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Abstract

Mappings play an important role in environmental science applications by allowing practitioners to monitor
changes at national and global scales. Over the last decade, it has become increasingly popular to use satellite
imagery data and machine learning techniques (MLTs) to construct such maps. Given the black-box nature of
many of these MLTs though, quantifying uncertainty in these maps often relies on sampling reference data under
stricter conditions. However, practical constraints can sampling such data expensive, which forces stakeholders to
make a trade-off between the degree of uncertainty in predictions and the costs of collecting appropriately
sampled reference data. Furthermore, quantifying any trade-off is often difficult, as it will depend on many
interdependent factors that cannot be fully understood until more data is collected. This paper investigates how a
combination of Bayesian inference and an adaptive approach to sampling reference data can offer a generalizable
way of managing such trade-offs. The approach is illustrated and evaluated using a woodland mapping of England
as a case study in which reference data is collected under constraints motivated by COVID-19 travel restrictions.
The key findings of this paper are as follows: (a) an adaptive approach to sampling reference data allows an
informed approach when quantifying this trade-off; and (b) Bayesian inference is naturally suited to adaptive
sampling and can make use of Monte Carlo methods when dealing with more advanced problems and analytical
techniques.

Impact Statement

As practitioners look toward more automated procedures of generating maps with machine learning techniques
(MLTs), many uncertainty quantification methods rely on a separate set of reference data from well-structured
sample designs which can be expensive due to accessibility issues. This work provides a substantial step toward
the goal of using adaptive sampling to effectively manage the balance between costs and uncertainty when
sampling reference data under design constraints. Whilst this work focuses on the domain of land cover mappings
but many of the results here easily transfer to other applications involving uncertainty quantification in MLTs as
the framework is agnostic to the choice of MLT, the model used to quantify uncertainty and propensity scoring
used in targeted sampling.

This research article was awarded Open Data and Open Materials badges for transparent practices. See the Data Availability Statement for
details.
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1. Introduction

The use of satellite imagery data in combination with machine learning techniques (MLTs) (Smola and
Scholkopf, 2004; Zhang and Ma, 2012; Lecun et al., 2015) has become increasingly popular in
environmental science mapping applications including monitoring ice sheet thickness (Lee et al.,
2016), forestry monitoring (Stojanova et al., 2010; Safari et al., 2017; Dang et al., 2019), monitoring
soil properties (Forkuor et al., 2017; Yuzugullu et al., 2020), and land use and land cover mappings
(Fichera et al., 2012; Keshtkar et al., 2017; Talukdar et al., 2020). The motivation behind this
approach is to create a cost-effective way of emulating ground truth recordings when such ground
truths across large areas would be impracticable (e.g., would involve physically visiting areas,
collecting samples for lab testing, and installing and maintaining sensory equipment). Here the
satellite imagery acts as an inexpensive source of predictive features, which can easily cover the
entirety of a mapped area to estimate ground truths via MLTs. MLTs are chosen to create this link
between the satellite imagery features and ground truths as MLTs are often heavily automated, which
makes them significantly cheaper than more traditional modeling practices. However, quantifying
uncertainty in the estimates obtained from MLTs is often challenging. Firstly, MLTs are typically
black-box in nature and hence lack interpretability and explainability (Dosilovic et al., 2018; Rudin,
2019). Secondly, supervised MLTs may rely on ad hoc methods to collect (or generate) training data
that is not sampled in a statistically rigorous manner. Examples of this include transfer learning (Pan
and Yang, 2010), generating artificial examples (e.g., SMOTE [Chawla et al., 2002] generating
adversarial examples [Goodfellow et al., 2015]), or making use of opportunistic data. These prop-
erties make it difficult to justify many of the assumptions necessary for quantifying uncertainty with
probabilistic statements.

One way around the challenges of quantifying uncertainty in MLTs is to use a model-based approach
using a separate reference sample. This reference sample is a collection of ground truth data where the
sample design is more tightly structured and may be used to fit models between the values mapped using
MLTs and their respective ground truths that are better equipped for uncertainty quantification. A major
advantage of this approach is that it does not place any modeling assumptions on the MLTs used to
produce the map. Instead, the assumptions are restricted to the model between the mapped values and the
ground truth values. Provided the MLTs provide a reasonably good approximation to the ground truth
values, constructing a justifiable model at this stage is often much easier than trying to do so from the
MLTs directly. However, the additional structure required leads to design constraints (e.g., limited sample
sizes and restrictions on how frequently some subpopulations can be selected) that can make well-known
sample designs such as simple random sampling impractically expensive when trying to reduce uncer-
tainty to a reasonable level.

To overcome these issues, this paper proposes a framework for adaptively sampling reference data that
is agnostic to the choice of MLTs used to generate the map, the choice of the model when quantify
uncertainty, and the restrictions involved in reference sampling. The core idea here is that a reference
sample is collected adaptively through a series of subsamples, where the previous iterations inform where
to best target future sampling when facing design constraints to give the best chances of reducing
uncertainty effectively. By making this framework agnostic to the MLTs, models, and design restrictions,
one is able to offer a generalizable approach for managing the trade-offs between uncertainty and the costs
of reference sampling efficiently.

This paper investigates how this generalizable adaptive sampling framework performs in practice
when quantifying uncertainty in mappings generated from satellite imagery and MLTs and how this
approach can benefit from methods in Bayesian inference. Specifically, this paper uses a real case study
involving woodland mapping to explore the following questions:

* What are the opportunities and challenges in applying adaptive sampling practices when collecting
reference data?

* How might methods in Bayesian inference help in delivering against the opportunities and
overcoming the challenges?
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This paper is structured as follows. Section 2 introduces the case study and identifies some of the
practical challenges faced when designing reference sampling. Section 3 introduces the key stages of
adaptive sampling for reference data and methods related to Bayesian inference. Section 4 further
illustrates and evaluates these methods in the context of the case study. Finally, Section 5 provides a
discussion of future work and summarizes the results in a conclusion.

2. The Case Study: UK Woodland Mapping

The methods presented in this paper are evaluated through a case study involving a woodland mapping of
England under the travel restrictions motivated by COVID-19 regulations in 2020. In this scenario, one is
faced with the problem of trying to generate a design for a reference sample that best manages the trade-off
between uncertainty in the ground truth values across the map, the costs associated with sending experts to
perform physical ground visitation, and the additional COVID-19 travel restrictions that creates a strong
preference to avoid sampling areas that are far from where the surveyors are based.

