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Abstract

Creative conceptual design requires significant previous design knowledge. Case-based reasoning enables learning from
previous design experience and has a great potential in supporting creative conceptual design by means of seeking to re-
trieve, reuse, and revise most appropriate cases to generate inspired solutions. However, traditional case-based reasoning
based creative conceptual design models focus on design strategies research, pay little attention to defining a consistent
knowledge representation model, and neglect the research to make various types of knowledge retrieval tractable. Faced
with such drawbacks, the expected design knowledge cannot be retrieved properly, especially in cases where multidiscipli-
nary knowledge is concerned or exact query terms are absent. In order to solve these issues, this paper presents a combined
approach to support creative conceptual design process. First, function–behavior–structure knowledge cell is introduced as
a unified consistent design knowledge representation model. Second, a hybrid similarity measure is proposed to increase the
overall possibility of obtaining useful design knowledge by considering semantic understanding ability. Third, an intelli-
gent creative conceptual design system has been developed with a case study of a novel insulin pump design to demonstrate
its usage, and two experiments are conducted to evaluate the performance of the proposed approach. The results show that
the proposed approach outperforms other case-based reasoning based creative conceptual design models.

Keywords: Case-Based Reasoning; Conceptual Design; Function–Behavior–Structure Knowledge Cell;
Hybrid Similarity Measure

1. INTRODUCTION

Increasing complexity of products design and fierce competi-
tion of market have always led to the search for reuse historical
design knowledge to integrate solutions of new discovered
functions into a structure or explore multidisciplinary knowl-
edge to stimuli novel promising solutions (Chen et al.,
2012). Conceptual design is defined as the phase in which
the design requirements are described and promising solutions
are generated. Studies show that about 70%–80% of the
product life cycle cost is determined in conceptual design
(Kota & Lee, 1993). Moreover, it is pivotal in defining new,
creative products for the sake of it is hard to smooth a poor
conceptual design decision in the following stages. Research
to support creative conceptual design has been widely reported
for decades (Liu et al., 2011). Many creative conceptual design
models have been proposed, which can be classified into de-
sign strategies centered models and knowledge reuse centered

models. Design strategies centered models prompt design solu-
tions generation by using various novel ideas creation strate-
gies. Examples include the genetic algorithm based model
(Santillan-Guiterrez & Wright, 1996), the case-based reason-
ing (CBR) model (Gero, 1990; Goel, 1997; Yang & Chen,
2011), the hierarchical decomposition and recomposition
based model (Chakrabarti & Blessing, 1996; Li et al., 2010),
the function–behavior–structure (FBS) model and its exten-
sions (Goel, 1997, 2004; Gero, 2000; Gero & Kannengiesser,
2007; Ma et al., 2013), and the TRIZ based model (Becattini,
2012). Knowledge reuse centered models aim at modeling and
reuse design knowledge for exploring design knowledge
previously unknown to the designers. Examples include the
axiomatic design model (Suh, 2001), the intelligent creative
conceptual design (ICCD) model (Chen et al., 2012), and the
heuristic based model (Stone et al., 2000; Chong et al., 2009).
However, these models focus on research of practical methods
of products design and emphasize partial optimization of the
design process. The research of a combined approach for crea-
tive conceptual design is neglected.

The objective of this paper is to support creative conceptual
design by proposing a combined approach, including a
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unified consistent knowledge representation model that
can be applied to a multidiscipline environment, a hybrid
similarity measure that realizes multidisciplinary knowledge
retrieval, and an intelligent creative conceptual design system
(ICCDS) that supports creative conceptual design directly.
The remainder of this paper is organized as follows. Section
2 is a literature review on CBR based creative conceptual de-
sign models and similarity measures for case retrieval. Sec-
tion 3 describes key techniques of the proposed approach, in-
cluding FBS knowledge cell construction, the adapted CBR
model, and the hybrid similarity measure. Section 4 presents
the implementation of the combined approach, a case study of
ICCDS, and its performance evaluation. Finally, the conclu-
sions are given in Section 5.

2. LITERATURE REVIEW

CBR is a problem-solving paradigm that retrieves, reuses, and
revises historical cases to fulfill new design requirements
through imitating the problem-solving mechanism of human
beings. Comparing with other major creative conceptual de-
sign models, CBR has several advantages: it enables learning
nonlinearly separable categories and continuous functions
with low computational cost, it simulates a practical scientific
reasoning process of human beings that is human understand-
able, and it supports multidomains knowledge reuse success-
fully (Liu & Chen, 2012). Goel and Bhatta (2004) proposed a
model based analogy to transfer design patterns of sources to
address creative design problems. Han and Lee (2006) pre-
sented a case-based computational framework for design
synthesis that implemented virtual function generators as re-
usable design blocks to generate novel design solutions. Yang
and Chen (2011) described a novel model to accelerate ecoin-
novation product design by integrating advantages of CBR
and TRIZ. Janthong et al. (2010) combined axiomatic design
principles with CBR for mechatronics products design. How-
ever, these models focus on creation design strategies re-
search and pay little attention to defining a consistent knowl-
edge representation model, lowering the reusability of design
knowledge. The FBS model (Gero, 1990) is one of the first
functional models that represent design cases, for example,
products or artifacts, in terms of function. It supports concep-
tual design by taking hierarchical functional decomposition
as the bridge between high-level design requirements and
low-level detailed structure representation and provides de-
sign process with a consistent knowledge representation
model. It can realize exploration of the innovative space of
the products between different design fields fleetly through
adopting casual mapping between design elements as the
driver. Other researchers have described similar models based
on the triplet of knowledge (function, behaviour, and struc-
ture) with modifications, such as the FBS model of Umeda
and Tomiyama (1995), the structure–behavior–function
model of Goel (1997; Goel & Bhatta, 2004), the function
effect behavior structure model of Deng (2002), and the
requirement function behavior structure of Christophe et al.

