distribution of the random variable R to be a
power law.

Corollary 2.2. Let α > 1, and let Zα be an appropriate constant. Consider the homogeneous
firework process such that

P(R = k) = Zα

(k + 1)α
for k ∈ N. (2.3)

(i) If α < 2 then P(V ) > 0.

(ii) If α ≥ 2 then P(V ) = 0.
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Remark 2.2. Observe that, for the homogeneous firework process, if R has a power-law
distribution as in (2.3), with α = 2, we have

E[R] = ∞ and P(V ) = 0.

2.1.2. The heterogeneous case.

Remark 2.3. Consider the heterogeneous firework process. We can obtain a sufficient condi-
tion for P(V ) = 0 (and for P(V ) > 0) by a coupling argument. Consider

P(Ri ≥ k) ≤ Pr(R ≥ k) and P(Ri ≥ k) ≥ Pr(R ≥ k)

for some random variable R whose distribution Pr satisfies

lim
n→∞ n Pr(R ≥ n) < 1 and lim

n→∞ n Pr(R ≥ n) > 1,

respectively. Then respectively use Corollary 2.1(ii) and (i).

Theorem 2.2. Consider a heterogeneous firework process whose actionable vertices are at the
integer positions 0 = u0 < u1 < u2 < · · · such that un+1 − un ≤ m for m ≥ 1. Furthermore,
assume that P(Rn < m) ∈ (0, 1) for all n.

(i) If
∑∞

n=0[P(Rn < tm)]t < ∞ for some t ≥ 1 then P(V ) > 0.

(ii) If, for some random variable R, whose distribution is Pr, the limits

• Pr(R ≥ k) − P(Rn ≥ k) ≤ bk for all k ≥ 0 and all n ≥ 0,

• limn→∞ n[Pr(R ≥ n) − bn] > m,

• limn→∞ bn = 0,

exist, then P(V ) > 0.

(iii) P(V ) ≥ ∏∞
j=0[1 − ∏j

i=0 P(Rj−i < (i + 1)m)].
2.2. Reverse firework process

Let {ui}i∈N be a set of vertices of N such that 0 = u0 < u1 < u2 < · · · , and let {Ri}i∈N

be a set of independent random variables assuming values in N whose joint distribution is P.
The reverse firework process can be defined as follows. At time 0, only the origin is activated.
At time 1, explosions of size Ri towards the origin occur at all vertices of {ui}i∈N. All vertices
ui ≤ Ri are activated. As a rule, at discrete times t the set of vertices uj which can find an
activated vertex at time t − 1 within a distance Rj to its left are activated. Let us call this
set At . If, for some t , At is empty, the process stops. If the process never stops, we say that it
survives. We call the process homogeneous if all Ri have the same distribution and ui = i for
all i, otherwise we call it heterogeneous. We focus on the cases P(Ri < 1) ∈ (0, 1) for all i.
Unless stated otherwise, we assume that ui = i for all i.

Let S be the event ‘the reverse process survives’.

2.2.1. The homogeneous case.

Theorem 2.3. Consider the reverse homogeneous firework process.

(i) If E[R] = ∞ then P(S) = 1.

(ii) If E[R] < ∞ then P(S) = 0.
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Remark 2.4. For a random variable R having a power-law distribution as in (2.3), the following
assertions hold.

• If 1 < α ≤ 2 then E[R] = ∞.

• If α > 2 then E[R] < ∞.

In conclusion, if R has a power-law distribution as in (2.3), with α = 2, then P(V ) = 0 for
the homogeneous firework process by Remark 2.2 and P(S) = 1 for the reverse homogeneous
firework process.

2.2.2. The heterogeneous case.

Theorem 2.4. Consider the reverse heterogeneous firework process. It holds that

(i)
∑∞

k=1 P(Rn+k ≥ k) = ∞ for all n if and only if P(S) = 1,

(ii) if
∑∞

n=1
∏∞

k=1 P(Rn+k < k) < ∞ then P(S) > 0.

Remark 2.5. Let ρ = ∑∞
n=1

∏∞
k=1 P(Rn+k < k). Observe that Theorem 2.3 gives more in-

formation for the reverse homogeneous firework process, as in that case ρ equals either 0
(E[R] = ∞) or ∞ (E[R] < ∞).