To begin this case study, a woodland mapping for England at a 1km resolution is made using the
UK 2007 land cover map, LCM 2007 (Morton et al., 2011). LCM 2007 is a parcel-based thematic
classification of satellite image data covering the entire United Kingdom and is derived from a
computer classification of satellite scenes obtained mainly from Landsat, IRS, and SPOT sensors.
Here, the mapped woodland area for each of the 1 km pixel is generated by converting the parcel-
based LCM 2007 map to a pixel-based map at a 25 m resolution and then recording the proportion of
25 m resolution pixels that are classified either as Broadleaved, Mixed and Yew Woodland, or
Coniferous Woodland.

Reference data for woodland areas is based on the 2007 Countryside Survey data (Brown et al., 2016;
Norton et al., 2018). These surveys involve domain experts physically visiting a subset of these 1 km areas
and assigning a proportional breakdown based on 21 distinct classes. The ground truth values for the
woodland area in each surveyed pixel are extracted from these original 21 classes by summing the
Broadleaved, Mixed and Yew Woodland, and Coniferous Woodland proportions. The 21 class definitions
in LCM 2007 and the 2007 Countryside Survey data are the same.

Along with the woodland map, there is a propensity map that represents the preference for physically
visiting some areas over others due to travel restrictions brought about by the COVID-19 virus (Figure 1).
Essentially, this map illustrates the preference that experts physically visit areas that are close to where the
surveyors are based to reduce the distance traveled and the need to stay away from home overnight (which
is undesirable, if not impossible, during COVID-19 travel restrictions.

Unfortunately, it is not possible to evaluate any methods on a direct application of sampling under
COVID-19 travel resections, as no reference data collected under these restrictions currently exist.
Instead, the case study in this paper will use historical data and retrospectively consider these travel
restrictions. However, any methods will present the same opportunities and overcome the same chal-
lenges in this paper. This is because the only difference between current and historical data in this context
will be the specific values.

Almost immediately, one can see the difficulties in trying to generate appropriate sample designs.
Questions such as “what is an appropriate sample size?” and “is it better to concentrate the sampling data
close to where the surveyors are based so that more ground truth values can be collected or is it better to
collect fewer ground truth values over a wider area?” become almost impossible to answer (within any
reasonable degree of precision) without having at least some initial ground truth data. Once this initial
sample of ground truth data is collected, one may begin adaptive sampling procedures. However, when
collecting any initial ground truth data, there is a further cost-benefit trade-off to consider. On the one
hand, one does not commit an overly large proportion of available resources to this initial sample, as one
would want to maintain more resources for subsequent samples that can be better targeted. On the other
hand, if too few resources are committed to an initial sample, it may be hard to extract any meaningful
insights when designing further sampling practices.
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Figure 1. (a) Woodland mapping generated from the 2007 UK land cover map. (b) A mapping of the
propensity scores based on the proximity to experts’ homes.

The initial sample accounts for this trade-off with a design that is modest in size but clustered toward
areas close to where the surveyors are based (i.e., a bias toward areas with a high propensity score). The
idea here is that a bias toward areas of a high propensity is a practical necessity in getting a cost-effective
initial sample of a reasonable size. More specifically, the initial sample is obtained by first filtering the
reference sites from the 2007 Countryside Survey data to include only sites with propensity score of at
least 4. This threshold was selected based on a visual inspection and corresponds to locations that are close
to at least one of the surveyors’ bases (see Figure 2). From these remaining sites, 30 reference sites were
randomly selected to act as the locations for the reference data. The exact locations of the reference sites
remain confidential and unpublished to protect the privacy of the landowners who allow access to their
land for the survey and the representative nature of the survey.

To apply adaptive sampling, one must use the information contained in this initial sample to construct a
suitable sample design. Furthermore, one must be able to build a convincing case for any sample design
before applying it. This is because a post hoc justification of a sample design offers little utility in practice,
as any resources have already been spent collecting the reference data. There are also two noteworthy
challenges when looking to apply adaptive sampling in this case. Firstly, the bias in the initial sample must
be accounted for in any analysis. Secondly, the low sample size of the initial sample means that there is
going to be a nontrivial degree of uncertainty to estimates and predictions (e.g., model parameters) that
will need to be factored in when analyzing different sample designs.

In this instance, the suitability of a sample design will be judged on factors such as: how well it is likely
to reduce the uncertainty in the predictions of woodland area across the mapping area, the total size of the
sample, how much of the sample draws from areas with a low propensity score, and so forth.

This case study has been chosen as it is representative of a common problem in mapping application
were producing the map with MLTs is relatively easy, but getting enough suitable data for uncertainty
quantification is due to constraints in where, and how many, ground truth recording can be taken. Some
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Figure 2. (Left) A mapping of the sampling area for the initial sample (blue). (Right) A scatter plot of
mapped woodland area versus the ground truth area from the initial sample.

examples of this type of problem have also been noted in mapping soil properties (Mulder et al., 2011;
Khanal et al., 2016) and ice sheet monitoring (Lee et al., 2016).

It is important to note that many features have deliberately been left vague or without a strict definition.
In particular, there is no explicit account for how the woodland map and propensity scores are defined, nor
is there a strict set of objective functions to determine the suitability of sample design.

The reason for this deliberate vagueness is that this paper is seeking to propose a generalizable
approach to adaptive sampling. Hence, by using a case study where the specific properties remain unused,
it becomes easier to make inferences for alternative settings that may include other factors in propensity
scoring (e.g., taking into account areas with good travel links) or build maps with a different types of
satellite imagery and different MLTs.

3. Adaptive Sampling in Bayesian Inference
3.1. Introducing the adaptive sampling framework

In adaptive sampling, a reference sample is generated through a collection of smaller subsamples. The
design of each of the subsamples is free to change and is informed by data obtained from the previous
iterations. The underlying philosophy behind this approach is designing efficient sampling practices and
assessing trade-offs between the costs of sampling and the uncertainty in estimates in advance is too
difficult in practice. This is because the relationship between the design of a reference sample and the
uncertainty in an estimate is often complex and governed by several interdependent factors including the
nature of the model (or modeling chain), the true value of the parameters, the sample size, variation in
estimates due to the stochastic nature of sampling, and so forth. By collecting subsamples through an
iterative process, one can gain insights into these factors and make adjustments to the sample design. This
leads to a more robust method of generating efficient sample designs through continuous improvement
that can be applied in a wide variety of situations.
In this paper, adaptive sampling is broken into four key stages, as shown in Figure 3.