(2010). However, more attention should be paid to proper
tools and strategies for design knowledge reuse. Considering
the characteristics of the above models, this paper integrates
Gero’s FBS model into the CBR paradigm and attempts to
create a fusion of their advantages. A consistent design
knowledge representation model, named the FBS knowledge
cell model, is designed to better represent and reuse design
knowledge. The design strategies of CBR are retained to fa-
cilitate the design process while employing FBS knowledge
cells instead of case families as design knowledge carriers
to realize product design.

The case retrieval process is pivotal in finding the most
similar cases to provide immediate ideas or useful design
knowledge. Most applications of case retrieval use the nearest
neighbors to measure the similarity between specified design
requirements and stored cases considering various types of
knowledge representation. Thus, the selection of similarity
measures and its weighting methods has been among the
most popular research issues (Liu & Chen, 2012). Contents
of design knowledge can be mainly classified into two cate-
gories: numeric expression knowledge and semantic descrip-
tion knowledge. Commonly, distance functions derived from
Euclidean distance or Manhattan distance (Qi et al., 2009) are
implemented for numeric expression knowledge matching.
Meanwhile, similarity evaluation of semantic description
knowledge is always conducted by computing the similarity
between terms. Existing semantic similarity measures can
be categorized into node distance (ND) based measures, in-
formation content (IC) based measures, and hybrid measures
(Li et al., 2003). ND measures similarity through statistics
and the shortest path distances between lexicon terms. How-
ever, nonuniform link strength between adjacent terms affects
its reliable, and the accuracy of ND yields 60%. For example,
IS-A links: Tesla IS-A Machine and Car IS-AVehicle, the IS-
A link between the former covers a larger conceptual distance
than the latter. IC is conducted on the premise that the sharing
information of two lexicon terms is proportionate to their sim-
ilarity, with an accuracy of 82%. Hybrid measures inherit
the edge counting schema of ND and implement the informa-
tion content calculation of IC as a decision factor to develop a
combined similarity measure that improves the semantic sim-
ilarity calculation accuracy up to 87% (Jiang & Conrath,
1997). Liao et al. (1998) developed a hybrid similarity mea-
sure for similarity calculation with a mixture of crisp and
fuzzy features. Qi et al. (2009) used triangular functions for
fuzzy numeric knowledge and fuzzy linguistic knowledge
evaluation. Based on the NIST functional basis taxonomy,
Fernandes et al. (2011) presented the semantic relatedness
uniqueness metric to provide designers a measure of their
effectiveness by generating unique design concepts. Hu et al.
(2012) proposed a two-level clustering algorithm for case re-
trieval considering four types of design knowledge: numeric,
linguistic terms, fuzzy sets, and Boolean. Guo et al. (2012)
proposed a hybrid similarity measure for injection mold de-
sign based on ontology. Fan et al. (2014) proposed a hybrid
similarity measure considering the situation of five formats,
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including crisp symbol, crisp number, interval number, fuzzy
linguistic, and random variable, and gave a systematic litera-
ture review on proposed similarity measurements of numeric
expression. However, little attention has been paid to the hy-
brid similarity measure considering both numeric expression
and semantic description, and semantic understanding ability
is lacking. Therefore, an in-depth study of a hybrid similarity
measure is worthwhile.

3. KEY TECHNIQUES OF THE INTELLIGENT
CBR SYSTEM

3.1. Adapted CBR model using FBS knowledge cells

The CBR model uses FBS knowledge cells as function
blocks to produce novel design ideas, as given in Figure 1.
It starts right after extracting required functions from design
requirements and is followed by searching the FBS knowl-
edge cell library to obtain a set of similar knowledge cells.
Then the designer attempts to reuse the retrieved FBS knowl-
edge cells after adapting them. Once no satisfied FBS knowl-
edge cell is retrieved, designer should further decompose the
required function into subfunctions and repeat the retrieval
process. When all required functions obtain their suitable
FBS knowledge cells, the retrieved knowledge cells will be
recomposed by a backtracking function decomposition pro-
cess to arrive at suggested solutions. If necessary, designers
revise or adapt the suggested solutions after further evaluating
the quality of generated design solutions. Finally, the output
design solutions are retained as a new design experience and
added into the FBS knowledge cell library. Compared with
the traditional CBR model, there are two main differences:
using the FBS knowledge cell library as a knowledge base in-
stead of cases family, and hierarchical function decomposi-
tion to retrieve suitable FBS knowledge cells and recomposi-
tion of the retrieved FBS knowledge cell to build suggested
solutions. These differences are convenient to understand
and reuse design knowledge.

