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EFFECTS OF BED INCLINATION AND TOPOGRAPHY ON
STEADY ISOTHERMAL ICE SHEETS
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(School of Mathematics and Physics, University of East Anglia, Norwich NR4 7T1J, England)

ABSTRACT. The small slope magnitude &, or aspect ratio, of an ice sheet in steady plane motion under gravity
over a_horizontal plane bed, subject to balancing surface accumulation and ablation, and basal drainage, is
determined by the accumulation magnitude. maximum depth, and the viscous properties of the ice. Horizontal
coordinate scaling by a factor & allows series expansions in ¢ for which the leading-order solution is valid
everywhere under some weak restrictions on the ice law and sliding law. This procedure is now extended to the
plane-flow problem when the mean bed line is inclined at angle y to the horizontal and the bed is not flat. The lead-
order problems for y of order unity and y of order £ are distinct. and both are treated, for an isothermal sheet. The
present analysis is valid only for a maximum bed slope relative to the mean line of order ¢ or less. The amplitude
of a bed profile with wavelength that of the ice sheet may therefore be of the same size as the ice-sheet depth,
which allows treatment of a typical isostatic bed shape.

RESUME. Effers de la pente er de la topographie sur I'etat d'équilibre des calotles glaciaires isothermales en
regime permanent. La valeur ¢ de la faible pente, ou rapport de relief, que prend une calotte glaciaire en régime
permanent d’équilibre sous I'action de la gravité, sur un lit plan horizontal, soumise a4 un bilan équilibre
d’accumulation et d’ablation de surface et a un drainage a la base, est determinée par la valeur de I'accumulation,
par la profondeur maximum et par les propriétés visqueuses de la glace. En multipliant les dimensions horizontales
par un lacteur & on peut obtenir des développements en séries en & pour lesquels la solution du premier ordre est
valable partout saul quelques légéres restrictions ayant trait a la loi d’écoulement de la glace et 4 sa loi de
glissement. On étend alors la méthode au probléme d’ecoulement plan dans lequel la ligne moyenne de plus grande
pente du it est inclinée d’un angle y sur I'horizontale et ou le lit n'est pas plat. Les problémes de termes principaux
lorsque y est de I'ordre de 'unité ou lorsque y est de 'ordre de & sont distincts. ['un et 'autre ont été traités pour
une calotte isothermale. La présente analyse est valable seulement pour une inclinaison maximum du lit par
rapport a la ligne de pente moyenne qui soit de I'ordre de & ou inferieure. L amplitude d’un profil de lit ondulé avec
pour longueur d’onde celle de la calotte de glace peut done étre de la méme grandeur que I'epaisseur de la glace, ce
qui permet de traiter le cas d'une forme de lit typiquement isostatique.

ZUSAMMENFASSUNG. Einfluss der Betineigung und der Topographie auf stationare isothermische Eisschilde.
Die kleine Neigungsgrisse ¢ oder das Schlankheitsverhiltnis eines Eisschildes in stationiirer, ebener Bewegung
unter Schwerkraft iiber ein horizontales, ebenes Bett. bestimmend fiir Akkumulation und Ablation an der
Oberfliche sowie fiir den Abfluss am Untergrund, héngt ab von der Auftragsmenge, der maximalen Dicke und
den viskosen Eigenschaften des Eises. Die Normierung der horizontalen Koordinaten mit dem Faktor & gestattet
eine  Reihenentwicklung mit &, deren Losung nach der fiihrenden Potenz unter einigen schwachen
Einschriinkungen fiir das Fliess- und Gleitgesetz des Eises iiberall giiltig ist. Dieses Vorgehen wird hier auf das
Problem des ebenen Flusses bei einer mittleren Bettneigung x gegen die Horizontale und bei Unebenheiten des
Bettes ausgedehnt. Die Probleme der Fiihrungspotenz fiir y in Zahleneinheiten bzw. Eischilde in Einheiten von &
sind verschieden und werden beide flir eine isothermische behandelt. Die vorliegende Analyse gilt nur fiir eine
maximale Bettneigung der Grossenordnung & oder weniger, relativ zur Mittellinie. Die Amplitude eines
Untergrundprofils mit der Wellenliinge eines Eisschildes kann daher ebenso gross sein wie die Dicke des
Eisschildes: dies ermoglicht die Behandlung einer typischen isostatischen Form des Untergrundes.

INTRODUCTION

The influence of bed profile on the flow of an ice sheet, and in particular on its surface shape,
was first analysed by Robin (1967). His approximate treatment relied on two assumptions: (a)
that the bed slope relative to the horizontal, and in turn the surface slope, is small, and (b) that
the mean shear stress a,, over the ice-sheet thickness, is small compared to the mean deviatoric
longitudinal stress o, =, — 0o, where x, y are rectangular coordinates with x-axis horizontal.
The role of each approximation was emphasized by Collins (1968); in particular the use of
assumption (b) to neglect the shear strain-rate in comparison with the longitudinal strain-rate,
and hence the variation of the horizontal velocity u with height, which allow a simple expression
for the mean longitudinal strain-rate in terms of surface accumulation and surface profile. Nye
(1959) argued that the temperature variation with height in the large cold ice sheets implies that
the shear motion is confined largely to a thin “warmer” basal layer, supporting the
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approximation u=uwu(y), but also used the approximation g, =0 in his calculation of an
equilibrium profile, in contrast to assumption (b). Analyses to date using a temperature-
independent ice law, or ignoring temperature variation, conclude that o} is a smaller quantity
than o, so a possible justification of the approximation (b) awaits a thermo-mechanical
analysis. The strong inequality (b) appears unlikely. Robin’s approximations do not lead to an
explicit equation for the surface profile when the bed profile and surface accumulation are given.

Nye (1969) and Budd (1970[b]) also derive relations between the basal shear stress and
mean longitudinal stress gradient by integrating the momentum equations through the (varying)
thickness; Collins (1968) obtained a similar result though referred to different axes. Budd’s
(1970[b]) approximations of small mean bed inclination, small bed slope, and small surface slope
recover the Robin (1967) terms together with a double integral of é%c,,/éx’ through the
thickness, where the x-axis is along the mean bed line. The latter term is neglected by Robin’s
(1967) assumption (b), but Budd (1970[b]) asserts that it is important for small bed wavelengths
up to a few times the thickness and remarks that o,, is often much larger than of. The shear-
stress variation appears to play no part in Budd’s subsequent estimate of a “mean viscosity
through the thickness” in terms of the mean longitudinal stress and strain-rate. Noting his earlier
arbitrary assumption about the depth variation of &*o,,/ &x?, Budd (1970[al) next introduced a
stress function to satisfy the equilibrium equations for the stress perturbations about the solution
for a uniform slab flowing down an inclined plane. For a constant-viscosity (Newtonian) fluid,
the stress function is biharmonic, and sinusoidal solutions for an undulating bed of small
amplitude can be constructed. When a non-linearly viscous ice law is considered there is no
tractable equation for the stress function, but Budd proceeds by (implicitly) ignoring the
perturbation in mean pressure to deduce that the stress function is harmonic; that is, by making
an approximation |g,, | < g'jaxx +a,,| where o,, is the stress (perturbation) normal to the plane of
flow. There is no physical basis for such an approximation, so the validity of the resulting
sinusoidal bed solutions (Budd 1970[a), 1971) must be questioned. In fact, alternative
calculations by Hutter and others (1981)—abbreviated to HLS—imply that the approximation
is not generally valid, and our later analysis demonstrates that it is invalid for most, if not all,
practical conditions.

