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Abstract. The role of magnetic fields for the formation of planets is reviewed. Protoplanetary
disc turbulence driven by the magnetorotational instability has a huge influence on the early
stages of planet formation. Small dust grains are transported both vertically and radially in
the disc by turbulent diffusion, counteracting sedimentation to the mid-plane and transporting
crystalline material from the hot inner disc to the outer parts. The conclusion from recent efforts
to measure the turbulent diffusion coefficient of magnetorotational turbulence is that turbulent
diffusion of small particles is much stronger than naively thought. Larger particles – pebbles,
rocks and boulders – get trapped in long-lived high pressure regions that arise spontaneously
at large scales in the turbulent flow. These gas high pressures, in geostrophic balance with a
sub-Keplerian/super-Keplerian zonal flow envelope, are excited by radial fluctuations in the
Maxwell stress. The coherence time of the Maxwell stress is only a few orbits, where as the
correlation time of the pressure bumps is comparable to the turbulent mixing time-scale, many
tens or orbits on scales much greater than one scale height. The particle overdensities contract
under the combined gravity of all the particles and condense into gravitationally bound clusters
of rocks and boulders. These planetesimals have masses comparable to the dwarf planet Ceres.
I conclude with thoughts on future priorities in the field of planet formation in turbulent discs.
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1. Introduction
Planets form in protoplanetary discs of gas and dust as the dust grains collide and

grow to ever larger bodies (Safronov 1969). An important milestone is the formation of
km-sized planetesimals. Drag force interaction between particles and gas plays a big role
for the dynamics of dust particles. This way the collisional evolution of the dust grains
into planetesimals is intricately connected to the physical state of the gas flow. The
magnetorotational instability renders Keplerian rotation profiles linearly unstable in the
presence of a magnetic field of suitable strength (Balbus & Hawley 1991). The ensuing
magnetorotational turbulence is currently the best candidate for driving protoplanetary
disc accretion. The relatively ease at which self-sustained magnetorotational turbulence
is produced by numerical magnetohydrodynamics codes makes it an excellent test bed
for analysing dust motion and formulating theories of planet formation in a turbulent
environment.

An interesting constraint on the magnetic field present in the solar nebula comes from
meteoritics. Most carbonaceous chondrites have a remanent magnetisation as high as a
few Gauss, frozen in as the material cooled past the blocking temperature (Levy & Sonett
1978). A quote from the excellent review paper by Levy & Sonett (1978) is particularly
concise on the origin of such a strong magnetic field:
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“So far as we can see, there are four major candidates for the origin of the pri-
mordial magnetic field which produced the remanence in carbonaceous chondrites.
They are:

1. Magnetic fields generated in very large meteorite parent bodies
2. The interstellar magnetic field compressed to high intensity by the inflowing
gas
3. A strong solar magnetic field permeating the early solar system
4. A hydromagnetic dynamo field produced in the gaseous nebula itself”

Levy & Sonett (1978) continue to put forward various physical arguments to rule out
possibility 1 and 2 [the undifferentiated parent bodies of carbonaceous chondrites were
unlikely to harbour a magnetic field, and turbulent diffusion strongly limits the amount
of field that can be dragged into the solar nebula (Lubow et al. 1994)]. The magnetic field
of the wind emanating from the young sun can potentially be strong enough to imprint
fields of several G at a few AU from the sun. But the most likely scenario remains that
the magnetic field was created by the differential rotation and dynamo process in the
solar nebula itself. Simulations of magnetised shear flows indeed show that a weak seed
field can be amplified by the magnetorotational instability to a few percent of the thermal
pressure (Brandenburg et al. 1995, Hawley et al. 1996, Sano et al. 2004).

In the following sections I briefly review the role of such magnetised turbulence on the
motion of dust particles and on the cosmogony of planetesimal formation.

2. Diffusion of small dust grains
The magnetised turbulence in protoplanetary discs moves small dust grains around,

preventing them from sedimenting to the mid-plane and transporting dusty material
radially in the disc (Gail 2002, van Boekel et al. 2004). This section describes recent efforts
to determine the turbulent diffusion coefficient Dt of magnetorotational turbulence.