3.2. FBS knowledge cell representation schema

Based on the function knowledge decomposition theory and
function knowledge cell (FKC)/function microknowledge

cell (FMKC) given by Li et al. (2010), an approach of FBS
knowledge cell is proposed. There are two significant advan-
tages in Li’s model: function knowledge decomposition the-
ory offers a method to judge the endpoint of function decom-
position to decompose a complex mechanism into simpler
function blocks as well as guarantee reusability and robust-
ness of obtained knowledge cells; and FKC/FMKC provides
the design process with a unified consistent knowledge repre-
sentation schema that facilitates multidisciplinary knowledge
storage, manipulation, retrieve, and reuse. However, FKC/
FMKC integrates function representation with structure rep-
resentation but neglects separation of behavior from function,
which plays a vital role in offering design procedures with
reasons behind the structure and with casual relations among
the states or behavior variables. Because confusion and mix-
ing of behavior and function lower the reusability of design
knowledge, it is necessary to separate them (Sasajima et
al., 1995). For example, the function of a hydraulic cylin-
der, whose behavior is to convert hydraulic pressure into me-
chanical energy and vice versa, becomes different when it is
planted in different equipment. When it is used in lifting
equipment to realize the function lift object, its behavior is “to
realize reciprocating motion and maintain stability movement
of plunger.” When it is used in buffer device to absorb shock,
its behavior becomes “to absorb the vibration energy and to
protect the equipment from being affected and damaged.”
In this study, the process of modeling FBS knowledge cell
is given in Figure 2. The FBS knowledge cell is designed
by building function–behavior mapping and behavior–struc-
ture mapping to integrate behavior knowledge with obtained
FS knowledge cells in modeling the FMKC process.

FBS knowledge cell representation describes essential de-
sign knowledge and possesses internal links to corresponding
elaborate function, behaviour, and structure representation.
The FBS knowledge cell representation schema is given in
Figure 3. In the schema, function reveals the abstract of spe-
cific capability that the system can achieve. Pahl and Beitz’s
(1988) syntax of transitive verb þ noun þ complement and
transitive verb lexicon defined by Stone et al. (2000) are
adopted in function name representation to avoid ambiguity.
Driving _input and Function _output flow (Stone et al., 2000)
state the formal definition of input and output flow of energy
(E), signal (S), and material (M) required by design systems.

Fig. 1. The adapted CBR model uses FBS knowledge cell.
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An additional description is added in Annotation to provide
designers with more essential design knowledge. Behavior
representation pertains to the structure and realizes its func-
tion. It describes intermediate states of structures or mecha-
nisms and provides the design process with more precise de-
sign knowledge on how the structure behaves in achieving a
certain function. Structure describes basic geometry informa-
tion in terms of parametric representation and semantic de-
scription. Working as function blocks, sets of obtained FBS
knowledge cells are saved in a FBS knowledge cell library
hierarchically according to the decomposition process.

3.3. Proposed hybrid similarity measures for case
retrieval

FBS knowledge cell retrieval is the key phase in the proposed
CBR model where the assessment of similarity between re-
quired functions and target FBS knowledge cells plays a vital
role because near-most or most suitable solutions can be re-
trieved and ranked if superior similarity measures exist.
During the retrieval process, the required functions are spe-
cified in the form of attribute-value pairs plus additional se-

mantic descriptions [Eq. (1)]. Attributes are represented in
the form of semantic descriptions, values are given either se-
mantically or numerically, and the additional semantic de-
scription is given to provide more retrieval information.
The specified functionK can be represented as the following:

K ¼ {Attribute : value} � (additional semantic description)

¼ {S : (SjN CjN F)} � S, (1)

where S, N C, and N F represent semantic knowledge, the
crisp/interval value, and the fuzzy numeric value separately.

3.3.1. FBS knowledge cells preselection

The introduction of preselection aims at narrowing the re-
trieval range and reducing computation loads in subsequent
steps. The set of preselected FBS knowledge cells is deter-
mined by retrieving the standard transitive verb vocabulary
and flow vocabulary to judge the consistency of verb in
Function_ name and Input/output flow of Driving_ input/
Function_ output of F j

C (the function of the jth FBS knowl-
edge cell in the FBS knowledge cell library fC p

FBSg) and F i
R

(the ith specified required function). Equation (2) states that

Fig. 3. FBS knowledge cell representation.

Fig. 2. Integrating behavior knowledge with FS knowledge cell to build FBS knowledge cell.
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the FBS knowledge cell has synonymous verbs and the same
input/output flow with the required function preselected. The
set of preselected FBS knowledge cells of F i

R is denoted

as fC j
i g.

Simpre(SR, SC) ¼
�
verb F i

R � F j
C

� �
?1 : 0

�
<
�
Input flow F i

R¼F j
Cð Þ?1 : 0

�
< [Output flow F i

R ¼ F j
C

� �
?1 : 0] (i, j [ N):

(2)

3.3.2. Similarity measure for semantic knowledge

To realize multidisciplinary design knowledge retrieval, a
broad coverage corpus is required to work as an underlying
reference for semantic similarity calculation. Authors typi-
cally exploited WordNet, contains around 100,000 terms,
as an ontology for natural language terms in measuring se-
mantic similarity between a pair of synsets (George & Chris-
tiane, 2006). In WordNet, terms with distinct concepts are
grouped into different sets of synonyms and interlinked by
means of semantic and lexical relations (is-a, part-of, similar,
and inverse relations). Motivated by this, this study carried
out some new attempts to improve semantic similarity calcu-
lation accuracy by combing ND and IC together while using
WordNet ontology as a reference, and a three-level semantic
similarity calculation approach was proposed.

First-level semantic calculation based on IC. Terms of se-
mantic description are extracted manually from the compared
requirordNet based similarity definition with nodes state the
terms and links state the relations between terms as shown
in Figure 4.

WordNet based similarity definition with nodes state the terms
and links state the relations between terms as shown in Figure 4.

The IC of a term can be quantified as log of the inverse of
the probability that it is observed. Similarity of two compared
terms is extent to the specific term that subsumes them both in
the taxonomy. Therefore, assume the specific term NT that
subsumes both T i

R [ TR and T j
C [ TC is the “lowest upper

node” among those terms that subsume them. Information

content based similarity (SimIC
SS(T i

R, T j
C)00k) of T i

R and T j
C of

the kth pair of compared function can be defined as

SimIC
SS T i

R, T j
C

� �
k
00 ¼ max

NT[Sup T i
R,T j

Cð Þ
�log Pchildren NTð Þð Þf g, (3)

where Pchildren(NT) is the probability of occurrence of all terms
derived from NT (including itself) and Pchildren(NT) ¼ (0, 1].