While the above approaches are based on assumptions that certain physical quantities are
small enough to be neglected, they provide no systematic approximation of the full balance laws
and boundary conditions. It is not clear that any of the results are valid approximations to the
prescribed problems. In contrast, HLS and Hutter (1981)—abbreviated to H—have now
investigated the effects of small bed undulations by series expansions in small (distinct)
dimensionless parameters. Since we now propose an expansion procedure in a third parameter,
extending the horizontal flat bed analysis of Morland and Johnson (1980)—abbreviated to
MJ—it is instructive to define the three approximation schemes and compare their ranges of
application. Let the ice-sheet thickness and semi-length have magnitudes Ay and / respectively,
and the bed undulation (or general profile) have amplitude a and wavelength (length scale) A, so
that (relative to a mean bed line) the mean surface slope & and bed slope & are given by

E=—r 0=—. (1)

MJ have shown that the aspect ratio ¢ is determined by the accumulation magnitude, the
depth magnitude Ao, and the viscous properties of the ice, and that in most, if not all, practical
situations ¢ is small. We use € as our expansion parameter and assume that the bed slope is not
greater than the mean surface slope; thus

ho

7 <1, g<is, (2)

Figr—s
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HLS consider the situation when the bed undulation amplitude is small compared with ice
thickness, and in their expansion scheme assume that A > Ay, thus

a ho
t‘:b:—él. Bz—ﬁh < Eh3 (3)
hy p)
&, is the expansion parameter. H introduces a longitudinal coordinate stretching parameter u to
describe the assumed “slow variation” of surface undulations, with surface wavelength
subsequently related to bed wavelength in magnitude, again with bed amplitude small compared
with ice thickness. u is the expansion parameter and a proposed measure is

ho [ a
=—=—cg<l, B=—u<«<yu. 4
7 AM‘ h0#<ﬂ 4)

While the relations (2) allow a = kg, and hence a treatment of a typical isostatic bed profile,
the inequalities (3) and (4) exclude this situation. In all cases the permitted bed slope # is not
greater than the small expansion parameter, necessarily much smaller in the H scheme (4), but
the & bound in scheme (2) is the pre-determined aspect ratio £. In general,

(0 a A

— o>l as &=—< Or >—, (5)

& d !
so that #>¢ is permitted in schemes (3) and (4) when the amplitude and wavelength are
sufficiently “large” and “small” respectively. For such undulating bed profiles #=¢' with
0 <s <1, and our scheme must be modified by coordinate stretching with the parameter #. In
this case the lead-order surface profile is necessarily flat and not influenced by the accumulation
distribution, as is clear from the MJ analysis. A global solution will require a distinct expansion
procedure for the margins with appropriate matching, and possibly matching between basal
layer and outer flow. The HLS analysis in fact supposes that accumulation has no lead-order
effect and that the lead-order surface profile is flat, which implies &, > &. Thus 03 & when A >k,
which is the *“short wavelength—large slope™ undulation not treated by the present analysis.

HLS is a central-zone analysis, not completed to the margins. The first iteration on the flat-
surface solution is expressed as an additive superposition of the effects of bed profile with zero
accumulation and the effects of retaining a flat bed but with surface accumulation; this
determines the surface slope to order &,. In the first problem a sinusoidal bed is adopted, and in
both problems the surface perturbation is assumed to be sinusoidal. The mean profile with slope
& determined by a smooth accumulation distribution is lost, but an oscillatory accumulation is
assumed to determine a perturbation slope of order ¢, >¢. The main results of HSL are the
prediction of surface effects due to the bed undulations. The solutions are necessarily numerical,
but one conclusion is that the transfer of bed undulations to the surface depends strongly on the
sliding law. While amplitude transfer is maximal for wavelengths of three to five times the
thickness for small bed inclination y and a particular range of sliding velocity for the power law
of sliding, this is not a general feature as predicted by Budd. The HSL perturbation scheme
presented fails when y is too small ( <c. 0.01); that is when y < ¢ or bed drop over the ice-sheet
length is not greater than the ice thickness, which must be the useful range for large ice sheets.
Larger x will have application to steep, thin, glaciers.

The H analysis is immediately restricted to wavelengths A > hg, and for 8z & there is a
further restriction A < /(4 > ¢), while the “large slope™ case 6 > ¢ requires 4 < (a/hg)I. The range of
permitted wavelengths, amplitudes, and slopes is therefore very limited. For illustration a
sinusoidal bed profile is adopted and it is assumed that the surface profile is the superposition of
a known equilibrium profile for a flat bed and a small sinusoidal form of prescribed amplitude.
Nye’s (1959) equilibrium profile is adopted, which meets the slope magnitude bound only in a
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central zone, but, by the inequality (4), several undulation wavelengths span a distance much
greater than d. Further, when there are many undulations over the ice-sheet span, A</, by (4)
u>¢ and the lead-order central surface profile is again flat. The illustration is therefore of
doubtful value. Flat-bed calculations were also performed with the given equilibrium profile for
inclination y over the range 10 to 0.2 to evaluate the second-order stresses. However, the lead-
order equations explicitly assume y= O(1), so only the range 10" to 0.2 is appropriate.

We now present a global analysis incorporating the mean slope & determined from the
accumulation, extending the MJ analysis to bed topography with slope # bounded by ¢ and to
arbitrary mean bed inclination y. For steep glaciers with y = O(1) the validity of the perturbation
scheme imposes a restriction on the thickness when a general viscous ice law is adopted, but no
restriction with the conventional models with a single response coefficient. The lead-order
solution reduces to an ordinary differential equation for the ice thickness, showing that bed
topography is fully transferred to the surface, in contrast with the associated flat-bed solution.
Our analysis is not valid for “short wavelength-large slope” undulations, but these results
suggest that maximum transfer of bed topography to the surface is probably found in steep, thin
glaciers. When y= O(1) the gravity term in the longitudinal momentum equation dominates the
pressure gradient and provides the balance with the shear stress gradient. For large ice sheets
with y < & the balance requires an extension of the MJ analysis with a horizontal flat bed, and the
lead-order solution gives an ordinary differential equation for the surface profile in which the bed
profile enters in distinct ways. However, the bed profile is significant to lead order only if its
amplitude is not negligible compared to ice thickness, which is the case for beds formed (in part)
by isostasy. If the bed amplitude is of order & compared with ice thickness, then the contributions
to the surface profile and stresses are necessarily much smaller than our lead-order solution, and
we have not constructed the next terms of the series. They become useful only when surface
slopes of order £ compared to the mean slope are relevant to measurements and predictions.