If turbulent transport can be described as a diffusion process, then the evolution of
the dust particle density ρd follows the partial differential equation

∂ρd

∂t
= ∇ ·

[
Dtρg∇

(
ρd

ρg

)]
. (2.1)

Here ρg is the gas density, its presence signifying that diffusion acts to even out differ-
ences in the solids-to-gas ratio εd = ρd/ρg . The vertical flux of dust particles contains
contributions from the advection (sedimentation at velocity wz ) and the diffusion,

Fz = wzρd − Dtρg
∂(ρd/ρg)

∂z
. (2.2)

In sedimentation-diffusion equilibrium we have Fz = 0. Setting the velocity of the dust
particles its terminal value, wz = −τfΩ

2z (where Ω is the Keplerian frequency and τf is
the friction time of the particles), gives the solution (e.g. Dubrulle et al. 1995)

εd(z) = ε1 exp[−z2/(2H2
ε )] (2.3)

for the solids-to-gas ratio εd = ρd/ρg . The scale height Hε follows the expression

H2
ε =

Dt

τfΩ2 , (2.4)
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Figure 1. The dust density at the sides of a simulation box corotating with the disc at an
arbitrary distance from the central star. The radial direction points right, the azimuthal direction
left and up, while the vertical direction points directly up. The dust density distribution arises
from an equilibrium between sedimentation and turbulent diffusion by the magnetorotational
turbulence.

while the solids-to-gas ratio in the mid-plane is given by

ε1 = ε0

√(
H

Hε

)2

+ 1 . (2.5)

Here H is the pressure scale height of the gas. In the above derivations we have assumed
(a) that the friction time is independent of height over the mid-plane and (b) that the dif-
fusion coefficient is independent of height over the mid-plane. None of these assumptions
are true in general, but if we stay within a few scale heights of the mid-plane and treat
the diffusion coefficient as a suitably averaged diffusion coefficient, then the expressions
are relatively good approximations.

In a real turbulent flow the observed diffusion-sedimentation equilibrium can be used
to measure the turbulent diffusion coefficient of the flow. In Figure 1 we show an ex-
ample of such a diffusion-sedimentation equilibrium (from Johansen & Klahr 2005) for
a shearing box simulation of magnetorotational turbulence. The problem of determining
the diffusion coefficient is thus reduced to measuring the scale height Hε of the dust
in Figure 1. Using equation 2.4 then directly yields a value of Dt . Obviously the diffu-
sion coefficient must scale with the overall strength of the turbulence. The interesting
quantity to determine is thus the Schmidt number Sc, defined as the turbulent viscosity
coefficient relative to the turbulent diffusion coefficient, Sc = νt/Dt . In a Keplerian disc
the turbulent viscosity is in turn defined from the Reynolds and Maxwell stresses,

νt =
2
3
〈ρuxuy − μ−1

0 BxBy 〉
〈ρ〉 (2.6)
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The Schmidt number was found by Johansen & Klahr (2005) to be around 1.5 for ver-
tical diffusion and 0.85 for radial diffusion. This is surprisingly close to unity and a bit
mysterious given that the turbulent viscosity is dominated by the magnetic Maxwell
stress 〈−μ−1

0 BxBy 〉. This stress does not directly affect the dust particles. A possible
explanation is that diffusion is determined by the diagonal entries in the uiuj correlation
tensor. These are much higher than the off diagonal Reynolds stress uxuy . Thus the MRI
inherently transports a passive scalar (by fluid motion) and the angular momentum (by
magnetic tension) equally well.

Different groups have used various independent methods to measure the turbulent dif-
fusion coefficient of magnetorotational turbulence. A vertical Schmidt number of around
unity was measured by Turner et al. (2006), while Fromang & Papaloizou (2006) reported
a value of approximately three. This gives some confidence that the Schmidt number is
well constrained. However, Carballido et al. (2005) found a radial Schmidt number as
high as ten in relatively strong turbulence. To address the discrepancy between this value
and the much lower value found by Johansen & Klahr (2005), Johansen et al. (2006b)
performed simulations of the MRI with various strengths of an imposed, external field,
yielding a higher turbulent viscosity than in zero net flux simulations. The Schmidt num-
ber was indeed found to decrease with increasing strength of the turbulence. Stronger
turbulence (such as in Carballido et al. 2005) is less good at diffusing dust particles
relative to its stresses. The explanation is that the correlation time of the turbulence
decreases with increasing turbulent energy, and that turbulent structures do not stay
coherent long enough to effectively diffuse particles.