When all IC based similarities oeach compared term pair
have been obtained, normalized similarities SimIC

SS(T i
R, T j

C)k

can be calculated by implementing Eq. (4) to keep the value
between 0 and 1.

SimIC
SS T i

R, T j
C

� �
k ¼

SimIC
SS T i

R, T j
C

� �
k
00

Xnumber TRð Þ
i¼1

Xnumber TCð Þ
j¼1 SimIC

SS T i
R, T j

C

� �
k
00 : (4)

Second-level semantic similarity calculation based on
ND. In this study, ND based similarity calculation takes
not only hierarchical node depth related link strength but
also distinct relations related link strengths into consideration.

1. Hierarchical node depth related link strength. Under
considering the semantic difference of different links
in different layers, hierarchical node depth related link
strength between adjacent terms Ts and TsubðsÞ can be
formally defined as

vsðTs, Tsub(s)Þ ¼ 1þ 1=2(d(Tsub(s))�1) (5)

where d(TsubðsÞ) represents the depthof TsubðsÞ from the root
node to node TsubðsÞ and TsubðsÞ is the subnode of Ts. The
choice of root node depends on the specific term NT.

2. Distinct relations related similarity. Distinct relations
between two adjacent terms have different link strength.
The weights of the distinct relations are assigned in the
following order: exact match (me ¼ 1) . similar (mm) .

is-a (mis) . part-of (mp) . inverse (min ¼ 0). Values of
relations weights are obtained through experiments or
related domain experts (empirically set mm ¼ 0.86,
mis ¼ 0.64, mp ¼ 0.36).

Node distance is the product of hierarchical node depth re-
lated link strength and distinct relations related link strength.
The node distance algorithm is given in Figure 5.

In order to transform the node distance into a similarity,
the inverted function is introduced. Thus, ND similarity
(SimND

SS (T i
R, T j

C)k) of terms T i
R and T j

C of the kth compared
functions pair is calculated implementing Eq. (6).

SimND
SS (T i

R, T j
C)k ¼

1

ND(T i
R, T j

C)k þ 1
: (6)

Fig. 4. WordNet based similarity definition.
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The total semantic similarity of compared terms T i
R and T j

C
can be defined as

SimSS(T i
R, T j

C)k ¼ g� SimIC
SS(T i

R, T j
C)k þ (1� g)

� SimND
SS (T i

R, T j
C)k , (7)

where g is the weight of information content based semantic

similarity SimIC
SS(T i

R, T j
C)k. Considering ND is not very reli-

able and according to experiment results, the value of r is
about [0.85, 0.95].

Third-level global semantic similarity calculation based
on TF-IFF. The above semantic similarity considers similar-
ity of compared terms. However, the term frequency of occur-
rence is another factor that should be considered. TF–inverse
document frequency (TF-IDF; Salton & Buckley, 1988) is the
common way of term weighting. TF-IDF increases propor-
tionally to the probability of occurrence of a term in the docu-
ment, but it is offset by the term frequency in the corpus. The
original thought of TF-IDF is borrowed here, and some mod-
ifications are made to reflect our intensions. Given Tt [ TC

and C j
i , the term frequency TFt; j is calculated as

TFt, j ¼
NT( T t

C, C j
i )XTerm number(TC)

t¼1 NT(T t
C, C j

i )
(t, j [ N), (8)

where NT(T t
C, C j

i ) is the occurrence of T t
C in C j

i and the de-

nominator is the total occurrence of all terms of TC in C j
i .

The inverse FBS knowledge cell frequency is calculated as

IFFt ¼ log
NF(T t

C)
NF

� �
(t [ N), (9)

where IFFt states inverse FBS knowledge cell frequency of
T t

C, NF(T t
C) is the number of FBS knowledge cells that con-

tains T t
C, and NF is the total number of FBS knowledge cells

in the FBS knowledge cell library.
On the basis of comprehensive consideration of term simi-

larity and frequency of occurrence, the global semantic simi-
larity between F i

R and C j
i is calculated as

GSS F i
R, C j

i

� �
¼

XTerm numberðTCÞ

t¼1
TFt, j � IFFt �

XTerm numberðTRÞ

s¼1
SimSS T s

R, T t
C

� �
k

" #( )

i, j, k [ Nð Þ: (10)

Assume similarities of each function pair (F i
R, T j

C) have
been obtained, similarities are normalized by using Eq. (11)
to conduct normalization.

aij ¼
GSS(F i

R, C j
i )Xnumber(CFBS)

j¼1 GSS(F i
R, C j

i )
(i, j [ N), (11)

where aij is normalized value of GSS(F i
R, F j

C). The final
normalized global semantic similarities can be denoted by
a similarity matrix SimSS(SR, SC).

(12)

3.3.3. Similarity measures for crisp/interval values

Crisp values and interval values are delimited by sharp
boundaries. There are four occasions when computing crisp/
interval numeric similarity between required functions and
FBS knowledge cells: similarity calculation for crisp-crisp,
crisp-interval, and interval-crisp and interval-interval values.

