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1. Introduction

The theory of boundary-value problems for two-dimensional PDEs mostly deals with con-
nected domains bounded by closed curves. A small number of investigations are devoted
to the problems outside cuts in the plane. There are almost no results concerning well-
posedness of classical problems in domains bounded by closed curves and containing
cuts. It seems that the difficulty in analysing these problems comes from the different
technique of the proof of the solvability theorems for domains bounded by closed curves
and for plane with cuts. It is very likely that there is no great difference between these
problems in nature. In the present paper, we try to overcome technical difficulties for the
Laplace equation in the internal domain with cuts, and, therefore, to suggest an approach
to the analysis of similar problems.

The two-dimensional Dirichlet boundary-value problem for the Laplace equation in a
multiply connected domain bounded by closed curves is considered, for instance, in [2,9].
The Dirichlet problem for this equation in the exterior of cuts is studied in [9]. The present
note is an attempt to join these problems together and to consider domains containing
cuts. Similar domains have great significance, because cuts model cracks, screens or wings
in physical problems. Domains without cuts are a particular case of our problem. Our
approach is different from [2,9] even in this case.

The approach proposed in the present paper can be applied to other elliptic problems
in domains with closed and open boundaries. The Dirichlet and Neumann problems for
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Figure 1. An internal domain.

the Helmholtz equation in a plane domain with cuts have recently been investigated
in [5,7,8]. Some nonlinear problems on fluid flow over several obstacles, including wings,
were treated in [6].

The uniqueness theorem in the Dirichlet problem for the Laplace equation follows from
the maximum principle, unlike the Dirichlet problem for the Helmholtz equation [5,8],
where the energy equalities are used. This enables one to study the problem in the present
paper under weakened smoothness conditions in comparison with [5,8].

In addition, the Dirichlet problem for the Laplace equation is more complicated than
the relative problem for the dissipative Helmholtz equation, even in classical multiply
connected domains without cuts, because, generally, the solution for the Laplace equa-
tion cannot be expressed in the form of pure double layer potential. In view of these
reasons, different modified approaches were suggested, for instance, in [9], but they are
not appropriate in domains with cuts.

Let us note the basic difficulties in the analysis of the Dirichlet problem in a plane
domain with cuts by potential theory. Problems in a domain bounded by closed curves
can be reduced to a Fredholm equation of the second kind. Problems in the exterior
of cuts can be reduced to the integral equation of the first kind with a weak or strong
singularity in the kernel. If we consider a domain with cuts, then, on the whole boundary,
we obtain a non-classical integral equation, for which the analysis is quite complicated.
Our approach enables one to reduce the Dirichlet problem in a domain with cuts to a
uniquely solvable Fredholm equation of the second kind in the appropriate Banach space.

2. Formulation of the problem

By a simple open curve we mean a non-closed smooth arc of finite length without self-
intersections [9].

In the plane x = (x 1,0:2) € R2 we consider the multiply connected domain bounded
by simple open curves i"1*,..., F^ e C2'A and simple closed curves r\2, . . . , F$,2 6 Cl-X,
A € (0,1], so that the curves do not have points in common and the curve Ff encloses
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all others. We put

r*={Jrl r2={Jr2, r = r1ur2.
n=l n=l

The connected domain bounded by F2 will be called T>. We assume that each curve Fk

is parametrized by the arc length s:

Fk = {x:x = x(s) = (x1(s),x2(s)), s£ [ak
n,b

k
n]}, n = l,...,Nk, k = l,2,

so t h a t a\ < b\ < • • • < ax
Ni < b1

Ni < a\ < b2 < • • • < a2
N2 < b2

N2 a n d t h e d o m a i n V is
on the right when the parameter s increases on F2. Therefore, points x £ F and values
of the parameter s are in one-to-one correspondence, except a\, b\, which correspond to
the same point x for n = 1 , . . . , A^. Below the sets of the intervals on the Os axis,

ATi JV2 2 Nk

n=l n=l fc=ln=l

will be denoted by the same symbols as corresponding sets of curves, that is, by F1, F2

and F, respectively.
We put C°(F2) = {T{s) : ?(s) € C0[a2

n,b
2
n), F(a2

n) = ̂ (62)}, and

N2

C°(F2) = f) C°(F2).
n=l

By Vn we denote the internal domain bounded by the curve F2, if n = 2,..., N2- The
external domain bounded by F2 will be called T>\.