The restriction on bed slope in Equation (2) is strictly #=o(1), so formally our lead-order
solution could be applied to the case 8~ &'/ with a/hy ~ e'/*, when A~ hq, to describe a “short
wavelength-large slope” situation and bed-profile effects. However, any regular perturbation
scheme assumes that coefficients in subsequent terms remain of order unity. Because the third
derivative of the lead-order stream function with respect to the scaled longitudinal coordinate
arises in a higher-order longitudinal momentum balance, MJ propose that it must be bounded in
the margin, which then implies it is everywhere of order unity in the analysis with a horizontal
flat bed. Here we show that the stream function depends on the bed profile, and with the same
proposal impose the stronger restriction

i\? & :
—uafa 1Y 6
(/1) hy ole™) ©)

For example, if we allow a magnitude £~/ on the right-hand side, then with a/h, ~¢'/? for a
lead order effect, A~ ¢&~¥*hy~¢'’l, which still implies the restriction 4> h, of the H scheme.
That is, under the restriction (6), we cannot treat undulations with a length a few times the ice
thickness.

Following MJ we assume a power law of sliding with coefficient depending on the ice
thickness, equivalent to dependence on overburden pressure. The requirement of a small slope at
the margins again imposes a restriction on the coefficient as ice thickness approaches zero. The
accumulation/ablation at the free surface is a prescribed function of elevation (above some
horizontal). For a linear sliding law on an inclined bed it is found that the slope at the upper
margin is uniquely determined if there is ablation at that elevation, consistent with the flat-bed
analysis, but there are two possible slopes (equilibrium profiles) if there is accumulation there.
However, global solutions with small slope up to both margins do not appear to exist when the
ice sheet is not symmetric about the ice divide. A general non-linearly viscous, incompressible
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fluid ice law for constant temperature is adopted (Glen, 1958:; Morland, 1979) with the
assumption that dependence on the square of the strain-rate tensor is not greater than that on the
strain-rate. The latter alone is incorporated in the conventional model which we also adopt for
illustration. The analysis treats exactly the apparent singularity at zero stress associated with
Glen's law with exponent n > 1. For all inclination y the result

|o%| < | | (7)

holds, contrary to Robin’s assumption. A corresponding analysis incorporating the significant
temperature-dependent rate factor (Morland, 1979) is now required to determine whether the
strong inequality (7) is weakened (or inverted) by the typical variation of temperature with depth
in a cold ice sheet. With the usual ice law the approximation (7) implies that the longitudinal
strain-rate is much smaller than the shear strain-rate, but this would not follow if the term
ignored in the general relation was in fact dominant. One-dimensional experiments cannot
distinguish the terms (Morland, 1979).

THE STEADY ICE SHEET

The dimensionless variables introduced by MJ are used from the outset. All length scales
have unit %y, an ice thickness magnitude. Figure | shows the ice sheet with mean bed line
inclined at angle y (—m/2 < y < m/2) to the horizontal; X, Y are rectangular coordinates along and
normal to the mean bed line in the plane of motion, Y= H(X) is the free surface, ¥'= F(X) is the
given bed profile. For numerical convenience the origin is chosen to be the left-hand margin,
upper margin if y > 0, with the mean bed line defined to pass through the origin; it does not, in
general, pass through the right-hand margin. The dimensionless stress X and pressure P have unit
pghy where p is the ice density. Longitudinal and normal velocities U, V, vertical accumulation Q
per unit horizontal cross-section, and normal basal drainage B, have unit g, which is a
magnitude of maximum accumulation/ablation/drainage. Immediately H, P, V, Q, B do not
exceed order unity in magnitude. Let Z be the vertical elevation above the origin, then it is
supposed that Q= Q(Z) and B= B(Z) are prescribed. The net accumulation ablation over the
surface plus drainage over the base must vanish for a steady ice sheet.

Y=H(X)

horizontal

¥Y=F(X)

Fig. 1. The ice sheet and bed profiles.
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Introducing a stream function ¥ by
U o¥ Ve a¥ @)
i 7 &

satisfies mass balance identically. The longitudinal and normal momentum equations for slow
viscous flow with negligible inertia terms are

OB BTy G e = OLy

—_— - = +sin y=0, +—

ox - ox oy

With Z =Y cos y— X sin , and setting H'(X)=T, the zero traction and accumulation conditions
on the surface ¥Y=H(X) are

—cos y=0. 9)

[(Ey, — )+ (1=T)E,, =0, (10)
(1 + T +E,) + (1 T E — I,y) —4I'L,, =0, (11)
P T2D feonp+ T sin )0K2) (12)
—+ T ——=(cos ;
aX aY C x+ sin Y

Basal drainage and a power law of sliding between the tangential velocity U, and shear traction
on Y= F(X), setting F'(X)= f and {=sgn (U,)=sgn (6¥/8Y — f(6¥/0X ))y_p, are given by

%w%‘;ﬂnﬁz)'”mzx (13)
¥ ~ _av 1/m
B(Zyy —Zx) + (1= By = CACH — F)(1 + B2 C(Z—t—ﬁﬁ) ’ - (14

It is assumed that basal slip and shear traction are in the same direction, and that m > 1.
Dependence of the positive coefficient A on ice thickness is shown to be equivalent to
dependence on normal bed pressure. A magnitude of A will be assumed in the analysis so that
the sliding law influences the motion; perfect slip and non-slip are the limits A—0 and A— 0.
The margin conditions are

at X=0:H=F=0, at X=Xy:H—F=0, (15)
where Xy is the unknown ice sheet span. The zero global mass flux provides the additional

condition to determine the unknown span.
A general incompressible viscous fluid ice law may be written (Glen, 1958; Morland, 1979)

L+ Pl=—2 (4,1, 1,)D + 6,(T, 1)ID? 3L, 11},
pghy 4
P, Dbl hodgl Boe
DoA(T)

where D is the strain-rate tensor, A(T) a temperature-dependent rate factor, and gy, Dy are
stress- and strain-rate units, chosen to normalize the response coefficients ¢, , ¢,. Here we adopt
a temperature-independent model by taking a constant value for 4 corresponding to a
temperature 250 K when 4(273 K)= 1. Thus

p=100kgm=?, g=10°Nm=2  Dg'=3x10"s, A=0.. (17)
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The commonly adopted model sets ¢, =0, ¢, = ¢, (1,), and inverts the relation (16); thus
D =w(/,)[Z+P1], L =4 ri(E+P1>
I = L w'(Jy)=G(J,), L =hLei()=G""(I,).