Remark 2.6. By a coupling argument and Theorem 2.3, we can see that, if there is a random
variable R, whose distribution is Pr, with E[R] < ∞ or E[R] = ∞ such that P(Rn ≥ k) ≤
Pr(R ≥ k) or, respectively, P(Rn ≥ k) ≥ Pr(R ≥ k) for all k, then we respectively have
P(S) = 0 and P(S) = 1.

3. Proofs

Next we present some basic facts, starting with Raabe’s test (see [3, p. 48] or [7, p. 32]).

Fact 3.1. (Raabe’s test.) For an > 0, let us define

L = lim
n→∞ n

(
an

an+1
− 1

)
.

Then Raabe’s test states that

• if L > 1,
∑∞

n=1 an < ∞,

• if L < 1,
∑∞

n=1 an = ∞,

• if L = 1 and n(an/an+1 − 1) ≤ 1 for large enough n,
∑∞

n=1 an = ∞.

The following result (see [4, p. 422]) is useful for what follows.

Lemma 3.1. Let {an}n≥1 be a sequence of real numbers in (0, 1). Then,

∞∏
n=0

(1 − an) = 0 ⇐⇒
∞∑

n=0

an = ∞. (3.1)

Remark 3.1. Assume that the actionable vertices are at integer positions 0 = u0 < u1 <

u2 < · · · such that un+1 − un ≤ m for m ≥ 1. From the definition of Vn we can see that

• Vk+1 ⊃ Vk ∩ {⋃k
i=0(Rk−i ≥ (i + 1)m)},
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• Vk and
⋃k

i=0(Rk−i ≥ (i + 1)m) are increasing events with respect to the realization of
the Ris,

• P(Vn) > 0 for all n.

From the Fortuin–Kasteleyn–Ginibre (FKG) inequality (see [8, p. 34]), it follows that

P(Vk+1) ≥ P

(
Vk ∩

{ k⋃
i=0

(Rk−i ≥ (i + 1)m)

})

≥ P(Vk)P

({ k⋃
i=0

(Rk−i ≥ (i + 1)m)

})

= P(Vk)

[
1 −

k∏
i=0

P(Rk−i < (i + 1)m)

]
. (3.2)

Then

P(Vn) ≥
n−1∏
j=0

[
1 −

j∏
i=0

P(Rj−i < (i + 1)m)

]
.

Therefore,

P(V ) ≥
∞∏

j=0

[
1 −

j∏
i=0

P(Rj−i < (i + 1)m)

]
. (3.3)

Inequality (3.2) becomes an equality if ui = mi for all i ∈ N and some m ∈ N. From the latter
set of displays and (3.1), the next proposition follows.

Proposition 3.1. Consider a heterogeneous firework process whose actionable vertices are
at the integer positions 0 = u0 < u1 < u2 < · · · such that un+1 − un ≤ m. Let an =∏n

i=0 P(Rn−i < (i + 1)m), and assume that P(Ri < m) ∈ (0, 1). If

∞∑
n=0

an < ∞ then P(V ) > 0. (3.4)

3.1. Firework process

Proof of Theorem 2.1. Assume that
∑∞

n=0 an < ∞. From Proposition 3.1, with m = 1, we
have P(V ) > 0.

Assume now that
∑∞

n=0 an = ∞. First consider the event

C = {there exists n such that, for all ui > n, there exists x such that x < ui ≤ x + Rx}.
In words this means that, from some vertex x ∈ N, all vertices belong to the radius of influence
of some other vertices. Note that such vertices have not necessarily been activated.

Next, consider the following event:

B(un) = {un > x + Rx for all x < un}.
In words, the vertex un does not belong to the radius of influence of any vertex to its left.
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Assuming that all random variables Ri have the same distribution as R and that ui = i

(Bn = B(un)) (they are independent by definition),

P(Bn) = P

( n⋂
i=1

[Rn−i < i]
)

=
n∏

i=1

P(R < i) = an−1.