The tangent vector to F at the point x(s) we denote by rx = (cosa(s), sin a(s)), where
cosa(s) = x\(s), sina(s) = x^s). Let nx = (sina(s), — cosa(s)) be a normal vector to
F at x(s). The direction of nx is chosen such that it will coincide with the direction of
TX if n x is rotated anticlockwise through an angle of TT/2.

We consider the curves F1 as a set of cuts. The side of F1 that is on the left when the
parameter s increases will be denoted by (-T1)"1", and the opposite side will be denoted
by (r 1 ) - .

Let us formulate the Dirichlet problem for the Laplace equation in the domain x

Problem U. To find a function u(x) £ C°(r>\r1) n C^DX-T1), which satisfies the
Laplace equation

uXlXl{x)+uX2X2(x) = 0, xeV\F\ (2.1a)

and the boundary conditions

u(x(s))\{n)+ = F+(s), u(x(«))|(r.,- = F-(s), u(x(s))\n = F(s). (2.1 b)

All conditions of Problem U must be satisfied in the classical sense.
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Remark 2.1. By C° (T>\F1) we denote functions which are continuously extended on
cuts F1 from the left and right, but their values on F1 from the left and right can be
different, so that the functions may have a jump on Fl.

If iVi = 0 and cuts F1 are absent, then Problem U transforms to the classical Dirichlet
problem in a domain T> without cuts.

On the basis of the maximum principle for harmonic functions [3,10], we can readily
prove the following assertion.

Theorem 2.2. The Problem U has at most one solution.

3. Integral equations at the boundary

Below, we assume that

, F - ( S ) G C 1 ' A ( r 1 ) , F(s)eC0(F2), AG(O,1], (3.1a)

a1
n) = F-(a1

n), F+ fa) = F~ fa), n = l,...,N1. (3.16)

If Bi(F1),B2(F2) are Banach spaces of functions given on Fl and F2, then, for func-
tions given on F, we introduce the Banach space Si(J11) n H2(r2) with the norm

An example of such a Banach space is C°(F) = C0^1) n C°(F2).
We say that the function u(x) belongs to the smoothness class K if

(2) Vu E C r 0 ( r ) \ r 1 \ r 2 \X) , where X is a point-set, consisting of the end-points of F1,

X= \J{x{a\)lixfa));
n =l

(3) in the neighbourhood of any point x(d) £ X for some constants C > 0, e > - 1 , the
inequality

|Vu| ^C\x-x(d)\e, (3.2)

holds, where x —¥ x(d) and d = al
n or d = b\, n = 1 , . . . , Ni.

We shall construct the solution of Problem U from the smoothness class K with the
help of potential theory for the Laplace equation (2.1 a).

By Jrk ... da we mean

n = l
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The Dirichlet problem in a plane domain with cuts 329

We consider an angular potential [1] for the equation (2.1a):

vi[v](x) =-^- [ v(o-)V{x,y(cr))da. (3.3)

The kernel V(x, y{cr)) is defined (up to indeterminacy 2nm. m = ±1, ±2 , . . . ) by the
formulae

\n i \\ xi-yi(a) • T/C i w Xi-Vi{(y)cos V(x,y{a)) = TTT' smV{x,y(<7)) = -. TTT'

where

One can see that V(x, y(a)) is the angle between the vector y(cr)x and the direction of the
Orci-axis. More precisely, V(x,y(a)) is a many-valued harmonic function of a; connected
with In \x — y(a)\ by the Cauchy-Riemann relations.