We present the analysis for the general law (16), but adopt the common model for illustration.
The reciprocal relations in the third and fourth of Equations (18) allow direct use of w(J,).
Glen’s law for temperature 273 K is

(18)

41, \ —(r—1/2n
w(J3)= 1.5k(3J,)"~ 172, i az)zgk-wn( T{) ,

(19)
k=017 n=1,3t4,
where n depends on the stress range chosen for the approximation. The singularity in ¢, as T,
and J,—0 represents an infinite viscosity at zero stress, and an alternative bounded
approximation over the shear stress range 0— 10° N m~? is the Colbeck and Evans (1973)
polynomial law

wlJ3)= 1.5(Cy + 3C1 J» + 9C,J3),
C,=0.21, C,=0.14, C, =0.055.

¢, cannot be determined analytically, but is bounded, and w is used directly in the solutions.

The MJ analysis for a horizontal flat bed shows that solutions for laws (19) and (20) are not
significantly different. However, we again present the analysis to allow a singularity of the form
(19) by setting

(20)

¢lﬁ=&l(ﬁ72_a)w a‘] :Tg¢ls (21)
0<a:=m7l
- 2n

so that DT, *~0 as 7, -0 and ¢, remains bounded. For Glen’s law @, is constant (order unity),
and the bounded ¢, case is recovered by setting a=0(n=1). We also assume that the stress
contribution from a non-zero ¢, term is not of greater magnitude than that of the ¢, term, and
that ¢, is bounded; thus g, < 1. Hence the non-zero stress components for plane flow are

“

. 4 a3
=—P4 4 j i +lél+2a I .
(z: ) ( s T I

Yy

oy Pty el
X, =—P, Eo =il ™ ]
2z cy 71¢l 2 (ayz BXZ)
where
. &Y\ 1( &Yy v\?
87 h=h=|- il e e
ax oy 4\ ay* ox
(23)
7, =0, g I» p="00_ st-2a
ADghy pghy

and for most, if not all, practical situations (MJ),
o<1, r<l. (24)

It is immediately clear that changes in I, are of the same magnitude as changes in $(Z,, + 2300,
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when P is not negligible compared to the extra viscous stresses, and inequalities (24) suggest that
P will always make a lead-order contribution even when velocity gradients are large, so Budd’s
(1970[al, 1971) harmonic stress-function approximation appears to have no practical validity.

PERTURBATION METHOD

If P, ¥, and appropriate gradients do not exceed unity in magnitude, then a series expansion
in v gives the lead-order solution from Equations (9) and (11):

o Xtany, x=0(1),

P=cosy(H-Y), H=const. + o, il

(25)

The y=0(1) solution is a static ice reservoir with horizontal surface resting against a steep
embankment, and the y=o(1) solution is a slab of uniform depth on a bed with small mean
inclination. Neither case is a leading approximation to a global solution with upper and lower
margins. To avoid the surface result of the second option in Equation (25), it is necessary to scale
the longitudinal coordinate X by a small factor ¢ so that the shear-stress gradient in the
longitudinal momentum balance enters to lead order.

Following M1J, set

E=eX, [ =¢y=¢ dH/dE, y=e¥, (26)

where &, y, ¥ and all relevant derivatives with respect to £ are of order unity (or less). together
with

F(X)=/(), B=¢f"(&)=¢p. (27)

Assume [ is order unity (or less)—strictly gf=o(1). Thus the mean surface slope I' has
magnitude & and the bed slope f§ is restricted to order ¢ so that /(&) does not exceed unity in
magnitude. For later validity we assume also that /(&) and /" (£) do not exceed order unity.*
The stream function scaling is given by the accumulation balance. The momentum equations
become

0L, 0%,

+ sin y=0, 63?+ ¥

8%, 0L,
E——+
ok oy

—cos y=0, (28)

and the corresponding stresses are

T 32'4[’ " 3
(Z )=P+V( +£2%9,i7% % 8y+-_‘;ala“2“¢zz),

Yy

(29)

&y g &y ,
aY? &

) :%uaz"“g_ﬁ[i‘“(

where

E " 1 a2w 2 " 621;’1 2 1 321,!/ 62w
I1=€ 12 el e I e e, ey
4\ aY a¢ oY 2 @&~ ar

2 2
+%84( Z;;) )

* Note added in proof* It is also necessary to impose the restriction @=0 (and hence n=1 from Equations (21)) in
order that £, and £, as given by Equations (29), remain bounded as Y- #.

https://doi.org/10.3189/50022143000011801 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000011801

EFFECTS OF BED INCLINATION ON ICE SHEETS 79

Suppose now that P= Py +o(1), = +o(1), H=n(&) + o(1), yo =1'(£), then the leading-
order relations are

Aing _y Yo
= — S U —G 5
LT o= oy
Z,E‘:Z}g,:—Po +%V6726]+2a¢2[0, (31)
5O — lpgla-1g =2 & fl L 32%_ 2
xy — 2¥6 Vito aYz » 0 3 aYI 3
al :—a gzw
(T — L) =206, i5 T

The response coefficients are evaluated at T, =(8/¢)*iy, Iy =0, and the ¢, contributions to I,
£ are retained for later estimations. Immediately the longitudinal deviatoric stress (I, — o
is smaller than the shear stress Z_EJ. by a factor &. Boundary conditions (10) to (14) become

£ (l}zwn 1 -281+2a :
Y=y(&): W:Q —Py +3ve™%0 #,io =0,
' (32)
f 0
ﬁﬂ’o (,—%=COSXQ(Z). Z=ncosy—e& "¢ sin y;
& oY
. 2
Y=71(): (.?? +f f:/o =B(Z), Z=fcosy—e& 'Esiny,
(7 (7,
(33)
n2 1/m - 2
15 —a W0 o g o Yy
=LA = § = = —_— .
101 1o PT% CA(n f)[c 27 {=sgn Y v, sgn| — s
where
RZA.V_IC]_ZG_UM (34)

is assumed to be of order unity for the influence of the sliding law. The distinct momentum
balances for y of order unity and y of order ¢ will be presented separately.