Large particles partially decouple from the turbulence and are primarily diffused by
large scale eddies with relatively long correlation times. The experiments by Carballido
et al. (2006) indeed showed that the diffusion coefficient falls rapidly for particles above
a few metres in size, in good agreement with the analytical derivations of Youdin &
Lithwick (2007).

3. Zonal flows
While smaller dust particles are clearly prevented from forming a very thin mid-plane

layer by the magnetorotational turbulence, pebbles, rocks and boulders begin to grad-
ually decouple from the gas. Accretion discs are radially stratified with a pressure that
decreases with distance from the star. The pressure gradient acts to reduce the effect of
gravity felt by the gas, and as a result the gas rotates slightly slower than Keplerian.
The particles, however, do not react to gas pressure gradients and aim to orbit with
the Keplerian speed. The head wind of the slower rotating gas drains the particles of
angular momentum and they spiral towards the star in a few hundred orbital periods
(Weidenschilling 1977).

The radial pressure profile of gas in turbulent discs need not be monotoneously falling.
The presence of large scale, long-lived pressure bumps leads to concentrations of migrat-
ing dust particles into radial bands. Simulations of magnetorotational turbulence in a
box gives evidence that such pressure bumps form spontaneously in the turbulent flow
(Johansen et al. 2006, Johansen et al. 2009). In Figure 2 we plot the gas density and the
azimuthal velocity, averaged over the azimuthal and vertical directions, as a function of
radial distance from the centre of the box x and the time t. The gas density exhibits
axisymmetric column density bumps with amplitude around 5% of the average density.
These bumps are surrounded by a sub-Keplerian/super-Keplerian zonal flow, maintaining
perfect geostrophic balance with 2ρ0Ωuy ≈ ∂P/∂r.
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Figure 2. The gas density (left plot) and the azimuthal velocity (right plot) as a function of
the radial distance from the centre of the box, H , and the time, t, measured in orbits. There is
a perfect −π/2 phase difference between the pressure bump and the zonal flow, in agreement
with a geostrophic balance. The zonal flow has in turned been excited by a large scale variation
in the Maxwell stress.

Varying resolution, presence or non-presence of stratification, dissipation parameters
and dissipation types, Johansen et al. (2009) find that pressure bumps and zonal flows
are ubiqituous in shearing box simulations of magnetorotational turbulence, provided
that the simulation box is large enough (more than one scale height in radial extent) and
possibly also that the physical dissipation is high enough. What is then the launching
mechanism for these zonal flows? Large scale fluctuations in the Maxwell stress lead to a
differential transport of momentum. Thus the magnetic field is responsible for separating
the orbital flow into regions of slightly faster and slightly slower rotation.

A model of the excitation of zonal flows and pressure bumps can be obtained from a
simplified version of the dynamical equations,

0 = 2Ωûy − c2
s

ρ0
ik0 ρ̂ , (3.1)

dûy

dt
= −1

2
Ωû0 + T̂ , (3.2)

dρ̂

dt
= −ik0 ûx − ρ̂

τmix
. (3.3)

Here ûx , ûu and ρ̂ are the amplitudes of the radial and azimuthal velocity and gas density
at the largest radial scale of the simulation, with wavenumber k0 . The first equation
denotes geostrophic balance, while we have kept the time evolution terms in the two
other equations. Non-linear terms enter through T̂ , the large scale magnetic tension, and
ρ̂/τmix , turbulent diffusion of the mass density.