Updating the sample: The act of collecting a new subsample based on a specified sampling design and
combining it with any previous subsamples.

Updating uncertainty: The act of quantifying the uncertainty for predictions using the total available
sample.
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Figure 3. The key stages of adaptive sampling are represented as an iterative process.

assessment

Design proposal: The act of generating sample designs for the next subsample that are likely to be
beneficial (e.g., optimal and cost-effective) based on the currently available sample.

Design assessment: The act of assessing any proposed sample designs based on the current information
and deciding upon a sample design for the next subsample (note the option of no further sampling is
always one proposal here).

By deconstructing adaptive sampling into these stages, one can begin to specify how different
situations create challenges in adaptive sampling and how different methods or practices may be of
benefit in adaptive sampling. This allows breaking the complex task of adaptive sampling into four more
manageable subtasks.

3.2. Quantifying uncertainty with model-based Bayesian inference

One method of quantifying uncertainty in predictions made using MLTs is to use a model-based approach
(Little, 2004). Here one creates an explicit link between a prediction produced from an MLT and a ground
truth value through a model. With this model, one can begin to estimate metrics such as (a) the accuracy of
the predictions by considering the trends in the model, and (b) the precision of the predictions by focusing
on the stochastic elements in the model. For most models, though, there is usually a set of parameters.
Typically, the values of these parameters are unknown and need to be estimated using a sample of
reference data. This in turn creates a degree of uncertainty within these parameters. One method of
quantifying and propagating any uncertainty in these parameter values is Bayesian inference (Koch, 2007;
Niven et al., 2015). With Bayesian inference, uncertainty in the parameter values is expressed as a
probability distribution using Bayes’ theorem. This probability distribution is referred to as the posterior
distribution for the parameters and consists of two components (up to a constant of proportionality). The
first component is the likelihood function, which expresses the probability of observing the reference at a
given value for the parameters. The second component is a prior distribution of the parameter values. This
is set by the user to express the user’s belief in the plausibility of different parameter values before
observing the reference data. The choice of prior distribution may be influenced by many factors such as
previous studies, the context of the problem (e.g., knowing values are bounded by definition), the
subjective belief of the user, a desire to have the likelihood function play a more dominant role in the
posterior distribution to ensure that the posterior distribution is primarily influenced by data (this is
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commonly referred to as using a vague or noninformative prior distribution (Box and Tiao, 1992; Kass
and Wasserman, 1996). In general, when the choice of the prior distribution is not clear, a sensitivity
analysis is recommended (Gelman et al., 2013).

For this paper, any issues related to the choice of prior distribution are put aside, as it is a problem that is
orthogonal to the concepts discussed in this paper. This is because the principles and methods related to
adaptive sampling are not dependent on the choice of prior (although some choices of prior distributions
can make some steps computationally less intensive). Explicit methods for generating posterior distri-
butions for parameters are also beyond the scope of this paper. However, generating a parameter posterior
distribution is a well-studied area with methods ranging from closed analytical forms using conjugate
priors (Diaconis and Ylvisaker, 1979; Dalal and Hall, 1983; Gressner and Gressner, 2018) to more
advanced Markov Chain Monte Carlo (MCMC) methods (Geyer, 2011; van Ravenzwaaij et al., 2018).
With the posterior distribution for the model parameters, a posterior distribution for the predictions of the
ground truth values (under a given model) can be generated through marginalization (Etz and Vande-
kerckhove, 2018). Effectively, this is done by considering the model conditional on different parameter
values and then using the parameter posterior distribution to integrate out the parameter values. In practice,
closed-form solutions under marginalization may not be readily available. In such situations, one can use
Monte Carlo methods to approximate posterior distributions (Geyer, 2011; Rubinstein and Kroese, 2016),
provided that one can: (a) simulate sampling from parameter posterior distribution (a relatively well-
known problem, as discussed earlier); (b) express the distribution of the estimate conditioned on the
parameter values (this usually follows directly from the definition of the model structure).

Strictly speaking, Bayesian inference is not necessary for quantifying uncertainty in model-based
approaches. An alternative would be to use frequentist inference (Sen and Press, 1984). However, some
general properties of Bayesian inference that make it more naturally suited to adaptive sampling. Firstly, it
is easier to update the uncertainty between sampling iterations with Bayesian inference. This is because a
posterior distribution is the same regardless of whether the entire reference sample is viewed as a single
batch or viewed as a series of subsamples that are updated sequentially (Oravecz et al., 2016). This can be
neatly summarized with the phrase today’s posterior is tomorrow’s prior. This property is not available in
frequentist inference where one must account for decision-making processes made during each iteration
of sampling. Examples of this can be found in clinical trial applications (Pocock, 1977; Lehmacher and
Wassmer, 1999; Cheng and Shen, 2004; Jennison and Turnbull, 2005; Bothwell et al., 2018). Secondly, it
is easier to quantify uncertainty when model chaining with Bayesian inference. Model chaining in this
context refers to the situation when one uses the predictions from one model as inputs to another process.
Quantifying uncertainty in model chaining becomes important later in this paper as key methods
presented in this paper later can be viewed as specific applications of this concept (we return to this
point in Section 3.3). With Bayesian inference, one can propagate any uncertainty that comes from using
estimated values in a model chain by applying the same marginalization idea used to generate predictive
posterior distributions multiple times. Bayesian inference is necessary for this process as it provides the
initial link to this process with the posterior distribution for the model parameters from the reference data.
Whilst there are methods of propagating uncertainty in model chaining in frequentist inference (e.g., using
the asymptotic normality of maximum likelihood estimators [Self and Liang, 1987] and methods based on
bootstrapping [Efron and Tibshirani, 1986]) these often rely on asymptotic theory and may only be
suitable under particular model structures. Hence, it is not always clear when these methods are
appropriate when sample sizes are limited.

3.3. Methods in adaptive sampling with Bayesian inference

Whilst Bayesian inference offers some natural advantages in adaptive sampling, this alone is not enough
to realize all stages of the proposed adaptive sampling architecture. This is because Bayesian inference on
its own not offer any insights into how one may design and analyze different sampling practices so that
one can best manage the trade-offs between sampling costs and uncertainty. More specifically, in terms of
our four key stages, there is still a gap concerning the design proposal and design assessment stages. This
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Figure 4. A summation diagram of how Bayesian inference and methods (M1-M3) interact with the four
key stages of adaptive sampling.

section introduces three methods that are designed to implement these stages in our woodland case study:
(M1) using predictors in a model as a basis for targeted sampling, (M2) quantifying aleatoric components
of uncertainty, and (M3) predicting the effects of different sampling. The interactions between the key
stages and these methods are summarized in Figure 4, and a guided example is provided in Appendix
Section A.3.