FINITE BED INCLINATION
For y = O(1) the momentum balances (28) with stress expressions (31) have terms of order

&, ve— 181+ gy pe®, 15
and (35)
Ve, 1,1/6’25”2“;#2, 1:

respectively. By the second set of magnitudes, and the relations (21), (23),

2n—1
ve 202 ¢, < I, which becomes gﬁz( 130 ) ] i (36)
m

Then the first set requires that the balance

re?*=1 ~ | becomes &= 1", 37
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and the inequality (36) implies the hy, ¢, restriction

"I 2n—1
¢2( °) 1 (38)

10 m

This limits A, to the order of 10 m if ¢, = O(1), but the small-slope solution is valid for thicker
glaciers as ¢, decreases, with no limit for the usual model ¢, = 0. The ¢, contribution to X2, , Z{.’J.
is of order unity when the equality in (38) holds. The mean surface slope or aspect ratio =" is
smaller than ¢=p""*" obtained for the horizontal flat bed (MJ) and for y = O().

Set

I =L)=—P=—Py +}ip(he/10 m)>~'¢, (39)

and allow the equality in (38) to hold. The lead-order solution of the normal balance given by the
second of Equations (28) subject to the surface condition given by the second of Equations (32)
is

P=cos x[n(&)— Y. (40)

and of the longitudinal balance given by the first of Equations (28) subject to surface condition
given by the first of Equations (32) is

*5*}!5131:“”)([?]@)*1’]1 (41)
so LY, is of order unity and is everywhere directed down the mean bed line. Hence g, is of the
same order as the overburden pressure. Thus Uy, always has positive component down the mean
bed line, so £=sgn y, and there is no ice divide. Hence (Z,, — yy)o is of order ¢ in contrast to
order &2 for the horizontal flat bed (and small inclination bed), but is still a factor ¢ smaller than
£2,. Using the definitions given in Equations (30), (23), (21), and (31). iy =7,(&/6)’, the left-hand
side of relation (41) becomes {(&/6)"132 ¢, (1,, 0). To proceed analytically we need an inversion
in terms of J, at J, =4 tr (E + P1)’ =0. We will assume the third and fourth of relations (18)
with ¢, =0, and adopt the form (19) or (20) for further analysis. Then the relation (41), since
g/d=(10 m/h,)", gives

2 2 2n 2
(1 -~ w") =('°m) G{(h") sin’ xln«:)ﬂl}, (42)

2 or? ho 10m

Y .
Zﬁv=i¢1 ig *

or equivalently
Yo .
=Ll sin Yo — T, C=sgn (43)
where for Glen’s law, Equation (19),
g(t) =30+ D2 jn, 10, (44)
and for Colbeck and Evans’ law, Equation (20),
&(1)=3t{Cy + 3C, (hy/10 m)* 1 + 9C, (hy /10 m)*1*}. (45)

Now Equation (44) defines g(r) of order unity since the argument of g in Equation (43) is of
order unity, independent of the magnitude of /4y, while Equation (45) implies g(¢) > 1 il fiy > 10 m.
However, A, =~ 10 m corresponds to a stress unit of 10° N m 2, which is therefore the magnitude
of both p and g,,, and is also the limit of the polynomial law of Equation (20). Thus Equation
(45) is not applicable to deviatoric stresses much greater than 10° N m~2; that is for &y > 10 m.
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An alternative bounded viscosity law is therefore required to describe the response over a greater
stress range corresponding to larger Ay when the bed inclination is finite. Thus any real
restriction on A, depends on the magnitude of ¢, through the bound (38). We use Equation (45)
with fig = 10 m for illustration.

Defining
g:(f):f ge)d,  g()= f & () dr, (46)
0 0
integration of Equation (43) yields
g .
5T =-—cosec y g [{sin y (7 — Y)] +e, (&),
Wo =L cosec? x g, [Lsiny (i5— Y)] + Yey (&) +e(&), (47)
5
((,lf? =70(&) cosec y gy [{sin x (n— Y)] + Ye (&) + eh(&).

The basal drainage and sliding laws given by the first two of Equations (33) give

o Cl ¢siny g|™
e =cosec y g (Csinym+{ ———| .
A(n)
o WS (48)
€y =B(Z)— y cosec y g, (L sin x ) —(fe,),
where
&) =m(&)— (&), =% —p, Z=—¢ 'siny& (49)

The vertical elevation of both base and surface is approximated by Z to lead order since the
mean bed drop dominates over thickness variation when y=0(1). Finally, the accumulation
condition given by the third of Equations (32) gives a first-order differential equation for the
thickness (&) of the form

B |

d ! a - 5 N
d_é [sin x| A7) + #|cosec y|g, (|sin y|n) — cosec” x g»(|sin ()

= {(m + Djsin " 7\2@ ' 1- (mmf]()’j%'(’m + g(lsin xm)} 7 50
=sgn x{cos y Q(Z)— B(Z)} =sgn y 0* (&),
subject to end conditions
10)=0, n(ém) =0. (51

The second condition determines the unknown range &y, but in fact this is pre-determined by
the condition of zero mass flux

&M
j lcos x Q(—&~" sin &) — B(—e~" sin x &)] dE=0, (52)
0

which is compatible with the perfect differential form provided that 1+ m(1—s)>0 where
A~2Ayn’(s=0) as §—0, recalling £1(0)=g,(0)=0. A stronger restriction is guaranteed by
bounding e,({) necessary for bounded velocities. Assuming that Q* does not vanish at both
margins and is sufficiently smooth, the perfect differential shows that ' ~ ~"™'~9 as -0, and

https://doi.org/10.3189/50022143000011801 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000011801

82 JOURNAL OF GLACIOLOGY

hence we require s = 1. Then

*
0™ (0), &0, } “n

— O BN —D), £y

and hence Q,f; (net accumulation and drainage) is positive at an upper margin and negative at a
lower margin; the roles of £&=0 and {=¢&, are reversed when y changes sign. This analytic
behaviour ensures that derivatives of 1, up to the third, which arise in the next-order momentum
balances, are bounded provided that e}’ is bounded; that is, g”(¢) is bounded as t— 0. For Glen’s
law, Equation (44), this requires n=1 or n>2. Recall that /' and /" were assumed to be of
order unity, and hence »”, #” are also of order unity.