Below, by V(x, y{cr)) we denote an arbitrary fixed branch of this function, which varies
continuously with a along each curve F\ (n = 1 , . . . , N\) for given fixed x $. F1.

Under this definition of V(x, y(a)), the potential v\ [v]{x) is a many-valued function. In
order that the potential wi[i/](x) be single-valued, it is necessary to impose the following
additional conditions

Jal
i/(cr)dcr = 0, n = l , . . . , JVi . (3.4)

Below, we suppose that the density is(a) belongs to C0*^1) and satisfies condi-
tions (3.4). As shown in [1,4], for such v{cr), the angular potential ui[i/](:r) belongs to
the class K. In particular, the condition (3.2) is satisfied for any e € (0,1). Moreover,
integrating i>i[^](:r) by parts and using (3.4), we express the angular potential in terms
of a double layer potential

Vl[V]{x) = -L J p(a)^- In \x - y(a)\ da, (3.5)

with the density

r« / (Od£ , oe[al
n,b\], n=l,...,N1. (3.6)

Consequently, ^i[i/](x) satisfies equation (2.1a) outside Fl.
Let us construct a solution of Problem U. We seek a solution of the problem in the

following form

, (3.7)
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where t!i[^](x) is given by (3.3), (3.5) and

w{fj](x) = WI[/J](X) +W2\p]{x),

I \ X f I M I t M
(x) = -— / n(a) In \x-y[a)\

^ Jn

(*) = - - /
2TT Jp'.

d

2

(3.8)

By h[n}{x) we denote the sum of point sources placed at the fixed points Yk lying
inside I f (k = 2 , . . . ,N2):

N2

-Ykl YkeVk,

Clearly, h[fj](x) obeys equation (2.1a) and belongs to

R2\\Jn);

besides, if x(s) e F, then h[fi](x(s)) E C1^^) in s.
As noted above, we will look for the density v{cr) satisfying conditions (3.4) and belong-

ing to C°'x(rl).
We will seek fi(s) from the Banach space C^{Fl) n C°(r2), w € (0,1], q e [0,1), with

the norm

II • \\c^(n)nc°(r2) =

We say that /i(s) 6 C^r1) if

+ || • llc°(r2)-

n = l

where C°'w{rl) is a Holder space with the index u> and

n = l

It can be checked directly, with the help of [4,9], that for such n(s), the function
wi[n](x) obeys equation (2.1a) and belongs to the class K. In particular, inequal-
ity (3.2) holds with e = — q if q 6 (0,1). The potential W2[fj](x) satisfies equation (2.1a)
and belongs to C°{T>) n C2{V). Consequently, W2[fj](z) belongs to the class K, and so
u[v,n](x) 6 K.
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To satisfy the boundary conditions, we put (3.7) in (2.16) and arrive at the system of
the integral equations for the densities /^(s), f(s):

H*) ~tjn ^)V(X(S)'V^)) d<7-^Jn M") In\x{s) - y{a)\ da
1 /* £1

- ^ J 2 M " ) ^ " In\x(s) - y(o-)\da + %](i(s)) = F±{s), s € F1,

(3.9 a)

~ ^ / 1 " ( ^ M * ) ' yW)dcJ - ^ / , ^CT)ln l

^)) = F(s), s € T2,

(3.9 6)

where p(s) is defined in terms of v(s) in (3.6). The kernels of the second integral term in
(3.9 a) and the third integral term in (3.9 6) have a weak singularity as s = a.

To derive limit formulae for the angular potential, we used its expression in the form
of a double layer potential (3.5).

Equation (3.9 a) is obtained as x —¥ x(s) £ {F1^ and comprises two integral equations.
The upper sign denotes the integral equation on (r1)"*"; the lower sign denotes the integral
equation on (F1)".

In addition to the integral equations written above we have the conditions (3.4).
Subtracting the integral equation (3.9a) and using (3.6), we find

(3.10)

We note that u(s) is found completely and satisfies all required conditions, and in
particular (3.4). Hence, the angular potential (3.3), (3.5) is found completely as well.