3.3.1. M1: Using predictors in a model as a basis for targeted sampling

One key feature of an adaptive sampling approach is that the sampling designs may be different for each of
the subsamples and is dependent on the previous subsamples. In general, this can make the quantifying of
uncertainty noticeably more difficult. Whilst it is possible to use modeling to account for biased sampling
(Winship and Mare, 1992; Cortes et al., 2008), this often requires a large degree of domain knowledge and
additional modeling assumptions. For adaptive sampling, this may be unavoidable in initial subsamples as
alternative data may not be available at the beginning. For later subsamples though, one may wish to avoid
sample designs that require further modeling assumptions, as this can have a detrimental effect on the trust
users have in any inferences.

One way to avoid such complications in Bayesian inference is to use only the predictors in a model to
define targeted sampling designs in each iteration. As a brief explanation, this is because targeted
sampling defined using only the predictors does not alter the likelihood function in any meaningful
way (i.e., it only changes the likelihood function up to a constant of proportionality). Hence, the posterior
distributions are not changed under this form of targeted sampling. A fuller explanation of this further is
given in Appendix Sections A.1 and A.2. The key consequence of this result is that providing the bias in a
sample design is some function of the predictors, one can assume the reference data came from a simple
random sampling when formulating likelihood functions. This greatly simplifies the problem of formu-
lating likelihood functions from targeted sampling. In addition, one does not need the sample design to be
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explicitly stated, which becomes useful when combining multiple subsamples with different designs. The
reason for this is that if all the subsamples can define their targeting through the model predictors, any bias
in their composition is also some function of the predictors. Hence, with Bayesian inference, the updating
uncertainty stage can be made easier by defining the design of each subsample through the predictors as
one does not need to make any additional adjustments to infer the likelihood function at each iteration.
This result can also be used as a simple way of including subsamples that are biased with respect to some
propensity scoring by having the model include these propensity scores as predictors (Angrist, 1997).
This becomes important when there are different costs associated with collecting true values that vary
across a population.

The idea of using the predictors in a model to define targeted sampling is also important in the design
proposal stage of an adaptive sampling strategy when it is applied alongside other methods. The idea here
is that one can use alternative methods (e.g., analyzing aleatoric components of uncertainty in M2) to
identify members of a population that one would prefer to target for efficiency reasons and then define a
sample design through the predictors to target these members. Effectively, this type of approach offers a
way for creating efficient sampling designs that preemptively make updating uncertainty a less compli-
cated task in the next iteration.

3.3.2. M2: Quantifying aleatoric components of uncertainty

The aleatoric component of uncertainty is a means of quantifying the precision of predictions should all
the components in a model be known (i.e., when there is no uncertainty propagating from the parameter or
input values) (Hiillermeier and Waegeman, 2021). This acts as a way of measuring the limit to which
further sampling alone increases the precision of predicted values (in the current modeling system). In
practice, the level of aleatoric uncertainty is often represented as stochastic elements in a model. However,
the exact degree of aleatoric uncertainty will likely be unknown, as these stochastic elements of
uncertainty will often be dependent on unknown model parameters.

With Bayesian inference, one can account for the uncertainty in an aleatoric component of uncertainty
by applying a specific form of model chaining. For example, the aleatoric variance is simply the variance
in a prediction should all the components in a model be known. By comparing the aleatoric component of
uncertainty to the current level of precision in a prediction, one can gauge the likely benefit further
sampling may bring to increasing the precision in a prediction. For example, if this difference is minimal,
this is an indication that any further sampling is likely to have little effect in increasing the precision. At
this point, one must consider alternative models to increase the precision of predictions.

Quantifying aleatoric components of uncertainty can be useful firstly in the design proposal stage of an
adaptive sampling strategy. This is because it can indicate which members of a population a sample may
want to avoid targeting, as one is unlikely to see a significant increase in the precision of the predictions in
these areas unless the model itself is changed. Secondly, it is useful in the design assessment stage as it can
give users an indication of when to stop collecting subsamples and this also aids in comparing the
effectiveness of different proposed sampling designs by setting a baseline.

3.3.3. M3: Predicting the likely effects of further sampling
Under Bayesian inference, it is possible to predict the effectiveness of a proposed design for a future
subsample given the current data. This is done by viewing this problem as a specific form of generating a
posterior distribution in model chaining, where the unknown value is some measure of the precision in a
prediction after the proposed subsample has been collected and combined with the original data.
Predicting the effects of further sampling is a useful tool in the design assessment stage as it allows
one to compare the likely effectiveness of multiple proposal designs sample without needing to implement
them (Phillipson et al., 2019).

Predicting the likely effects of further sampling is important as often one will need to decide between a
shortlist of sample designs. This is because it is not always easy to provide a single optimal sample design
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as (a) the true parameter values are usually unknown, and (b) there is often a trade-off to manage between
the cost of a sample and the likely gain in precision for an estimate.

The ability to predict the likely effects of further sampling is expected to work well in combination with
M2 as the aleatoric component of uncertainty can help contextualize the results of this analysis by
providing an estimate for the maximum level of precision.

4. Evaluation Using the Woodland Case Study

In this section, the methods presented in Section 3 are evaluated for how they can assist in realizing the key
stages of adaptive sampling through the woodland mapping problem introduced in Section 2. Here, the
methods are evaluated on two criteria:

* How do these methods help in overcoming the challenges in this case study?
* How easily could these methods be applied to similar mapping problems?

The first criterion is based on the premise that this case study is representative of common challenges
seen in reference sampling (see Section 2 for further details). Hence, if the proposed methods can help in
realizing the key stages of adaptive sampling in this case study, this is an early indication that such
methods will benefit general applications. The second criterion is designed to act as a more explicit
consideration of generalizability.

In terms of the four key stages, the case study begins at the point where the initial sample has been
collected (i.e., it begins just after the updating the sample stage has been completed). The objective here is
to get to a point where one can decide on an appropriate design for the next phase of sampling. However,
the initial sample is both biased and modest in size, this has created several challenges across the stages
(this is summarized in Figure 5).