Conditional independence of the Bis, i.e. for i > j ,

P(Bi ∩ Bj ) = P

(i−j⋂
k=1

[Ri−k < k] ∩
j⋂

k=1

[Rj−k < k]
)

=
i−j∏
k=1

P(R < k)

i∏
k=1

P(R < k)

= P(Bi−j )P(Bj ),

ensures that the Bis satisfy the definition of a renewal event given in [6, p. 308]. So, from the
fact that

∑∞
n=1 P(Bn) = ∞, we can rely on Theorem 2 of [6, p. 312] to see that

P(Bn infinitely often) = 1.

From this we conclude that P(V ) = 0, as

V c ⊃ Cc ⊃ {Bn infinitely often}.
Inequality (2.1) follows from (3.3) and inequality (2.2) follows from the fact that

V c ⊇
∞⋃

k=0

[
R0 = k,

k⋂
j=1

[Rj ≤ k − j ]
]
.

Proof of Corollary 2.1. Observe that, as an = ∏n
i=0 P(R < i + 1),

an

an+1
− 1 = P(R ≥ n + 2)

P(R < n + 2)
.

Therefore, from the fact that R is almost surely finite,

lim
n→∞ n

(
an

an+1
− 1

)
= lim

n→∞ nP(R ≥ n). (3.5)

Equation (3.5), Raabe’s test, and Theorem 2.1 yield (i), (ii), and (iii).

Proof of Corollary 2.2. Observe that

1

(α − 1)(n + 1)α−1 =
∫ ∞

n+1

1

xα
dx ≤

∞∑
j=n+1

1

jα
≤

∫ ∞

n+1

1

(x − 1)α
dx = 1

(α − 1)nα−1 .

Then
Zα

(α − 1)

1

(n + 1)α−1 ≤ P(R ≥ n) ≤ Zα

(α − 1)

1

nα−1 .
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Consequently,

lim
n→∞ nP(R ≥ n) =

⎧⎪⎪⎨
⎪⎪⎩

+∞ if α < 2,
6

π2 if α = 2,

0 if α > 2.

The conclusion follows from Corollary 2.1.

Proof of Theorem 2.2. Let

an =
n∏

j=0

P(Rn−j < (j + 1)m).

For the proof of part (i), note that, as

∞∑
n=t

[P(Rn < tm)]t < ∞

implies that
∞∑

n=t

[
max

j∈{0,...,t−1}{P(Rn−j < tm)}
]t

< ∞,

and as, for n ≥ t ,

an ≤
t−1∏
j=0

P(Rn−j < tm) ≤
[

max
j∈{0,...,t−1}{P(Rn−j < tm)}

]t

,

the series whose coefficients are an converges. So we can use (3.4) in order to obtain the result.
For the proof of part (ii), let

rn =
n∏

j=0

[Pr(R < (j + 1)m) + b(j+1)m].

As

n

(
rn

rn+1
− 1

)
= n[Pr(R ≥ (n + 2)m) − b(n+2)m]

Pr(R < (n + 2)m) + b(n+2)m

,

from the hypothesis,

lim
n→∞ n

(
rn

rn+1
− 1

)
> 1.

However, by the first assumption we have an ≤ rn; therefore, by Raabe’s test, the series whose
coefficients are an is convergent and so we can use Proposition 3.1 to obtain the desired result.

The proof of part (iii) follows from (3.3).
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3.2. Reverse firework process

First consider the following variation of the homogeneous firework process. Instead of
having just the origin activated at time 0, we consider that all vertices to its left are also activated
at time 0. The set of independent random variables which defines the radius of influence of
all vertices is {Fi}i∈Z, all of which have the same distribution R, the random variable which
defines the reverse homogeneous firework process.

For this variation of the homogeneous firework process, let us define the events

Vn = {the vertex n is hit by an explosion}, V = {the process survives}.
By analogy, ‘to survive’ in this variation means to hit infinitely many vertices of N. It follows
that

V =
∞⋂

n=0

∞⋃
j=0

[Fn−j ≥ j + 1]. (3.6)

Proposition 3.2. If E[R] < ∞ then P(V) = 0.

Proof. Let us define the events

An =
n−1⋃

i=−∞
{Fi ≥ 2n − i} and Bn =

2n−1⋃
i=n

{Fi ≥ 2n − i}.