We introduce the function f(s) on F by the formula

f(s) = F(s) + ± [ (F'+(a) - Fl-(a))V(x{s),y^))dcr, s € F, (3.11)
2TT Jri

where F(s) is a function defined on F, so that F(s) on F2 is specified in (2.16), while
F(s) on F1 is specified by the relationship

As shown in [4], if s € F1, then f(s) 6 C1*^1). Consequently,

f{s)eClx(F1)nC0(F2).
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Adding the integral equations (3.9 a) and taking into account (3.96), we obtain the
integral equation for /j,(s) on F,

wM(x(S))\r = - i - j M(a) In \x{s) - y{a)\da + \6{F2, s)^(s)
1 /* pi

~ 2TT j 2 IJ'^'dn'ln ' ^ ~ y^da + MMK^S))

= f(s), ser, (3.12)

where f(s) is given in (3.11), and the limit values of the function (3.8) as £ —» x(s) € F
(x € T>) are denoted by w[ij](x(s))\r- Furthermore,

' ~ \ i , User2.

Thus, if fi(s) is a solution of equation (3.12) from the space C^(Fl) n C°(F2), co £
(0,1], q G [0,1), then the potential (3.7) with v(s) from (3.10) satisfies all conditions of
Problem U and belongs to the class K.

The following theorem holds.

Theorem 3.1. Let Fl £ C 2 ' \ F2 € C1>A and the conditions in (3.1) hold. If equa-
tion (3.12) has a solution fi(s) from the Banach space C^F1)DC0(F2) forsomeu: G (0,1]
and q £ [0,1), then a solution of Problem U exists, belongs to the class K and is given
by (3.7), where v(s) is defined in (3.10).

Us £ F2, then (3.12) is an equation of the second kind. If s £ F1, then (3.12) is an
equation of the first kind, and its kernel has the logarithmic singularity.

Our further treatment will be aimed at the proof of the solvability of (3.12) in the
Banach space C^F1) n C°(F2). Moreover, we reduce (3.12) to a Predholm equation of
the second kind, which can be easily computed by classical methods.

By differentiating (3.12) on F1, we reduce it to the following Cauchy singular integral
equation on F1,

9 M / M , 1 /" , sm<po(x(s),y(a))
—w \u \{xls)) = — / u(a)—, , , . ./da
ds [ W k " 27r./ri ^ \x(s)-y(a)\

d d d

dsdny ds

— J (s), S tz 1 , (6.16)

where <po(x,y) is the angle between the vector xy and the direction of the normal nx.
The angle ipo(x,y) is taken to be positive if it is measured anticlockwise from nx and
negative if it is measured clockwise from nx. Besides, (po(x,y) is continuous in x,y £ F
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if x j£ y. Note that for x(s),y 6 F and x ̂  y, we have

¥s\n\x{s)-y\ = _ l n | x - y | = -^V{x,y) = - ^ _ y |

= cos(V(a:(s),y)-a(a))

),j/) - a(s))

where a(s) is the inclination of the tangent TX to the Oxi-axis and V(x, y) is the kernel
of the angular potential from (3.3).

Equation (3.12) on F2 we rewrite in the form

H(s)+ f fi(o-)A2(s,a)da = 2f(s), seF2, (3.14)
Jr

where

A2(s,a) = | - i ( l - 5(F2,a))\n\x(s) - y(a)\ - U{F2,a)^-\n\x{s) - y(a)\

k=2

The function 6(F2,a) was introduced in (3.12), and

The kernel ^42(s,cr) has a weak singularity if s = a £ F2. Consequently, the integral
operator from (3.14) is a compact operator mapping C°(F) into C°(F2).

Remark 3.2. Evidently,

f«) = / ( # ) and A2(a
2
n,a) = ^ ( 6 ^ a ) , for a € T, a * a2

n,b
2
n (n = 1 , . . . , W2).