Similarity measure for crisp-crisp values. Similarity be-
tween crisp values can be calculated by implementing a
one-dimensional Euclidian distance function. Denote x and
y as crisp values of the same attribute from the required func-
tion and FBS knowledge cell, respectively. The similarity
SimCC

CN(x, y)i
k of the ith compared attribute values pair of the

kth compared functions pair is as follows:

SimCC
CN(x, y)i

k ¼ 1� jx� yj
max(x, y)

: (13)

Similarity measure for crisp-interval values. Given x and
[ y1, y2] as the crisp value of the required function and the
interval value the same attribute of the FBS knowledge
cell, respectively, the similarity measure is defined as

SimCI
CN(x, y)i

k ¼ SimCI
CN(x, [y1, y2])k ¼

1 x [ [y1, y2]
0 x � [y1, y2]

�
, (14)

Fig. 5. Pseudocode for nodes distance algorithm.
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where SimCI
CN(x, y)i

k represents similarity of the ith attribute
values pair of the kth compared functions pair.

Similarity measure for interval-crisp values. Let [x1, x2]
be the interval value of the required function and y be the
crisp value of the same attribute of FBS knowledge, the simi-
larity measure can be defined as

SimIC
CN(x, y)i

k ¼ SimIC
CN([x1, x2], y)k ¼

Ð x2

x1
Sim(x, y)dx

x2 � x1

¼ 1� 1
x2 � x1

ðx2

x1

jx� yj
max(x, y)

dx, (15)

where SimIC
CN(x, y)i

k represents similarity of the ith attributes
value pair of the kth compared functions pair.

Similarity measure for interval-interval value. If [x1, x2] is
the interval value of the required function and [ y1, y2] is the
interval value of the same attribute of FBS knowledge cell,
the similarity measure should be

SimII
CN(x, y)i

k ¼ SimII
CN([x1, x2], [y1, y2])k

¼

ðx2

x1

ðy2

y1

1� jy� xj
max(x, y)

� �
dydx

(x2 � x1)(y2 � y1)
, (16)

where SimIC
CN(x, y)i

k represents similarity of the ith attributes
value pair of the kth compared functions pair.

3.3.4. Similarity measure for fuzzy numeric values

Crisp/interval values neither always exist nor can they be
derived for all design requirements because related domain
knowledge may not be thoroughly understood. Under many
circumstance, fuzzy numeric expressions are given and de-
scribed by a relation (,, �, �, �, and .) together with a tar-
get attribute value, for example, the output pressure of injec-
tor �12.7 kPa, in which the relation is � and the target
attribute value is 12.7. Many membership functions have
been proposed to calculate the similarity between fuzzy nu-
meric values. Many membership functions, which define
how to map the fuzzy value to degree of membership between
0 and 1, have been proposed to calculate the fuzzy numeric
similarity, for example, the triangular membership function
(Trimf), the trapezoidal membership function (Tramf), and
the Gaussian membership function (Gaussmf). To reduce
the burden of calculation, Tramf is adopted to calculate the
fuzzy similarity. The membership functions for different rela-
tions in fuzzy numeric expressions are given in Table 1,
where x is the real value, y or [ y1, y2] is the target value,
and min and max represent the lower and upper bound of
the attribute value. Denote the weight of crisp/interval values
as b [ [0, 1]. The global numeric similarity SimNS(F i

R, C j
i )

between required functions and FBS knowledge cells can

be defined as

SimNS(F i
R, C j

i )

¼ b� SimCN(F i
R, C j

i )þ (1� b)� SimFN(F i
R, C j

i )

¼ b�
Xm
i¼1

SimCN(x, y) i
k þ (1� b)�

Xn

j¼1
SimFN(x, y) j

k , (17)

where SimCN(x, y) i
k [ {SimCC

CN(x, y) i
k, SimCI

CN(x, y) i
k, SimIC

CN
(x, y) i

k, SimII
CN(x, y) i

k}; m is the total number of crisp and
interval values appeared; SimFN(x, y) j

k [ {SimLE
FN(x, y) j

k,
SimB=A

FN (x, y) j
k, SimGE

FN(x, y) j
k}; and n is the total number of

fuzzy numeric values.
Suppose numeric similarities of all functions pairs (F i

R, C j
i )

have been obtained, numeric similarities could be normalized
by implementing Eq. (18) to keeps the value between 0 and 1.

bij ¼
SimNS(F i

R, F j
C)Xnumber(FR)

i¼1

Xnumber(CFBS)
j¼1 SimNS(F i

R, F j
C)

, (18)

where bij is the normalized value of SimNS(F i
R, F j

C). The
global numeric similarities between each pairs of compared
functions can be given in the form of a similarity matrix
SimNS(N R, N C).

(19)

3.3.5. Global similarity measure (GSM)

When the matrix 12 and matrix 19 are obtained, the global
similarity can be calculated by using the following equation.

SimG(F, C i
FBS) ¼ a� SimSS(SR, SC)þ (1� a)

� SimNS(N R, N C), (20)

where SimG(F, C i
FBS) is the global similarity, a is weight of

SimSS(SR, SC) and a [ [0, 1]. Note that the similarity be-
tween the decomposed function and its solution is the com-
posite of similarities of its subordinates.

4. IMPLEMENTATION AND CASE STUDY

4.1. Implementation

To implement the proposed approach, an FBS knowledge cell
based ICCDS has been developed, in Java language with jar
files (prefuse, jena, and jgraph) to support creative conceptual
design. The relational database (MySQL

TM
) is used to store

the FBS knowledge cell. It facilities design knowledge
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representation, management, and allows designers to access
multidisciplinary knowledge. Moreover, it introduces seman-
tic understanding ability into the FBS knowledge cell
retrieval process. The main interface of ICCDS is shown in
Figure 6.