We can combine the above equations into a single evolution equation for the density,

dρ̂

dt
=

1
1 + k2

0H2

(
F̂ − ρ̂(t)

τmix

)
, (3.4)

where F̂ ≡ −2ik0ρ0 T̂ /Ω is the forcing term. The prefactor ck ≡ (1+k2
0H2)−1 is a pressure

correction for small-scale modes that both decreases the amplitude of the forcing and
increases the effective damping time. The coherence time-scale of the Maxwell stress (and
thus of F̂ ), τfor , is generally much shorter than the mixing time-scale, τmix . Thus we need
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Figure 3. Diagram of how non-linear excitation of the large scale radial magnetic energy leads
to the excitation of zonal flow. Green arrows label positive energy transfer, while red arrows
(dashed) denote energy sinks. Non-linear interactions are responsible both for the excitation and
for the balance, the latter through diffusive mixing of the gas density.

to model equation 3.4 as a stochastic differential equation (see e.g. Youdin & Lithwick
2008). The Maxwell stress gives short, uncorrelated kicks to the zonal flow. This would
lead to an amplitude that grows as the square root of time. However, in presence of
turbulent diffusion, the solution tends to

ρ̂eq

ρ0
= 2

√
ck τforτmixHk0

T̂

cs
. (3.5)

The correlation time of the zonal flows is predicted to be equal to the mixing time-scale,
in good agreement with the results. The model also predicts that ρ̂eq ∝ k−2 for k0H � 1.
This is in very good agreement with the very clearly sinusoidal density fluctuations seen
in Figure 2.

The cause of the large scale variation in the Maxwell stress remains unknown. Johansen
et al. (2009) argue that magnetic energy takes part in an inverse cascade from the mod-
erate scales, excited directly by the MRI, to large scales. A diagram of the zonal flow
excitation appears in Figure 3. Note that the above zonal flow excitation model assumes
that the magnetic tension (i.e. −BxBy in Figure 3) is given, whereas in fact one may go
on step further back to B2

x , which is excited directly by a non-linear term. The Maxwell
stress then increases from the Keplerian stretching of the radial field. The model also
predicts that the magnetic pressure should grow in anti-phase with the thermal pressure.
This is indeed also observed.

4. Planetesimal formation
The zonal flows presented in the last section are very efficient at trapping particles.

At the outer sub-Keplerian side the particles face a slightly stronger headwind and drift
faster inwards. At the inner super-Keplerian side the particles experience a slight back-
wind and move out. The effect of pressure bumps on the migration of rocks and boulders
goes at least back to Whipple (1972). It has later received extensive analytical treatment
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Figure 4. The column density of four different particle sizes, before self-gravity has been
switched on. The particles concentrate at the same locations, but larger particles experience
a higher local column density.

by Klahr & Lin (2001) and by Haghighipour & Boss (2003). The narrow box simulations
of Hodgson & Brandenburg (1998) found no evidence for long-lived concentrations of
relatively tighly coupled particles in magnetorotational turbulence. However, Johansen
et al. (2006a) observed concentrations of marginally coupled dust particles (cm-m sizes),
by up to two orders of magnitude higher than the average paricle density, in high pressure
regions occuring in magnetorotational turbulence. In a simulation of a (part of a) global
disc Fromang & Nelson (2005) reported similar concentrations in a long-lived vortex
structure.

The question of how long-lived high pressure structures form and survive in magnetised
turbulence is of general interest. However, their effect on planetesimal formation is no
less intriguing. Johansen et al. (2007) expanded earlier models of boulders in turbulence
by considering several particle sizes simultaneously and solving for the self-gravity of the
boulders. First the turbulence is allowed to develop for 20 local rotation periods without
the gravity of the particles (which is weak anyway). This way a sedimentary mid-plane
layer, with a width of a few percent of the gas scale height, forms in equilibrium between
sedimentation and turbulent diffusion. In Figure 4 we show the column density of the four
different particle sizes – rocks and boulders with sizes 15 cm, 30 cm, 45 cm, and 60 cm.
A weak zonal flow has been sufficient to create bands of very high particle overdensity.
An additional instability in the coupled motion of gas and dust has further augmented
the local overdensities (Goodman & Pindor 2000, Youdin & Goodman 2005, Youdin &
Johansen 2007, Johansen & Youdin 2007).

As the self-gravity of the disc is activated, the overdense bands contract radially. Upon
reaching the local Roche density, a full non-axisymmetric collapse occurs and a few
gravitationally bound clusters of rocks and boulders condense out of the particle layer.
The column density of the particles is shown in Figure 5.
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Figure 5. The column density at Δt = 7Torb after self-gravity is turned on. Four gravitationally
bound clusters of rocks and boulders have condensed out of the flow. The most massive cluster
(see enlargement) has a mass comparable to the dwarf planet Ceres by the end of the simulation.