Firstly, the bias in the initial sample raises additional challenges when updating the uncertainty. Many
methods of quantifying uncertainty rely on formulating probabilistic statements based on a sample design
and observed data. Typically, this is harder to do under biased sampling when compared to less complex

Bias in the initial sample
raises additional

challenges when
quantifying uncertainty

Updating the Updating
sample uncertainty

Start: the initial sample has
already been collected.

Objective: to decide on an appropriate
design for the next phase of sampling.

Design

Design proposal
assessment gn prop

Figure 5. A summation of how the features in the woodland case study create challenges across the four
key stages of adaptive sampling.
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sample designs (e.g., simple random sampling). Secondly, a small initial sample size creates a significant
degree of uncertainty in estimates for model parameters. This makes proposing and assessing future
sample designs more difficult as many methods at these stages are dependent on the true parameter values.

4.1. Updating the uncertainty with a biased sample

The first task here is to move past the updating uncertainty stage. Here, a model for the ground truth values
is created using the mapped woodland values as we suspect that this is a strong predictive feature of the
ground truth values. Because of the initial bias in the sample though, one cannot fit a model that makes use
of only ground truth values with this data (without some relying on heavy modeling assumptions).

As the bias in the initial sample design is known to be dependent only on the propensity score, this issue
can be dealt with by including the proximity score as an input feature in any model. This is effectively M1
applied retroactively. Note that this does not restrict which other features can be included in the model.
Namely, one is still free to include the mapped woodland as an input in the model.

A model based on Bayesian kernel machine regression (Bobb et al., 2014) using the propensity score
and mapped woodland features as model inputs have been chosen in this case as the kernel-based nature of
the model provides a lot of flexibility for the trends between the model inputs and outputs. This allows the
data to “speak for itself” more and lessens the need for users to define rigid model structures that may not
be appropriate. This can be a desirable property in the early stages of adaptive sampling as may be hard to
justify rigid model statues on initial samples that may be modest in size (which in turn can make the model
inaccurate).

With this, one can apply standard model fitting procedures to create to quantify the uncertainty in the
ground truth woodland area. This can be viewed across the feature space (Figure 6).

As a side note, there are many alternative models with flexible structures one could have used (e.g.,
generalized additive models [Wood, 2017] and Gaussian process models [Shi et al., 2003]) and models
that consider spatial auto-correlation structures (Dormann et al., 2007). In general, is it good practice to

assess the sensitivity of model choice when one is unsure which model to choose. This is discussed further
in Section 5.

4.2. Proposing sample designs under uncertainty

The next phase is to move on to the design proposal and design assessment stages. The aim here is to
generate a sample design that is likely to increase the precision of the model efficiently. This begins by
adding the restriction that any proposed sample designs must define any targeting using only the mapped
woodland and propensity score features. With this restriction, including this new data into the model fit is
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Figure 6. A Bayesian kernel machine regression (bkmr) model fitted to the initial sample.
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Figure 7. (a) A map of the target area for the initial sample. (b) A map of the current level of precision for
woodland area predictions. (c) A map for the estimated aleatoric component of uncertainty, a measure of
the maximum level of precision for predictions under this model.

asimple task, as no additional modeling assumptions are required. Effectively, M1 is applied once more as
a preemptive measure to ensure updating the uncertainty stage straightforward in the next iteration.

With this restriction added, one now needs to determine where designs should target to reduce
uncertainty efficiently. In this case, one can use M2 to guide for sample designs sample for the woodland
area predictions across each of the 1 km squares. The precision of any estimate or prediction is measured
using the standard deviation of its posterior distribution. By comparing the current levels of precision in
the predictions with its (estimated) aleatoric standard deviation, one can identify areas that are likely to be
close to their maximum level of precision (under the current model). From Figure 7, one can see that, for
areas within or close to the initial sampling area (a), the current level of precision (b) is similar to the
aleatoric component of uncertainty (c). This is an indication that further sampling should look toward
targeting locations that are further away from the experts’ homes, as any further sampling design is
unlikely to increase the precision for predictions in these areas.

An additional way to analyze components of uncertainty is to visualize them across the model input
space. This can be useful when looking to formally define sample designs as targeting areas in this space
allows one to make use of M2 to easily update the model afterward. From Figures 8 and 9, one can see that,
as the proximity scores decrease, the current level of precision begins to increase sharply. The precision of
predictions in these areas is well above the estimated aleatoric component. Using this analysis as a
heuristic guide, there is a strong indication that one may need to venture out to areas with a low propensity
score to see any meaningful increase in the prediction of the estimates outside of our original sampling
areas.

4.3. Design assessment under uncertainty
Whilst it may not be possible to generate specific sample designs with M3, one can still predict the likely
effects sample designs will have on the precision of the predictions. Furthermore, one can account for the
uncertainty that comes from using the initial sample to estimate model parameters by using Monte Carlo
methods. This allows for a try-before-you-buy approach for assessing different sample designs, which can
then be used to generate efficient designs through exploration and experimentation.

In this case study, three possible designs are considered:

* Design 1 (blue): A larger-sized sample (120) in the same areas as the initial sample (i.e., a propensity
score greater than or equal to 4). This design has been selected to examine the hypothesis that there is
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propensity score). The black surface represents the current level of precision. The red surfaces represent
estimates for the aleatoric components (posterior mode and 95% credible surfaces).

little to be gained when sampling from this area alone and that venturing out into further areas will be
necessary.

» Design 2 (green): A modest-sized sample (20) targeting propensity score greater than 1.8 but less
than 2.2. This design has been chosen to consider the possibility of experts visiting further away
areas. Because of the COVID restriction on staying overnight, visiting a large number of sites in
these areas may not be possible.
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)’

Figure 10. Spatial mappings for the targeted areas under each sample design (design 1: blue, design 2:
green, design 3: yellow).

* Design 3 (yellow): A modest-sized sample (20) of a mapped woodland area of more 0.5 than and
propensity score greater than 1.8 but less than 2.2. This is similar to design 2, except it also restricts
sampling to areas that have a higher mapped woodland value. This design is chosen to take into
account that woodland areas are relatively rare in the mapping.

Figure 10 shows each of the targeted areas for each design across the England mapping. Note that, since all
three sample designs are defined in terms of the propensity score and the mapped woodland values, one
can easily update the posterior distributions using M1.

With M3, the expected effects each sample design will have on the precision of the estimates can then
be compared. From Figures 11—13, one can observe the following:

* Design 1 is likely to have little impact on the precision of the predictions when compared to the
current precision using the initial sample alone.