As is mentioned above, the FBS knowledge cell library
plays a role in function blocks. When confronted with a
new design task, it is necessary for designers to extract re-
quired functions and decide the basic retrieve knowledge ac-
cording to the given design requirements. Then specifying the
retrieval knowledge to retrieve forth and back between re-
quired functions and the FBS knowledge cell library to search
for suitable FBS knowledge cells using the proposed hybrid
similarity measure, sets of retrieved FBS knowledge cells
are added to the corresponding node of the tree-view in the
left side of the interface and displayed in tabular form. De-
signers are allowed to read or adapt design knowledge of
each retrieved FBS knowledge cell. FBS knowledge cells in
the same tabular node meet the same function, and only
one of them is allowed to be chosen to realize its function
at every turn. If no suitable FBS knowledge cell is retrieved,
the function is decomposed into subfunctions and the re-
trieval process is repeated. The function decomposition pro-
cess is displayed in the center of the interface. When all re-
quired functions retrieved the satisfied FBS knowledge
cells, recompose them through the backtracking function de-
composition process and place the FBS knowledge cells end
to end to form a design solution chain while ensuring the in-
put flow and the output flow of each FBS knowledge cell are
the same with the output flow of the front one and input flow
of the back one. Finally, the generated possible design solu-
tions are displayed.

4.2. Illustrative example

An insulin pump makes it possible to accurately deliver insu-
lin and allows for scheduled insulin deliveries of varying
amounts at different times of the day for Type 1 diabetes mel-
litus patients to simulate insulin secretion of the human body.
The traditional insulin pump is driven by a high-precision mi-
cromotor with the minimum injection dose up to 0.05 U/h.
Motivated by proposing better design solutions to improve
the performance of the insulin pump through lowering the
minimum delivery dose and prolonging the battery life be-
tween charges, we attempted to generate some novel design
solutions for the insulin pump using our proposed approach.
The design process was given as below.

STEP 1. Design requirements analysis to extract functions
and basic design parameters: Through detailed analysis and
discussions of the working mechanisms of a traditional insu-
lin pump, the determined basic functions and the sequential
function chain for the flow of the insulin pump were shown
as in Figure 7.

To elaborately demonstrate the retrieval process, one of the
most critical functions, Convert electrical energy into hydrau-
lic energy, was taken as an example. The basic retrieval knowl-
edge could be represented as: Function_ name: Convert
electrical energy into hydraulic energy; Driving_input: fE:
Electrical; M: Liquid; S: Digitalg; Function_output: fE:
Hydraulic energy; M: Liquid; S: N/Ag. The decided additional
retrieval knowledge and its weight were given in Table 2, with
material unknown to verify the semantic understanding ability
of ICCDS. Weights of retrieval knowledge was gotten using
the approach of the analytic hierarchy process.

Table 1. Membership functions for different relations

Relations

≤, , ≈ ≥, .

Similarity measure SimLE
FN(x, y) j

k

=
1 x [ (0, y]
x − max
y − max

x [ ( y, max]

0 else

⎧⎪⎨
⎪⎩

SimB/A
FN (x, y) j

k = SimBA(x, [y1, y2])k

=

x − min
y1 − min

x [ (min, y1)

1 x [ [y1, y2]
max − x

max − y2
x [ (y2, max)

0 else

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SimGE
FN(x, y) j

k

=

0 x [ (−1, min]
x − min
y − min

x [ (min, y)

1 else

⎧⎪⎪⎨
⎪⎪⎩

Note: The math relations signs in the column heads are less than or equal to, less than, between or about, greater than or equal to, and greater than,
respectively.

New creative conceptual design using cased-based reasoning 23

https://doi.org/10.1017/S0890060416000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000159


STEP 2. FBS knowledge cell retrieval and required func-
tion decomposition: Conducting the preselection level to
reduce calculation amount according to Section 3.3.1, the
preselected FBS knowledge cells and their basic knowledge
were given in Figure 8.

It shows that a series of FBS knowledge cells derived
from multidisciplinary were retrieved, including electric–
mechanical cells (e.g., rotary motor and line motor),
mechanic–hydraulic cells (e.g., hydraulic pump and screw
pump), electronic–mechanical–hydraulic (e.g., piezo-micro

pump), and so on. Specify the given retrieval knowledge
into the ICCDS to search for the similar FBS knowledge cells
that met the set threshold (u¼ 0.7600) and rank them sequen-
tially according to the calculated similarity. However, the
value of the attribute Material was difficult for designers
without any biomedical background to propose suggestions.
Instead of providing professional knowledge, designers could
conduct the retrieval process by specifying the relevant term:
Medical. The ICCDS would retrieve the FBS knowledge cell
library based on WordNet ontology; thus, the FBS knowl-

Fig. 6. Interface and demonstration of the developed ICCDS.

Fig. 7. A sequential function chain for the flow of energy, material and signal of insulin pump.
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edge cell contains relevant terms, for example, PVC, PDMS,
and POM, and other specified retrieval knowledge would be
retrieved. Provided that there was no FBS knowledge cell met
the set threshold u, further decompose the function Convert
electrical energy into hydraulic energy into Convert electri-
cal energy into mechanical energy and Convert mechanical
energy into hydraulic energy, and repeat the retrieval process
after determining their basic retrieval knowledge. The re-
trieved FBS knowledge cells and their retrieval knowledge
representation were given in Figure 9.

STEP 3. Reuse and recompose: Reuse retrieved FBS
knowledge cells by referring to the ranked order of similar-
ity and then remove the unqualified ones. After each
function had obtained its suitable FBS knowledge cells, re-
trieved FBS knowledge cells recomposed to generate
suggested design solutions through a backtracking function
decomposition process and connecting subfunctions of the
same function in chronological order, where output flow of
the former FBS knowledge cells were input flow of the

latter FBS knowledge cells. The suggested design solutions
of the function Convert electrical energy into hydraulic
energy were given in Figure 9.