5. Conclusions
The presence of magnetic fields in protoplanetary discs is of vital importance for planet

formation and for observational properties of protoplanetary discs. Small dust grains are
transported very efficiently by the turbulence. While this counteracts sedimentation to
the mid-plane, and thus prevents the razor thin mid-plane layer of Goldreich & Ward
(1973) from forming, the turbulent transport underlies the presence of small dust grains
many scale heights above the disc mid-plane. The presence of crystalline silicates in the
cold outer regions of discs (Gail 2002, van Boekel et al. 2004) can likely also be attributed
to turbulent diffusion (but see Dullemond et al. 2006 for an alternative view taking into
account disc formation history).

Larger dust particles – pebbles, rocks, and boulders – slow down or reverse the radial
migration as they encounter variations in the radial pressure gradient. Fluctuations in
the Maxwell stress, with a coherence time of a few orbits, launch axisymmetric zonal
flows. These flows in turn go into geostrophic balance with a radial pressure bump.
The concentrations of solid particles in such pressure ridges can get high enough for a
gravitational collapse into planetesimals to occur. However, a satisfactory mechanism for
setting the scale of the pressure bumps is lacking, as the bumps grow to fill the box for
all considered box sizes in Johansen et al. (2009). The final size may ultimately be set
by global curvature effects (Lyra et al. 2008a).

An important problem related to the motion of dust particles in turbulence is their
collision speeds. The relative speed of small particles approaches zero as the particle
separation is decreased. But particles that are only marginally coupled to the turbulent
eddies have a significant memory of their trajectories and can collide at non-zero speeds.
Carballido et al. (2008) indeed found that the relative speeds of large particles is un-
changed below a certain separation, giving confidence that the proper collision speed has
been found. Turbulent eddies with sizes around the stopping length of the particle are
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most efficient at inducing relative motion. However, even for marginally coupled particles
these eddies may be on the edge of the dissipative subranges of the turbulence, due to
the limited resolution of numerical simulations. Johansen et al. (2007) found that the
collision speed, measured as the velocity difference over a single grid cell, increases by
10–20% each time the resolution is doubled. Ultrahigh resolution measurements of large
scale and short scale relative speeds, and comparison to analytical models (Völk et al.
1980, Cuzzi et al. 1993, Schräpler & Henning 2004, Youdin & Lithwick 2008) and to
sticking experiments (Wurm et al. 2006, Blum & Wurm 2008), is an important future
priority for our picture of how planets form in turbulent gas discs.

To our best knowledge parts of the solar nebula had so low ionisation fraction that the
collisional resistivity was too high for the magnetorotational instability to develop (e.g.
Gammie 1996, Sano et al. 2000). Kretke & Lin (2007) and Brauer et al. (2008) modelled
the sharp increase in resistivity as the gas temperature drops below the freezing point
of ice (the so-called snow line) at a few AU from the sun. The corresponding drop in
turbulence activity leads to a pile up of gas and a run away growth in particle density
from the influx of migrating solid particles. The lack of radial drift in such a location
allows for planetesimal formation by coagulation to occur without having to compete
with the radial drift time-scale. The edges of “dead zones” can be unstable to a Rossby
wave instability (Inaba & Barge 2006, Varnière & Tagger 2006). The Rossby vortices
efficiently trap particles, which leads to a burst of planet formation at the edge of dead
zones (Lyra et al. 2008b). This way magnetic fields helps the planet formation process
both in their presence and in their absence.
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Discussion

Blackman: There has been recent evidence that the Maxwell stress resulting from the
MRI scales with box site for small boxes. Have you been able to see a saturation of the
Maxwell stress in combining your large radial scale and multi-scale hight (in vertical
direction) boxes? One would expect that boxes that allow field structures with H≈R are
required.

Johansen: Yes, we have seen such a saturation in the Maxwell stress. When changing
the radial and azimuthal extent of the box from Lx = Ly = 1.32H to Lx = Ly = 2.64H
the Maxwell stress increases from ≈0.005 to ≈0.01. However, another doubling at the
box size yields no further change to the Maxwell stress.
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