Since the thickness #(¢) is determined independently of the bed profile f(<), the latter is
simply superposed on 7(¢) to determine the surface profile 7(£), that is, there is full transmission
of bed profile to surface profile relative to the corresponding flat-bed solution (not relative to a
slab of uniform depth). As noted earlier, the present solution does not apply to “short
wavelength—large slope” undulations. The velocity distributions involve both /(&) and #(¢)
independently. The basal shear traction is simply

n=|4 cosec y|™ sgn x{

Egly—y=1(&) sin x. (54)
By the asymptotic results (53), the marginal slopes satisfy the explicit relation
(0 *(©
i) 0% L

W) Q@ (&)’

We now note the main features for a linear sliding law (m= 1) with coefficient A=y and
accumulation linear in elevation,

0*(&)=1—gq, siny¢ (56)

where g, = O(1). This form supposes that Q* varies no more than of order unity over the bed
drop. Immediately, for all ice laws g(t),

Eu =26, =2g7 " cosec y, (57)

where Q*(éc)=0 determines the point at which the thickness is a maximum, and 5(&) is
symmetric about £=¢.. For y=5°, &y varies from 23 to 2.3 as g, changes from 1 to 10, with
corresponding ranges 7.7 to 0.77 and 4 to 0.4 for = 15° and y = 30°. However, with a common
scale factor &, =&(n=1) and scaled coordinate & =¢,{/e=v ", independent of n, the values
&F for Glen’s law, Equation (44), are greater than those for Colbeck and Evans’ law, Equation
(45) by a factor v~ """, which is very large for n>2. That is, for a given magnitude A, the
length Xy increases rapidly with n, which exhibits the strong dependence on the large viscosity
variation at low stress when n > 1.

SMALL BED INCLINATION

Now consider y=¢&xo, %o = O(1), which is a realistic situation for large ice sheets. Of the
momentum term magnitudes displayed for y= O(1) in the sequence (35), only the final sin  term
of the longitudinal balance changes, from order unity to order &. A lead-order shear stress
gradient then implies that

ve2@=" ~ ¢ which becomes ¢=p"+ " (58)

and is identical to the estimate of aspect ratio for the horizontal flat bed (MJ). The restriction (36)
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becomes

( eho 2n—1 q @n—1)/(n+1) I
0y =| ———— 19, = g n L
T 0, (10 myAD, 0, £0; < (59)

The factor multiplying &¢,, independent of 4, is the term §32+1/2=2% of the MJ analysis*, and
for all practical values does not exceed order unity. Thus with the assumption |@, | < 1. the ¢,
terms in both longitudinal and normal momentum balances are smaller than tiie lead-order
terms, « and unity respectively, by a factor ¢ at least, and P=P,. The lead-order normal balance
with surface conditions given by the second of Equations (32) again gives Equation (40), but now
the pressure gradient of order & enters the longitudinal balance, so with the surface condition
given by the first of Equations (32),

0 v— 32!!’0
Ly= %551 Ip W: e(xo —70)n—Y),
(60)
C=sgn (xo — o).

Thus Iy =0(¢) while from Equations (31) and (58), (Z. —Z,,)° = O0(:*) = O(¢£%,). Here
cos y=1, sin y=¢xo. Thus £, =0 at position(s) E=¢&; where 5 = 1'(&;) =y, that is, where the
surface is horizontal. Clearly Uy =0 at = ¢, from the sliding law, and we show later that U=0
at £= & which is therefore an ice-divide—there is no flow across &= ¢&;.

The inverse relations (42) and (45) are again obtained with sin y replaced by y, —y, and
(ho/10 m) replaced by (ehp/10 m)=#""*" since here d/c=(ehy/10 m)". The deviatoric stress
limit in (45) now implies that (¢4,)/10 m) < I, which only requires A, < 106~ 'm. Hence

Ho _ &illxo — o)=Yl

oy Ko~ Yo ik
— 9 Yn—Y
wo—cg"q’i‘; “’y)o(;’z Lt ve @+ @) (61)
=
) d N
_(:; _ d_{{gzlcua yo;;;i )1} - T+ B
—

Substituting the first of Equations (60) and the first and third of Equations (61) in the sliding law
(33); and drainage law given by the second and first of Equation (33) yields

o & 1&(xo — yo)n—1)] xo —r)n—1)

m

1 + €] = s
Xo — Vo A=/ (62)
d 82180 —yo ) — 1)l
P {fel reg+(= (;0 :;D)z } =B(/—x09),
and hence a longitudinal velocity
v, o
dY 63)
_¢ o — o) —S) |™ &gl —y0)1— )1 =81 18 xo — Y0 )n— Y)I}
- = + "
An—J) X0 = 7ol

Since gi(1)>0 for >0 and g,(0)=0, Uy=0 at &=¢&(y=x0) and U, > or <0 for

* This # should not be confused with the bed slope # used in the Introduction.
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%o — Yo > or <0, confirming that {=¢&; is an ice divide.
Finally, the accumulation condition, the third of Equations (32), gives the differential

equation
d S Ge—2wXn-N" .
E {C(n ) Bl +8n—1) Q[C()Co—?o)('?—f)l}
=Q0(n—x0¢)— B(/—x08), (64)
where
Q(I)Zglfz) 75’1{21) ~Qot" ast—0,
(65)
(n+1)214n
)= = ke*/(n + 2), Glen,

~t{cy + 3c,0% + Hc, 67}, Colbeck and Evans (n=1).

These results are analogous to equations (69) and (70) of the MJ horizontal flat-bed analysis,
with n—f replacing 7, but y —xo, and not yo —f, replacing y,. Thus the second-order
differential equation (64) for n(¢) cannot be expressed simply as an equation for the thickness
n=n—f, and so the bed profile is not simply superposed on a corresponding flat-bed surface
profile.

For bounded e, (&) at the margins it is again necessary that A=A, (0Ls< 1) as p—0,
which is sufficient to ensure a zero mass-flux integral of the differential equation (64). Since the
sliding law is independent of bed inclination and profile solutions, the differential equation must
give bounded slopes yy for any (non-zero) yo —ym at a margin. yy = xo at both margins is the
special case of horizontal surface at both margins. In general the net accumulation Q — B = o5
at a margin (=0 or £=¢y) is not zero, and the sliding law is independent of the accumulation,
so the leading-order balance requires (7— /)™ ?(yo — f8) to be of order unity at the margins,
and hence s= | for bounded yy. Then

Urm — Bl to — 1aa)1™ = A0 O (66)

Thus a horizontal margin surface yy =jo, or surface tangential to the bed yy = fm, imply
* . . * . . i A
O =0, and vanishing Qy implies one of these situations. In general

0% > 0 or <0 implies and is implied by (xo — ym)(¥m — Bu) > or <0, (67)

and yy = fy > or > 0 at the left- and right-hand margins respectively.