* Design 2 and design 3 are likely to be more effective than design 1 for increasing the precision of the
predictions of the woodland area within these 1 km squares.

* The predicted precision under design 2 and design 3 is close to the aleatoric standard deviation for a
large area of the map. This suggests that for a significant proportion of the map, there is a good
chance that sample designs 2 and 3 will be enough to achieve the maximum possible precision
(under this model) for predictions of woodland extent.

* The differences in likely impacts between designs 2 and 3 are minor across the map, so it is not as
clear which will be more effective for increasing the precision of the predictions at this stage.

From a decision-making perspective, these observations suggest that firstly, it would be better to
venture further away from where the surveyors are based and apply designs such as 2 or 3, even if it comes
at the expense of a smaller sample size. Secondly, they suggest that it may be best to apply sample designs
such as design 2 or design 3 (and then perform a second iteration of adaptive sampling) before committing
to designs with larger sizes. This is because there is a strong possibility that the additional reference data
from these modestly sized samples will be enough for a significant proportion of the map. Hence, by
applying one of these modestly sized samples first, one then can lessen the risk of wasting resources on
unnecessary reference data.

As an aside, it may be difficult to distinguish between design 2 and design 3 based solely on their ability
to increase the precision in predictions at this stage. However, there may be other factors to consider from a
practical perspective. For example, the spatial clustering in design 3 can be convenient when physically
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Figure 11. The predicted precision for woodland area predictions under the three proposed sample
designs presented spatially.

visiting areas to obtain ground truths. On the other hand, the fact that design 2 is defined using only the
propensity score can be an advantage when using the reference data to fit other models (e.g., for other
classes), as one is free to apply M1 without needing to include the mapped woodland in the model.

4.4. Evaluation

Overall, the case study has illustrated the significant benefits of our proposed approach. Within the case
study (see Figure 14 for a full summary) one was able to see that by using the propensity score as a
predictor in a model, one can include the targeted initial sample without needing to rely on heavy
assumptions (e.g., that the targeted area is representative of the wider mapping area). These principles
were used again when constructing the three proposal sample designs. For each design, one could
combine the reference data from these samples with the initial sample without needing to make any
additional assumptions or corrections when updating the uncertainty.

Furthermore, by considering the aleatoric component of uncertainty in the predictions, one could
estimate a maximum level of precision. This acted as a useful guide for proposing sample designs and
allowed us to contextualize some of the results when predicting the likely effects of further sampling under
different designs. By taking a Bayesian approach, one could predict the likely effects of different sample
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Figure 12. The predicted precision for woodland area predictions under the three proposed sample
designs across the predictive features via heat maps. The light-blue points indicate the initial sample and
the colored rectangles display the target areas for the proposed sample designs.
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Figure 14. A summation of how the features in the woodland case study create challenges across the four
key stages of adaptive sampling and how methods M1-M3 help in overcoming them.

designs with Monte Carlo methods. From an adaptive sampling perspective, these methods allowed us to
propose cost-effective designs for further sampling and analyze their likely effects based on the
information from a small and biased initial sample.

From a more general perceptive, the idea of using propensity scores within models, as a means of
accounting for purposely biased or targeted sampling, can easily be extended to other applications. This is
because one can change the factors defining a propensity score without changing the core methodology.
For example, one could easily replace the propensity score in the case study with one that uses a more
sophisticated assessing the accessibility of the area (e.g., a score that considers the distance from roads and
elevation)

Another important property of the proposed approach is that, once the propensity scores are included,
one does not need to make any alterations to any likelihood functions to account for any biases defined
through such scores. This allows us to use third-party modeling tools as including an extra feature in a
model is often much easier than redefining or editing likelihood functions. This property is vital in the case
study when using the bkmr (Bobb, 2017) package in R to fit the models.

Predicting the likely effects of further sampling under Bayesian inference can also be brought into
other mapping applications and models with little additional work. The main reason for this is that with
Bayesian inference, one can make use of Monte Carlo methods when quantifying uncertainty. Monte
Carlo methods are highly generalizable. All that is required here is that one can (a) draw from a posterior
distribution for a model’s parameters under a given set of reference data, and (b) simulate drawing samples
from a model under fixed parameters values.

However, there are several limitations to note from the methods used in this case study. Firstly, the idea
of using propensity scores in models to avoid problems with sample bias requires that one can explicitly
state the factors that bias a sample. This is not an issue if the propensity is predefined (e.g., based on the
known costs or preferences), but this does become an issue when using reference data in which the
sampling is not strictly controlled (e.g., relying on opportunistic data).

Secondly, there are still major gaps in terms of the availability of suitable methods for proposing
sample designs. In this case study, the aleatoric components were used to act as a guide for sample designs.
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Ideally, one would want methods that can give explicit recommendations on the sizes of future
subsamples or where they should target (possibly under some cost constraints).

Thirdly, Monte Carlo methods can be computationally expensive, and this can become a problem when
dealing with higher-resolution imagery or when predicting the effects of many proposed sample designs.
In this case study, one was forced to compromise on this by only considering three proposal designs and
approximating their effects by considering a grid of discrete points across our feature space.

5. Discussion

This paper has identified some opportunities, but also some challenges that come from applying adaptive
sampling to mapping problems. From this, the paper has demonstrated how many of these challenges can
be overcome by using methods based on Bayesian inference. At its heart, adaptive sampling is intended to
be a decision-making tool that is used by practitioners to better manage any cost-benefit trade-offs when
collecting reference data. This section discusses two areas with the potential to take this further.

5.1. Combining adaptive sampling and adaptive modeling

One area in which this framework could be taken further would be to incorporate situations where there
may be multiple plausible models. In this paper’s case study, one considered how different sample designs
may affect the precision of predictions under a fixed model. With any model-based approach though, there
is also uncertainty in the choice of model and the suitability of assumptions made in the said model. Often,
there is a balancing act between the appropriate level of structure in a model, the accuracy of the model,
and the precision of predictions. This is especially relevant when sample sizes are limited by cost
constraints. This is because one often needs a sizeable amount of reference data before models with
more generalized structures are precise enough to be practically viable.

One option here would be to consider a shortlist of models and see where they agree and where they
disagree across a mapping. In this situation, areas with a large validation between the models’ predictions
would be an indication that future sampling should target these areas. Furthermore, some models may be
added and removed from the shortlist as more reference data becomes available. The generalizability of
Monte Carlo methods would help in these situations, as the core methodology is the same across models.