Observe that
V2n ⊆ Vn ∩ [An ∪ Bn].

Therefore,
P(V2n) ≤ P(An) + P(Bn)P(Vn).

Now

P(An) ≤
n−1∑

i=−∞
P(Fi ≥ 2n − i) =

∞∑
i=n+1

P(F2n−i ≥ i) =
∞∑

i=n+1

P(R ≥ i) → 0

and

P(Bn) = P

(2n−1⋃
i=n

{Fi ≥ 2n − i}
)

= 1 −
2n−1∏
i=n

P(Fi < 2n − i) ≤ 1 −
∞∏
i=1

P(R < i).

Then, (3.1) and E[R] < ∞ guarantee the existence of λ ∈ (0,1) such that

P(Bn) ≤ λ for all n.

So, as for the homogeneous case P(An) ≥ P(An+1),

lim
n→∞ P(Vn) = 0,

and this implies that P(V) = 0 as Vn+1 ⊂ Vn.

https://doi.org/10.1239/jap/1316796903 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796903


Rumor processes on N 633

Proof of Theorem 2.3. Let {Ri}i∈N be a set of independent random variables distributed
as R. Observe that

S =
∞⋂

n=0

∞⋃
j=1

[Rn+j ≥ j ]. (3.7)

Using the FKG inequality (see [8, p. 34]) and the fact that intersections of increasing events
is an increasing event, we have

P

( n0⋂
n=0

∞⋃
j=1

[Rn+j ≥ j ]
)

≥
n0∏

n=0

P

( ∞⋃
j=1

[Rn+j ≥ j ]
)

for all n0. By taking the limit n0 → ∞ and using the continuity of probability, we obtain

P

( ∞⋂
n=0

∞⋃
j=1

[Rn+j ≥ j ]
)

≥
∞∏

n=0

P

( ∞⋃
j=1

[Rn+j ≥ j ]
)

.

Therefore,

P(S) ≥
∞∏

n=0

[
1 −

∞∏
j=1

[1 − P(Rn+j ≥ j)]
]
. (3.8)

To prove part (i), note that, from the hypothesis,

∞∑
j=1

P(R ≥ j) = ∞. (3.9)

Now, (3.1) and (3.9) imply that

∞∏
j=1

[1 − P(R ≥ j)] = 0.

It then follows from (3.8) that P(S) = 1.
We now turn to the proof of part (ii). By Proposition 3.2, (3.6), and the fact that Ri and Fi

have the same distribution,

P

( ∞⋂
n=0

∞⋃
j=0

[Rn−j ≥ j + 1]
)

= 0. (3.10)

On the other hand, as the Ri are all distributed as R,

P

( ∞⋂
n=0

∞⋃
j=0

[Rn−j ≥ j + 1]
)

= P

( ∞⋂
n=0

∞⋃
j=0

[Rn+j+1 ≥ j + 1]
)

,

and, therefore, by (3.7) and (3.10), P(S) = 0.

Proof of Theorem 2.4. To prove part (i), assume that
∑∞

k=1 P(Rn+k ≥ k) = ∞ for all n.
Then, by (3.1), we have

∞∏
k=1

[1 − P(Rn+k ≥ k)] = 0 for all n.
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Therefore, by (3.8), P(S) = 1. On the other hand, as P(S) ≤ 1 − ∏∞
k=1 P(Rn+k < k) for all n,

if P(S) = 1, we have
∞∏

k=1

[1 − P(Rn+k ≥ k)] = 0 for all n.

Now, from (3.1),
∞∑

k=1

P(Rn+k ≥ k) = ∞ for all n.

We now turn to the proof of part (ii). Since
∑∞

n=1
∏∞

k=1 P(Rn+k < k) < ∞, it follows from
(3.1) that

∞∏
n=0

[
1 −

∞∏
k=1

[1 − P(Rn+k ≥ k)]
]

> 0.

Then, by (3.8) we have P(S) > 0.