STEP 4. Revise: In this step, casual knowledge embedded
in the behavior representation of the FBS knowledge cell
was used to get a committed design solution. For example,
different persons have different skin resistance and need
different puncture force to inject insulin into the body,
which is difficult to reach for a single piezo micropump
(as shown in Fig. 8, the output pressure of piezo micro
pump ¼ 6.5 kPa , skin resistance ¼ 12.7 kPa), a revise
was stimulated by the attribute Casual_ link of piezo mi-
cropump: Pout ¼ Pin þ Pproduce þ Pproduce (the output pres-
sure is the sum of the output pressure of two single piezo
micropumps). The suggested solution was connect two
piezo micropumps of two chambers in series, and the con-
nected two piezo micropumps adopts cross working mode:
when one piezo micropump absorbs fluid, another piezo
micropump drains fluid. Figure 10 demonstrated the revi-

Table 2. The decided additional retrieval knowledge and corresponding weights (a ¼ 0.40, b ¼ 0.32, total
weight ¼ 1.00)

No. Attributes Value Unit Type Weight

1 Minimum output of flow ,0.5 Ul/h Fuzzy numeric 0.16
2 Output pressure ≈12.7 KPa Fuzzy numeric 0.12
3 Largest fluid current 40 Ul/h Discrete numeric 0.10
4 Power consumption ,1.2 MAh/h Fuzzy numeric 0.13
5 Endure temperature 215 to 55 Degrees Interval numeric 0.09
6 Material Unknown NA Semantic 0.15
7 The structure should enable output [steady] flow, [easy][operate],

with [compact] structure and high operate [precise], working
[noiseless] during working period

Semantic 0.25

Fig. 8. The preselected FBS knowledge cells and their basic knowledge (partly).
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sion to solve the problem that the single piezo micro-pump
cannot provide sufficient puncture force.

STEP 5. Retain: Output design solutions and retain essen-
tial design knowledge into database for future design reuse.
Analytic hierarchy process could be used as a means to evalu-
ate the performance of the committed design solutions. The
accuracy of the injection dose of the improved insulin pump is
improved by five times to 0.01 mL, the cost of it is reduced,
and the precious battery life is prolonged.

4.3. Performance evaluation

To evaluate the performance of the developed ICCDS and the
proposed combined approach, 5 graduate students and 10 un-
dergraduate students in the Institute of Knowledge Based En-

gineering were invited to participate in the experiments with
1189 FBS knowledge cells in the FBS knowledge cell library
(obtained from 136 design cases) used as the target function
blocks. The participants were selected as subjects because
they had creative design related training and some creative
design experience, which is necessary for performance
evaluation and to ensure the complete concepts recorded.
The participants were divided into five groups (G1, G2,
G3, G4, and G5), with each group consisting of 1 graduate
student and 2 undergraduate students. Nine creative concep-
tual design tasks (coded 1–9) were adopted to demonstrate
the performance of the proposed approach. They were di-
vided into three design levels: the high level with more
than two necessary attributes lacking, the medium level
with one or two necessary attributes lacking, and the low level
with all necessary attributes given clearly. Two experiments

Fig. 9. Comparing FBS knowledge cells with retrieval knowledge of given functions.

Fig. 10. Revise the design solution to provide sufficient output pressure.
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were designed to verify the effectiveness of ICCDS. Experi-
ment 1 was conducted to show the effectiveness of the pro-
posed approach in different design levels. Experiment 2
was assigned to improve the reliability of the proposed ap-
proach, and a comparative study between the proposed ap-
proach and other related approaches was conducted to show
how much improvement can be achieved. An expert pane,
consisting of 10 famous experts or engineers from five differ-
ent disciplines (i.e., mechanical engineering, electrical engi-
neering, electronics engineering, hydraulic engineering, and
energy engineering) was invited to score the design results
using the two indices: novelty (%) and satisfactory (%).
They are all experts or engineers with rich conceptual design
experience. Novelty is the degree of originality or newness of
the generated design solutions. The scores are calculated by
the frequency of occurrence of the obtained principles of
each of the decomposed subfunctions among the design solu-
tions generated by all the groups (Wilson et al., 2010). The
more striking or unusual the design solution is, the higher
score the group will get. Satisfactory is the degree to which
the output design solutions fulfill the design requirement
(Guo et al., 2012). The scores are determined by the design
solutions of the decomposed subfunctions.

4.3.1. Experiment 1: A comparative study among
different design requirements clarification levels

In this experiment, the performance of ICCDS was sum-
marized taking consideration of the extent of design require-
ments clarification and the statistic results was shown in
Table 3. According to the statistics principle, mean m(total)
and deviation s(total) were calculated to reflect the distribu-
tion of evaluation indexes. From Table 3, we can draw some
conclusions. For novelty, the mean m(total) of novelty as-
cends from 61.4%, 72.4% to 78.1%, showing that the high-
level design activities could generate more striking design so-
lutions because the space of FBS knowledge cells for the de-
signers’ choice was compressed and sets of FBS knowledge
cells that may stimulate novel design conceptions were elimi-
nated in the retrieval stage. The deviation s(total) of novelty

follows the same trend from 7.3% to 10.9% to 14.3%, reveal-
ing that the variation range of novelty of design solutions be-
comes increasingly larger with the decreasing number of attri-
butes values, presumably because uncertainty and ambiguity
of specified design knowledge lead to uncertain design solu-
tions output. For satisfactory, the mean m(total) of satisfac-
tory of low-level design, medium-level design, and high-level
design are 80.1%, 83.2%, and 82.3%, respectively. The low-
level design scores are lower than the latter two because it
scores relative low in novelty. The high-level design scores
lower than the medium one because it consumes more time
in retrieve and revise stages. The deviation s(total)of satisfac-
tory and novelty have the same tendency.