An alternative approach is to combine shortlisted models into one model through an ensemble
approach. For example, one could consider a weighted average of multiple models. Bayesian inference
is naturally suited to this, as the weights can easily be included as another model parameter and hence
considered in posterior distributions (Monteith et al., 2011). This could act as a more automated (and less
abrupt) way of adding and removing or adding models as more reference data is collected.

5.2. Creating an environment that allows for easy design experimentation

Another area in which this framework could be taken further would be to develop a means of allowing
users to easily propose, assess and potentially alter sample designs. The motivation behind this begins
with observing that the problem of proposing efficient sample designs in mapping applications is
extremely complex. This is further compounded by the fact that there is often no single correct or optimal
sample design, but rather a series of trade-offs between designs. This makes the idea of providing
practitioners with an explicit set of instructions for generating efficient sample designs (e.g., by viewing it
as an optimization problem) seem infeasible in practice. Hence, we suggest focusing on giving practi-
tioners the means to explore different sample designs, so that they are best able to judge the potential trade-
offs within their given context. In short, it is less about telling practitioners where they should be sampling
and more about giving them the tools to discover this for themselves.

However, some methods presented in this paper (M3 in particular) can be computationally expensive
when relying on Monte Carlo methods. This is can make exploring different sample designs (and
potentially different models) difficult as generating any results for each scenario can take a long time.
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A secondary challenge is that these methods require a degree of technical expertise to initially set
up. Overcoming these challenges is not impossible (e.g., investing in computational infrastructure and
hiring staff familiar with Bayesian inference) but doing so can a significant upfront cost to adaptive
sampling. This is not ideal, given the main motivation behind adaptive sampling is to act as a cost-
effective way of collecting reference data.

With this in mind, one could consider cloud-based systems as a means of providing a service that gives
users the tools to investigate different combinations of models and sample designs. This approach has
seen recent success in mapping applications (Cope et al., 2017; Nourjou and Hashemipour, 2017;
Mariushko et al., 2018; Sousa et al., 2020). One potential advantage of cloud-based systems is that they
can avoid the previously discussed challenges related to computational and expertise costs as these
problems that are not put on to the users.

6. Conclusion

In the recent decade, there has become a growing trend of using a combination of satellite imagery data
and MLTs to generate mappings quickly and cheaply. Nevertheless, it is still important that one collects a
sample of reference data to quantify the uncertainty in any predictions made using these mappings.
However, because collecting reference data can be expensive, one must carefully consider the cost-to-
benefit trade-offs in any sample design when collecting this reference data.

This paper investigated how a combination of adaptive sampling and methods based on Bayesian
inference could be used in mapping applications to offer a generalizable way of managing trade-offs when
considering sample designs. The discussion was based around a real-world case study and, within this
case study, one was faced with two significant challenges: (2) the initial sample was biased due to COVID-
19 travel restrictions; and (b) the initial sample was small in size (thereby adding uncertainty to any initial
estimates). From this case study, we identified the following:

* A key component of adaptive sampling is the need to quantify uncertainty using data collected under
sampling bias. This bias can be a consequence of deliberate targeting or because of practical
constraints. In either case, if the sample bias can be expressed as a propensity score, then such bias
can be automatically accounted for by including this propensity score as a predictive feature in any
model. This result becomes especially important when considering multiple iterations of sampling,
as it allows users to forego complicated (and often assumption-heavy) bias-correction methods
between iterations.

* Overall, many processes and methods used for adaptive sampling are made significantly easier with
Bayesian inference. This case study included quantifying uncertainty when samples are collected
sequentially, estimating the maximum level of precision in predictions, and predicting the effects of
different sample designs. Furthermore, one easily accounts for the uncertainty in initial estimates
under Bayesian inference with Monte Carlo methods allowing for more robust analysis when
decision-making. This is especially useful in the early stages of adaptive sampling when the current
sample is small in size.

* The findings from this case study are highly relevant to other mapping applications. This is because
many of the methods investigated in this case study did not rely on the specific choice of models or
propensity scores.

Future work in this area would be to go from the current state of adaptive sampling (a collection of
useful methods) to a usable decision-making tool where practitioners can better manage any cost-benefit
trade-offs when collecting reference data. Two specific areas here include: (a) accounting for the fact that
there may be many plausible models when quantifying uncertainty from reference data and that the choice
of a model may need to change throughout adaptive sampling (i.e., combining sampling with adaptive
modeling); (b) developing a platform in which users can easily to propose, assess and alter sample designs
and models for themselves.
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A. Appendix

In the introduction of M1 in Section 3, it was claimed that providing the bias in a sample design can be expressed entirely through the
predictive features, and that one can treat the reference data as though it came from simple random sampling when formulating
likelihood functions. It was further claimed that this result in turn makes updating uncertainty in Bayesian inference significantly
easier. This section discusses the importance of this result when quantifying uncertainty through case Bayesian inference and then
goes on to show the result.

A.1. The importance of similar likelihood functions when quantifying uncertainty with Bayesian
inference
Suppose the relationship between an outcome y and predictors x is represented through a model fwithy = f(x;0), where 6 denotes a
set of unknown parameters.
Under Bayesian inference, one can use a sample obtained under design S, which consists of predictors X and associated
outcomes Y, to generate a posterior distribution for 6 with
7(0|D, S) xx(D|0, S)x(6]S), (A1)

where 7(D|6, S) denotes the likelihood of observing data D = (X, Y) under a sample design S conditional on 6. This is the
probability of observing D obtained under a sample design S for a fixed value of 6. z(6|S) is the prior distribution on 6 given S. This
is a representation of the prior knowledge of € given S. represented as a probability density function.

For the sake of simplification, one can assume 6 is independent of S, that is, 7(6]S) = x(0), without much loss of generality. This
is because the only way for the converse to hold (i.¢., the prior knowledge of @ is dependent on the sample design) is if the design of a
sample not yet implemented influences the prior belief in 6, which is absurd in most reasonable applications. With this additional
minor restriction, one has

7(6|D, S) «x(D|6, S)=(6), (A2)

From (A.2), one can see that the only point where this posterior distribution is influenced by the sample design of the observed
data is in the likelihood function. This means that under a fixed prior 7(#), one has

7(D|0, S) xx(D|0) = =(0|D, S) = =(0|D). (A3)

In other words, if the likelihood functions under two different sample designs are proportional to each other, then any uncertainty
in the model parameters (as quantified by a posterior distribution under a fixed prior) will be the same. From this, it is easy to show
(by considering distributions conditioned on Y') that this result can be used to extend this idea to include uncertainty in estimates that
are functions of any outcomes.