4. Final remarks and examples

We have considered two discrete propagation phenomena, and modeled both the homoge-
neous and heterogeneous versions. While the firework process models a phenomenon where
there is at all times a finite number of individuals trying to spread information to an infinite
group of individuals, the reverse firework process models a phenomenon where there is always
an infinite number of individuals willing and working towards hearing information from a
finite quantity of informed individuals. As a consequence of their definitions, while the set of
individuals who has heard the rumor grows with time in both models, it is a connected set in the
reverse firework process, but may have ‘holes’ that will never be filled in the firework process.
Our results show that the two versions are qualitatively different.

Considering the homogeneous firework process, Remark 2.1 shows that the information will
not be spread to an infinite number of individuals if E[R] is finite. To have a radius of influence
with infinite expectation is also no guarantee that the information will reach an infinite number
of individuals, as Remark 2.2 shows. Besides, the probability of not reaching an infinite amount
of individuals is at least P(R = 0). Conversely, in the reverse homogeneous firework process,
to have an infinite expectation guarantees almost surely that the information will spread among
an infinite amount of individuals, as Theorem 2.3 points out. Furthermore, in the case where
the radius of influence has a power-law distribution as in (2.3), the process works in an opposite
direction, as Remark 2.4 shows for α = 2. The processes agree for R with finite expectation.

Next we present some final examples pointing to some extreme cases. In what follows, we
assume that {bn}n∈N is a nonincreasing sequence convergent to 0, such that 0 < bn < 1 for
all n.

Example 4.1. In the heterogeneous firework process it is possible for the expectation of the
radius of influence to be infinite for all vertices and for the process to die out almost surely.

(i) P(Rn = 0) = 1 − bn and P(Rn = k) = bn+k−1 − bn+k for k ≥ 1.

(ii)
∑∞

n=0 bn = ∞.

(iii) limn→∞ nbn = 0.
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Observe that E[Rn] = ∞ for all n from (ii). Furthermore, P(V ) = 0 from (iii) because

P(Vn) ≤
n−1∑
k=0

P(Rk ≥ n − k) =
n−1∑
k=0

bn−1 = (n − 1)bn.

Example 4.2. In the heterogeneous firework process it is possible for the expectation of the
radius of influence to be finite for all vertices and for the process to survive with positive
probability. Assume that

∑∞
n=0 bn < ∞, while

• P(Rn = 0) = bn,

• P(Rn = 1) = 1 − bn.

Then E[Rn] < 1 for all n and P(V ) > 0 by Theorem 2.2(i) with m = t = 1.

Example 4.3. In this example we present a family of radii {Rn} where P(S) = 1 for the reverse
heterogeneous firework process, while P(V ) = 0 for the heterogeneous firework process. For
this, consider the sequences {bn} and {Rn} such that

(i) P(Rn = 0) = 1 − bn and P(Rn = n) = bn,

(ii)
∑∞

n=0 bn = ∞,

(iii) limn→∞ nbn = 0.

Observe that, even though limn→∞ E[Rn] = 0 and limn→∞ P(Rn = 0) = 1, from
Theorem 2.4 and (ii), it holds for the reverse heterogeneous firework process that P(S) = 1. In
the opposite direction,

P(Vn) ≤
n−1∑
k=0

P(Rk ≥ n − k) =
n−1∑

k=�n/2�
P(Rk = k) ≤

⌈
n

2

⌉
b�n/2�,

and by (iii) we have P(V ) = 0 for the heterogeneous firework process.
It is worth noting that this is also an example where the reverse heterogeneous firework

process has finite expectation of the radius of influence for all vertices and nevertheless survives
almost surely.

The sequence bn = ((n + 2) log(n + 2))−1 for instance would satisfy the statements of
Examples 4.1 and 4.3.

Example 4.4. In contrast to Example 4.3 in this example we present a family of radii {Rn}where
P(S) = 0 for the reverse heterogeneous firework process, while P(V ) > 0 for the heterogeneous
firework process. For this, consider the sequences {bn}n≥2 and {Rn} such that

(i) P(R0 = 2) = P(R1 = 0) = 1,

(ii) P(Rn = 0) = 1 − P(Rn = 1) = bn for n ≥ 2,

(iii)
∑∞

n=2 bn < ∞.

While it is easy to see that P(S) = 0, P(V ) > 0 follows from Theorem 2.2(i).
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