Based on the above analysis, the extent of design require-
ments clarification had a significant influence on the
evaluation indexes. The low-level design has a distinctive ad-
vantage in effectively reducing of deviation s(total). The
high-level design performs well in generating striking design
solutions but at the expense of the controllability of producing
design solutions, for its retrieval performance may be degra-
ded because of missing attribute values are difficult to find.
The medium-level design outperforms them in mean m(total)
of satisfactory. There is a trade-off between the extent of de-
sign requirements clarification and the quality and number of
generated creative design solutions.

4.3.2. Experiment 2: A comparative study between the
proposed approach and other approaches

Table 4 presents the comparison of the proposed method
and other related methods, for example, traditional CBR
(TCBR; Yang & Chen, 2011), multiagent based CBR
(MCBR; Epstein et al., 2013), genetic algorithm based
CBR (GCBR; Yang & Wang, 2008), requirement function
behavior principle solutions (Ma et al., 2013), and CFKM
based CBR (Hu et al., 2012). Table 4 shows that MCBR,
GCBR, CFKM and the proposed method perform better
than TCBR in all evaluation indexes. GCBR performs better
than other models in novelty of low-level design and the aver-
age time consumed. The proposed method notably performed

Table 3. Performance comparisons among different design requirements clarification levels

Novelty (%) Satisfactory (%)

Low (1–3) Med. (4–6) High (7–9) Low (1–3) Med. (4–6) High (7–9)

Group 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
G1 53 59 65 71 91 64 93 71 85 77 75 82 80 90 89 88 69 97
G2 67 54 42 89 78 75 98 92 80 82 77 72 86 81 76 96 87 83
G3 63 62 61 65 52 72 90 57 68 85 79 81 86 82 89 94 67 60
G4 64 69 60 64 73 73 75 48 93 80 84 80 95 87 68 77 76 91
G5 70 67 65 64 66 89 68 75 78 82 83 82 72 72 95 79 81 89
Max. 70 69 65 89 91 89 98 92 93 85 84 82 95 72 86 96 87 97
Min. 53 54 42 64 52 64 68 48 68 77 75 72 72 67 79 77 67 60
m 63.4 62.2 58.6 70.6 72 74.6 84.8 68.6 80.8 81 79 79 82 80 81 86.8 76 84
m(total) 61.4 72.4 78.1 80.1 83.2 82.3
s(total) 73 10.9 14.3 3.5 8.3 11.0
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better than other models in other indexes except novelty of
low-level design and average time consumed. In TCBR,
MCBR, and GCBR, while searching for satisfied design cases,
the keywords based semantic searching is the most commonly
used method, and if the specified keywords are not exactly
matching with the design cases in the knowledge database,
the retrieval often fails. The proposed method considers nu-
meric expression and semantic description rather than focusing
on similarity calculation of one kind of design knowledge or
keywords searching. Introduction of WordNet ontology based
semantic similarity calculation provides the design process
with a semantic understanding ability to extend the design
space, and more novel design ideas will be stimulated. More-
over, the proposed hybrid similarity measure improves re-
trieval accuracy greatly. Thus, in higher level design, the pro-
posed method performs far better than other models.

5. CONCLUSIONS

This paper proposes a combined creative conceptual design ap-
proach by integrating the FBS model into the CBR paradigm. It
contributes to solving the issues of multidisciplinary knowl-
edge reuse, that is, how to define a reasonable multidisciplinary
representation model and how to make the multidisciplinary
design knowledge retrieval tractable. For the first issue, the no-
tion of the FBS knowledge cell model, working as function
blocks, is proposed to represent design knowledge. Such mod-
els are stored and indexed in a database-like library together
with a case family for efficient retrieval and reuse. For the sec-
ond issue, a three-level hybrid similarity measure is presented
to increase the overall possibility of retrieving satisfied FBS
knowledge cells by considering different types of design
knowledge, for example, discrete knowledge, interval knowl-
edge, semantic knowledge, and fuzzy numeric knowledge,
and to endow the retrieval process with semantic understanding
ability by using WordNet as a reference. An adapted CBR
model is presented as the process model to conduct FBS knowl-
edge cells reuse, and an ICCDS has been developed. ICCDS
provides the design process with four elements: the FBS knowl-
edge cell library as multidisciplinary knowledge database, a
knowledge cells searching tool based on hybrid similarity mea-
sure to extend design space, design synthesis based on morpho-

logical matrix to generate design solutions, and other creative
design methods. Solutions of design requirements are synthe-
sized by combing FBS knowledge cells that are retrieved
from the library. The illustrative example demonstrates that
the proposed approach and the developed ICCDS can help de-
signers in reusing multidisciplinary design knowledge to stim-
ulate creative thinking and are an important means for gener-
ating creative design solutions. Finally, the performance
evaluation has shown the high efficiency of the proposed ap-
proach. However, even though the proposed method shows
very promising results, there is still a lot of work to be carried
out in the future. First, the coefficients that appear in our hybrid
similarity measure are empirically derived. It is certain that the
proposed hybrid similarity measure would be improved further
by an optimally designed experiment. Second, different design
tasks have different influences on the performance of the pro-
posed method; thus, further effort should be made to separate
the influences of different design tasks from different ap-
proaches. Third, the developed ICCDS is a prototype system,
and it needs continuous improvement, for example, enrich
the FBS knowledge cells library and improve the creative de-
sign methods.
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