(D

6,8) xx(D|6) = n(g(y*)|x", D, S) = x(g(y*)|x*, D), (A4

where x* represents the predictors for some outcome y* = f(x*;0).

The reason this result is important is that some well-known results related to conjugate priors and most statistical software
packages will implicitly assume a simple random sample design when generating posterior distributions. Results such as (A.3) and
(A.4) demonstrate that if one can show that if a sample design leads to a likelihood that is proportional to the likelihood function
generated under simple random sampling, then one can use these results and third-party software without the need to make any
adjustments. This is a major advantage, as it allows a user to simply input any reference data into preexisting methods, which have
already been developed and potentially optimized. Developing bespoke equivalents for different sample designs is theoretically
possible, but can come with significant computational and expertise costs and may rely on additional modeling assumptions to
implement.

A.2. Targeted sampling defined through predictors: why this leads to likelihood functions similar
to simple random sampling

The idea behind M1 in the main part of this paper is that any design S defined through the predictors in a model, will be enough to
meet (A.3) and (A.4). Here, we formalize this idea and show the result.

Claim: Let/ denote a subset of a population and S denote some sample design. Next, let D(I) = (Y(I), X(I)), where Y(I), X(I)
denotes the outcomes and predictors under model with parameters 6 for the members of the population contained in / respectively. If
there exists a g such that z(I|S) = g(X) then z(0|D, S) = =(6|D).

Proof: Let S be sample design such that z(1]S) = g(X). Next, one can consider considering two equivalent expressions for the
joint probability distribution, z(D, S|6)

In the first case, one has
7(D, S|0) = =(S|D, 0)=(D|0), (A.5)

which comes from the definition of a conditional distribution and is true for any S
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Table Al. A generalized workflow for the procedures is introduced in Section 3 alongside a worked example.

Core Optional
Step 1 Obtain an initial sample D under a design  If an initial sample design does not
(Updating the sample) S that satisfies z(1|S) = g(X) satisfy this condition but does satisfy

7(I|S) = h(W), for some set of features
W, then an alternative model of the form
y=/*((x, w);0%) can be made to
satisfy this condition (M1)

Example: The initial data is collected
under a Simple random sampling.
Simple random sampling satisfies the

condition with z(I|S) =z(X (1)) 20-
18!
L]
N i (X1 .I 0
0s A
o0
-
0s <
] . o 0 ¢
° .
150
T L T N T T T B S S A B )
X
Step 2 Generate the posterior distribution z|D Use marginalization and Monte Carlo
(Updating uncertainty) methods to generate z|D from 6|D

(Bayes)

Example: y =1'(x;0) is based on a
generalized additive model
z(y) =»,U(z, D) is the standard
deviation of the posterior distribution 20-
of y. That is,

U(z, D):=+/(v(y|D)))

Step 3 Propose sample designs Sj,..., S, such Estimate aleatoric and epistemic
(Design proposal) thatz(1]S;) = g;(X) components of z to help generate
proposal designs (M2)

Example:
Two proposal designs, both of size 30
Blue: Targeted sampling toward areas
with significant epistemic uncertainty RE
Green: Simple random sampling
(again)

— Predictive posterior (SD)
— Aleatoric (SD)

— Targed design (Distribution)
Random sample (Distribution)

Standard deviation / Density
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Table Al. Continued

Core Optional
Step 4 Estimate the likely effects sample designs ~ Use marginalization and Monte Carlo
(Design assessment) S1,..., Sy will have on the measure of methods to generate the posterior
uncertainty by generating posterior distributions from 6|D (Bayes)

distributions U (z, D, D;)|D. Where D;
denotes data obtained under a sample
design S; (M3)

Example ol
0s-
0s-
o7-
Sos-
g —J—
o — et
g — Targed desian
Sos o sale
0s-
0
B N N R T S S
X
Step 5 Decide upon a designa S* from Sy,..., S,  Consider the aleatoric component of
(Design assessment) or select not further sampling. if no uncertainty to help decide if no further
further sampling is selected end here sampling should be selected and
assess sample designs (M2)
Example: The targeted sample design ol
appears to be better at reducing
uncertainty in the areas of significant ”
epistemic uncertainty o
o7
Sos
'g = Predictive posterior
S os- e
B Randon sampe
8
Step 6 implement S* to obtain data D*
(Updating the sample)
Example .
25-
20-
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Table Al. Continued

Core Optional
Step 7 Return to Step 2 with D:=D,D*
(Updating the sample)
Example

From this, one can make use of the condition that z(1|S) = g(X). Here, z(1|S) = g(X) implies thatz(S|D, 0) = =(S]X) asif X
is known, all other information is redundant when determining the likelihood that the data was sampled under S. This gives one form
to the joint probability distribution as

7(D, S|0) = =(S|X)=(D|6). (A.6)
The second form for z(D, S|0) can be given by first conditioning on the S to give
=(D, S|6) = =(D|6, S)x(S|0). (A7)

Since the design of S is determined only by X, the likelihood of S is unaffected by 6. This gives z(S]0) = z(S). Hence the second
expression for 7(D, S|6) becomes

7(D, 8|0) = =(D|0, S)x(S). (AB)
Comparing the right-hand sides of (A.7) and (A.8) yields
_ =(SIX)
7(D|6,S) = 2(S) 7(D|0) xx(D|0). (A9)

The final step is to compare (A.9) with (A.3) to give the desired result.

A.3. Example workflow

Suppose one has amodel y = f(x;60) where x is a vector of predictors and 6 denotes a set of parameters. Let I denote a subset of a
population, S denote some sample design, and D(I) = (Y(I), X (1)), where Y(I), X(I) denotes the outcomes and predictors under /
for the members of the population contained in 7.

Next, suppose that one wishes to reduce the uncertainty in an unknown quantity z(y) by sampling data of the form D = (Y, X)
using adaptive sampling. Let U(z, D) denote some measure of uncertainty in z given data D (e.g., U(z, D) = v(z|D), the variance of
the posterior distribution for z given D.

Under this notation, the combination of the practices introduced in Section 3 can be represented as a workflow described in
Table Al, along with a worked example. For the R code accompanying the worked example, see the Data Availability section.
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