Hence, if /^(s) is a solution of equation (3.14) from C°(\Jn^1[a2
l,b

2
l]), then, according

to the equality (3.14), fi(s) automatically satisfies matching conditions /i(a^) = M(̂ n)
for n = 1 , . . . , N2, and, therefore, belongs to C°(F2). This observation is true for equa-
tion (3.12) also, and can be helpful in finding numerical solutions, since we may refuse
from matching conditions ^i(a^) = fi(b^), (n = 1 , . . . , A^), which are fulfilled automati-
cally.

We note that equation (3.13) is equivalent to (3.12) on F1 if and only if (3.13) is
accompanied by the following additional conditions

«M*(oi)) = / ( O , n=l, . . . , iV1. (3.15)

https://doi.org/10.1017/S0013091500020952 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020952


334 P. A. Krutitskii

The system (3.13)-(3.15) is equivalent to equation (3.12).
It can be easily proved that

sin <po(x(s),y (a)) 1 ^ ^ , 0 . A / r t l w n l ,
—i—T~\ T~u fc O • [i X 1 )

\x{s)-y(o)\ u - s

(see [4,9] for details). Therefore, we can rewrite (3.13) in the form

2—w[fi]{x(s)) = I J^(ff)—?- + J n(a)M(s,a)da

= 2f'(s), seT\ (3.16)

where /'(s) = (d/ds)/(s) e C^iF1) and

\x(s)-y(a)\

G c^ir1 x r).

4. The Fredholm integral equation and the solution of the problem

Inverting the singular integral operator in (3.16), we arrive at the following integral
equation of the second kind [9],

where

i \ — _:L f 2Qi(g)/
ir Jn a - s

and Go, • • •, G ^ - i are arbitrary constants.
It can be shown, using the properties of singular integrals [9], that ^i(s), j4i(s,a)

are Holder functions if s 6 F1, a € F. Consequently, any solution of (4.1) belongs to
GjLl/2(r'

1), and below we look for /z(s) on F1 in this space.
We put

Q(s) = (1 - 6(F2, s))Q1 (s) + 5{F\ s), s e F
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Instead of/x(s) e C^,2{Fl) D C°(F2), we introduce the new unknown function n*(s) =
n(s)Q(s) e C°- a ' ( r 1 )nC0(r2) , and rewrite equations (4.1) and (3.14) in the form of one
equation,

Jr 1 = 0

where

A(s, a) = (1 - S(F2, s))A1(s, a) + 5(F2, s)A2(s, a),

<£(s) = (1 - S(F2, s))<£i(s) + 28{F2, s)f(s).

To derive equations for Go,. . . , G^i-i, we substitute n(s) from (4.1), (3.14) in the
conditions (3.15); then, in terms of fi*(s), we obtain

,S / S / j TiTfi^-" vn Ti) j * * * ) l ) v ' /

m=0

where

By • we denote the variable of integration in the potential (3.8).
Thus, the system of equations (3.13)-(3.15) for /j,(s) has been reduced to the sys-

tem (4.2), (4.3) for the function /i»(s) and constants Go,.. . ,GN1-\. It is clear from
our considerations that any solution of system (4.2), (4.3) gives a solution of system
(3.13)-(3.15).

As noted above, <?i(s) and Ai(s,a) are Holder functions if s G F1, a S F. More
precisely (see [9]), ^(s) 6 G°'p(r1), p = min{i, A}, and Ax(s,a) belongs to C0*^1) in
s uniformly with respect to a € F. We arrive at the following assertion.