Given the end conditions #— =0 and »’' evaluated at =0 (left-hand margin say) by
Equation (66), the differential equation can be integrated numerically until n— /' a%ain vanishes,
determining &= &y. We should note that for a given set of prescribed values of Qu, fim» xo, the
algebraic equation (66) may have no real solution 74, may have a unique solution, or may have
more than one solution. This can be illustrated for the linear sliding law m = 1 when

2 =10 + B % [(xo — Bu ) — 4o Q1" (68)

For ablation, Oy < 0 at the margins, and the above inequalities imply that 2yy >y + fiy and
M > Yo at a left-hand margin, and that 2yy <)o + fm and yy <o at a right-hand margin. Hence
the positive root and negative root in Equation (68) apply at the left- and right-hand margins
respectively; that is, the surface slopes above the horizontal from either margin. For
accumulation, a solution requires that 0 <44, 0% <(xo—Pu) and that By <yu <xo at a left-
hand margin and yp <9y <fu at a right-hand margin; that is, the bed and surface both slope
below the horizontal from either margin. Under these conditions both roots give compatible
solutions, and hence two possible equilibrium profiles. We have not been able to construct a
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global analysis of the differential equation to confirm or reject either root. In practice, for this
small mean bed inclination, we would expect ablation/drainage to occur at margins, and hence a
unique margin slope when m=1.

The above criteria were concerned only with bed and surface slopes relative to the horizontal,
independent of the value or sign of the mean bed inclination y,. Clearly, for y=¢y, = O(¢), a
horizontal mean bed line may be chosen and the differential equation (64) referred to coordinates
(X, Z)— (S Z) with_xo =0, /> f(&)—xo& n—H(&). To lead order (cos y= 1, sin y =&xp ), E=¢,
n=n—xo& Yo ="1"(&)=70 —xo. and Equation (64) is recovered for () since f=f'is the profile
superposed on the mean bed line.

It remains to consider possible singular behaviour at a margin #— f~0 and an ice divide
X0 — Yo 0. Since &y /8 contributes to the shear stress gradient in the next-order momentum
balance, following MJ we propose that it must remain of order unity. From Equations (61) and
(62), the anticipated restriction | /()| < | is necessary. As y, =¥, at an ice divide, n— 4 =/,
and Q(Z) = Qy(1 + g, Z) where 2=y — y— xo(& — &). Since a given ice law and given sliding law
must allow valid solution for any sensible Q and B near the divide, we can consider a variation
with Q4 #0, g, = O(1), B=0 to determine any required restrictions on the laws. This explanation
was omitted from the MJ discussion. The essential behaviour of the differential equation (64) as
Yo — Xo- Z—0,is

d
%o — ) 1 ({20 — )" =cQa(1 + g, 3) + O(?),

i (69)
l=min (m,n), =1,
where c is a positive constant of order unity. Thus
C'”+ l]Qd o i) q,E -2
— )= ——= 1 O i 70
&xo — o) ( / Z) +2(l'+1)+ (z°) (70)

and zQy (strictly Z| @y — By4|) > 0. That is, there must be accumulation at a convex ice divide and
ablation at a concave ice divide.
The dominant terms of v/ as yo — yp or n— f—0(f< Y < n) are

{xo —70)Xn—1)
A—f)

Thus g =[x —y0)I' as Yo~ ). and writing Z=1¢>0, so d/dé= Uy, — o) d/dt, we find
Mg/ PE~1"(1 + gyt + ...) where g, #0 for g, #0, and hence & y/dE ~gyt"*Y and
g/ 9 ~ gy (1 =M+ Hence bounded ¢* /@ (of order unity) at an ice divide where g, #0
requires /< 1; that is, /= 1. Direct differentiation of the separate dominant terms shows that
bounded &%/ ¢* requires (i) if /=n= 1 then m=1or 2 or mz=3;(i)if/I=m=1thenn=1or 2
or n >3, as in the MJ analysis. Since A ~ 4,(y— f) at a margin # — />0, then conditions (i) and
(ii) ensure that n' =y, n”, g are all bounded (of order unity), and in turn & y,/&¢ is of order
unity.

Once 5(¢) is determined from the differential equation (64), the lead-order stresses are given
by Equations (40) and (60), and velocities by Equations (61), (62).

It is instructive to re-express the lead-order Equation (64) in the physical variables which
were the starting point of the MJ analysis, namely

d Ux—WX-D\"™ s g {C(zuh’)(h—f)pg}
M‘C(hﬁ{*‘,{_} + 0" h— ) AD, Q 0, 07"

h—TJ=0, {h— T x— ™ =g /pg)"qy

m

(Y2 =" — 1)1 or (Y—1) (71)

=q(2),
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at a margin, where / is the surface height normal to the bed, z is the height above a horizontal,
A(h—J) is the sliding coefficient with A ~ A3 (h— ) at a margin, with bed profile 7 referred to the
physical length scale, and g is the accumulation with value —g, (ablation) at the margin. Thus,
for given g(z), the differential equation and starting slope are independent of the height scale A;,
and therefore the profile is independent of the magnitude f,. That is, there is a unique profile and
centre height, small or large, governed by a length scale defined by the variation of ¢ with height,

though the aspect ratio
( O.O)n,t'(n+ |)( G )l,"{n+l) 1
e=|— =8
pg AD, ho

and hence the span 2/, depend explicitly on the magnitude. Our dimensionless illustrations are
computed by prescribing the normalized Q(Z) on a length scale Ay, which, if g(z) is given, implies
that a solution with centre height £, exists. Since A, is determined by g(z), solutions cannot exist
for arbitrary Q(Z) and in particular the variation must allow a balance of accumulation and
ablation.

ILLUSTRATIONS AND CONCLUSIONS

The following illustrations all use the Colbeck and Evans’ law. Equation (45), with the factor
ho/10 m replaced by (ehy/10 m)=6"2=0.3 for direct comparison with the MJ results for a
horizontal flat bed. The latter show that results for Glen’s law, Equation (44), are not
significantly different. A linear sliding law (m = 1) with coefficient A =5 is used. The majority of
solutions are computed for accumulation linear in height and zero basal drainage:

0=—-0,+0,Z, B=0, (72)

where O, =1 + Qy, as in MJ, to set Q(1)=1. Qy > 0 represents ablation at Z=0 and in turn a
unique slope at a margin at Z=0. Effects of bed inclination and bed topography are presented

separately.
(1) Inclined flat bed
Choosing y, =0, so that Z= Y and

f&=-né& X1 constant, (73)

describes a flat bed inclined at angle &x,(ffi= —yx,) to the horizontal. A margin at £=0 is the
upper margin if y, >0, the lower margin if y; <0. We set Z=Y=0 at £=0, so all profiles are
described with respect to common horizontal and vertical axes OZY. Solutions for y, in the range
0 (horizontal bed) to 5 for various @, have been constructed, integrating the profile given by
Equation (64) from the upper margin {=0. Further computations have been made with
0, #1 + Qg and also for quadratic and exponential Q(Z). In all cases with ablation at the upper
margin, @y >0, the surface first rises into an accumulation zone, but finally approaches a
horizontal, not returning to the (receding) bed at a finite span. Thus the solution approaches an
ice reservoir with horizontal surface over which there is uniform accumulation, balanced by
decreasing horizontal outflow over increasing depth, illustrated in Figure 2. For Oy <0 in the
distribution given by Equation (72), with accumulation at the upper margin, with either of the
negative starting slopes given by Equation (68), the surface slope increases to zero (a concave ice
divide) where the surface has dropped to an ablation level. The surface then appears to remain
horizontal, not returning to the bed, also illustrated in Figure 2.