Lemma 4.1. Let F1 e G2-\ F2 6 Cl>x, A € (0,1] and «P(a) £ C°P{F1) D C°{F2),
where p = min{A, \). If /j,t(s) from C°(F) satisfies equation (4.2), then n*(s) belongs to

c°<p(rl)nc°(r2).
The condition &{s) € C°>p{Fl) n C°{F2) holds if the conditions in (3.1) hold.
Hence, below we will seek /i»(s) from C°(F).
It was noted above that the integral operator from (3.14) with the kernel A2(s,cr) is

compact from C°(F) into C°(F2).
Since Ai(s, a) € C°(Fl x F), the integral operator from (4.2),

An* = / u.t{o)Q~l(o)A{s,o)&o-,
Jr

is a compact operator mapping C°(F) into itself.
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We rewrite (4.2) in the operator form

(/ + A)n. + PG = $, (4.5)

where P is the operator multiplying the row

by the column G = (Go, • • • J G ^ J - I ) 1 - The operator P is finite-dimensional from E^1

into C°(r) and, therefore, compact.
Now we rewrite equation (4.3) in the form

INlG + LfM. + (B-INl)G = H, (4.6)

where H = (Hi,... ,i/iv1)T is a column of Ni elements, /jvi is an identity operator in
ENl and B is an Nx x Nx matrix consisting of the elements Bnm from (4.4). The operator
L acts from C°(F) into E^1 , so that Lfj,t = (Li/-**,..., Lj^1fj,t:)

T, where

n^= f
Jr

The operators (B — /yvj, L are finite-dimensional and, therefore, compact.
We consider the columns

- ( ! ) • ' •(;)

in the Banach space C0(F) x ENl with the norm \\p.\\c°{r)xENl = llM*llc"(r) +
We write system (4.5), (4.6) in the form of one equation,

where / is an identity operator in the space C°(F) x ENl. It is clear that R is a compact
operator mapping C°(F) x EN1 into itself. Therefore, (4.7) is a Fredholm equation in
this space.

Let us show that the homogeneous equation (4.7) has only a trivial solution. Then,
according to Fredholm's theorems, the inhomogeneous equation (4.7) has a unique solu-
tion for any right-hand side. We will prove this by a contradiction. Let

/io= (£*) £C°(F)xENl

be a non-trivial solution of the homogeneous equation (4.7). According to the lemma,

/ , ,o \
' j n C ^ J x ^ , , p = min{A,i}.
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Therefore, the function /*°(a) = /x2(s)Q"1(s) G Cp
l/2(F

l) n C ° ( r 2 ) and the column G°
converts the homogeneous equations (4.1). (3.14) and (4.3) into identities. For instance,
(3.14) takes the form

lim w[fj.°](x) = 0, xeV. (4.8 a)
> ( )e r 2

Using the homogeneous identities (4.1), (3.14). we check that the homogeneous identities
(4.3) are equivalent to

u;[/xo](«»)=0, n = l,...,Nl. (4.86)

Besides, acting on the homogeneous identity (4.1) with a singular operator with the
kernel (s — f)"1, we find that /i°(s) satisfies the homogeneous equation (3.16):

= 0. (4.8 c)
n

It follows from (4.8) that n°(s) satisfies the homogeneous equation (3.12). On the basis
of Theorem 3.1. U[0,/JP](X) = W[/JP](X) is a solution of the homogeneous Problem U.
According to Theorem 2.2, w[n°](x) = 0, x e PYT1. Using the limit formulae for normal
derivatives of a single-layer potential on F1, we have

lim -—w\u.°](x) - limJwliJ]^) lim ^
dnx ^ n x->*(«)e(ri)- dnx

Hence w[fj,°](x) = W2[n°]{x) = 0, x e T>, and ^°(s) satisfies (4.8a), which can be
written as

The Fredholm equation (4.9) arises when solving the Dirichlet problem for the Laplace
equation (2.1a) in the domain T> by the double-layer potential with the sum of point
sources placed inside the curves T | , . . . , -Tj^. Equation (4.9) has only the trivial solution
fjP(s) = 0 in C0(P2). This will be shown in Appendix A.