To avoid the reservoir solution, the computations were repeated for —y, in the range 0 to 5,
so that the starting point =0 is the lower margin, at which there is ablation (Qy > 0). In all cases
treated, the surface rises to an ice divide at an accumulation level at which mass balance is
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z

" margin ablation Qo =1

N\

margin accumulation Qo= -0-2

Fig. 2. Ice reservoir solutions.

attained, and then descends towards the rising bed, but while y, remains order unity, it is found
that —#” increases dramatically as # — / approaches zero. This violates the assumption of order-
one derivatives, since 5” enters the differential equation (64), and implies that a global solution
with small slope at the upper margin is not possible. As noted above, the solution with prescribed
small slope at an ablating upper margin approaches an unbounded reservoir. For y; =0
(horizontal bed), the profile is symmetric with order unity #” everywhere, but as —y; is increased,
the zone of large —#” at the upper margin increases. The solutions appear reasonable close to the
margin for —y; <0.1, but with increasing —y, a contradictory situation of no ablation beyond
the ice divide is reached e.g. —y; =0.5, Q(&, = 1.3)=0.3 > 0. In such situations &y is close to &.
Figure 3 shows a comparison between y; =0 and y; =—0.5 with @y =1, @, =2, with the zone
of large —#" indicated by the dashed line. This situation was repeated for all the alternative Q(Z).

Since mass- balance is attained at the ice divide, zero net flux must also be attained in the
upper zone beyond the divide. Here, the rising bed and Q increasing with elevation requires the
surface to steepen to reduce the accumulation at the upper levels and increase the ablation zone,
provided that the rise of the bed does not eliminate the ablation zone too quickly. A valid
solution up to the upper margin will therefore require an order-one slope (at least) in some
marginal zone, so the full equations must be solved there and matched to the small-slope
solution. However, since the small-slope solution is uniquely determined by lower margin
starting conditions, it is valid until —#” becomes large, and so is not influenced by a passive
boundary-layer solution necessary near the upper margin. Thus the small-slope solution provides

] I 2 3

Fig. 3. Surface profile for horizontal and inclined flat beds with Qy=1, @, =2.
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£l P
[

Fig. 4. Surface profile for Q=—1 + 2Z7yy.

initial conditions at an appropriate point & to continue the full equations through to an upper
margin which is part of the solution.
A modified form of Q,

OZ, Y0)=—00 + Q1 ZY0, 0y >0,0, >0, (74)

was used to demonstrate that a valid global solution can be obtained. Since accumulation
is required at a convex ice divide, y, =0, the form of Equation (74) implies that an ice divide
can not occur. Thus y, >0 everywhere, and the distinct mass balances in lower and upper
regions which caused previous difficulties, do not arise. Mass balance now determines a span
&n =20,/0, x}. Figure 4 shows a valid small slope solution for Qy =1, 0, =2, %, = I.

(ii) Topography on a horizontal mean bed

For a flat horizontal bed, /=0, y, =0, with Q = Q(Z) the ice sheet is symmetric about the ice
divide. Recall that the ice-divide height 7, and position &, are determined uniquely by the second-
order differential equation (64) with prescribed margin #(0)=0 and margin slope #'(0)=py.
In the symmetric case the same centre height is reached by integrating from either margin.

Fig. 5. Surface perturbation A induced by bed undulations.
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Suppose the bed is perturbed at one side of the divide only, then the height of the ice divide
reached by integrating from the margin at that side is perturbed from the ice-divide height
attained by integrating over the flat-bed side. Provided that the perturbation in Hq is of order &,
continuity of the lead order # is satisfied, and it is anticipated that the bed perturbation only
influences the next term in the series for y. However, if the bed topography induces a lead-order
effect, then (in non-symmetric cases) the unique ice-divide heights attained by integrating from
the two margins with prescribed margin slopes will in general differ. Thus we can anticipate that
the solution of the small-slope equation (64) starting from either margin will again lead to large
curvature near the far margin in an attempt to preserve mass balance. This occurs in all the
computed solutions, with 1” becoming large through negative values in some cases as n—/-0
analogous to the inclined-bed results and also large through positive values when n — fremains
positive and the profile opens up again. In a class of single-hump perturbations it was found that

Ha > or < ny (flat bed) implies #” < or > 0 as 17— f—0. (75)

Solutions for periodic bed undulations of the form

2n/i¢ +f2) —sin fzJ ; (76)

f(€)=.fo|sin( T

starting from a margin at {=0 have been computed for various amplitudes /5., phase shifts f;,
and integers f; so that the wavelength is an integer multiple of the semi-length &, /2= 1.54 for
the flat bed profile. Since the margin is not, in general, in phase with ¢=0, large curvature occurs
there and there is a small marginal zone in which the small-slope solution fails. The choice
Jo=01=¢"%, fi=1, implies | "|ny =6 <&™" for £~ 1072, and fo=0.1, f; =2, implies
/" |max = 50 &~ " for £ 107, representing two and four full waves over the flat bed span.
Figure 5 shows A=[n(flat bed)—yl/fy for f5 =0.1, f; =1, /s =0, and Qy = 1 in the distribution
given by Equation (72), but as with all the other examples, there is no clear indication of the
transmission of undulating topography to the surface. The large negative value of A at the far
margin, indicated by the dashed continuation of the curve is a consequence of the profile
reappearing as described earlier. We can only expect to exhibit a correlation by analysing the
many-wave bed form, which requires an analysis valid without the restriction (6), 1 and iz
necessarily an ¢-order effect since | /| < ¢ for wavelength A approximately equal to hy. We are
now developing an appropriate perturbation scheme.
Finally, the isostasy relation for a bed of highly viscous fluid (Weertman 1973):

Pi
JO)=— ne), (77
Po — P
Z
1i1.
31
3
5L
il
g T
7 AT T TSN SRR T T i
-QMM ’
-5 F r=lag

Fig. 6. Comparison of the flat-bed profile ny, the isostatic profile y, and ice thickness 1y — f.

https://doi.org/10.3189/50022143000011801 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000011801

90 JOURNAL OF GLACIOLOGY

where p;, p, are the ice and bed densities, is investigated with Weertman’s value p;/p, = 1 The
differential equation (64) now determines # (or f) directly, and # is clearly symmetric about the
ice divide so no far-margin problems arise. Figure 6 shows a comparison between the flat-bed
solution, surface #;, and surface #, and ice thickness #— f given by Equation (77), with @y =1 in
Equation (72).
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