Consequently, if s £ P, then n°(s) = 0, n®(s) = fjP(s)Q~1(s) = 0, and it follows from
the homogeneous identity (4.1) for n°(s) and GQ, ..., G^1_1 that

Hence pP = 0, and we arrive at the contradiction to the assumption that /2° is a non-
trivial solution of the homogeneous equation (4.7). Thus, the homogeneous Fredholm
equation (4.7) has only a trivial solution in C0(f) x ENX.

We have proved the following assertion.

Theorem 4.2. If T1 e C2X, T2 € C1 A, A € (0,1], then (4.7) is a Fredholm equation
of the second kind in the space C°(F) x Ejv,- Moreover, equation (4.7) has a unique
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solution

for any

As a consequence of Theorem 4.2 and Lemma 4.1, we obtain the corollary.

Corollary 4.3. If F1 £ C2'x, F2 € C1^, A G (0,1], then equation (4.7) has a unique
solution

for any

3 = \t J e cQ»{rx) n c°(r2) x £Wl,

wiere p = min{A, \}.

We recall that 3 belongs to the class of smoothness required in the corollary if the
conditions in (3.1) hold. Besides, equation (4.7) is equivalent to the system (4.2), (4.3). As
mentioned above, if/i*(s) € C0'^/"11) n C°(r2) and Go,. • •, GA^- I is a solution of system
(4.2), (4.3), then n(s) = n^Q'^s) € C{/2(r

l) n C°{r2) is asolution of system (3.13)-
(3.15), and, therefore, /x(s) satisfies equation (3.12). We obtain the following statement.

Theorem 4.4. If F1 € C 2 ' \ F2 6 C1A and the conditions in (3.1) hold, then equa-
tion (3.12) has a solution n(s) from C{/2(F

l) r\C°(F2), p = min{i,A}. This solution is
expressed by the formula fj,(s) = ^(s^Q-^s), where /x*(s) from C^iF1) DC°{F2) is
found by solving the Fredholm equation (4.7), which is uniquely solvable.

Remark 4.5. The solution of equation (3.12), ensured by Theorem 4.4, is unique in
the space C^°,2{Fl) D C°(F2) for any po € (0,p]. The proof can be given by a contradiction
to the assumption that the homogeneous equation (3.12) has a non-trivial solution in
this space. The proof almost coincides with the proof of Theorem 4.2. Consequently, the
numerical solution of equation (3.12) can be obtained by the direct numerical inversion
of the integral operator from (3.12). In doing so, Holder functions can be approximated
by continuous piecewise linear functions, which also obey the Holder inequality. The
simplification for numerically solving equation (3.12) is suggested in Remark 3.2.

On the basis of Theorems 3.1 and 4.4 we arrive at the final result.
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Theorem 4.6. If F1 G C2 A, F2 6 CIX and the conditions in (3.1) hold, then the
solution of Problem U exists, belongs to the class K and is given by (3.7), where u(s)
is defined in (3.10) and n(s) is a solution of equation (3.12) from C{/2{Fl) n C°(F2),
p = min{i, A}, ensured by Theorem 4.4.

It can be checked directly that the solution of Problem U constructed in Theorem 4.6
satisfies condition (3.2) with e = — | . Explicit expressions for singularities of the solution
gradient at the end-points of the open curves can easily be obtained with the help of
formulae presented in [4].

Theorem 4.6 ensures existence of a classical solution of Problem U when F1 £ C2X,
F2 € C1'* and the conditions in (3.1) hold. The uniqueness of the classical solution follows
from Theorem 2.2. It appears that in our assumptions, the classical solution of Problem U
belongs to the smoothness class K. On the basis of our considerations, we suggest the
following scheme for solving Problem U. First, we find the unique solution of the Fredholm
equation (4.7) from C°(F) x ENl. This solution automatically belongs to C° ' p ( r 1 ) D
C°(F2) x Eft-i, p = min{A, | } . Second, we construct the solution of equation (3.12) from
Cf/^r 1 ) n C°(F2) by the formula /x(s) = /x*(s)Q"1(s). Finally, putting v(s) from (3.10)
and n(s) in (3.7), we obtain the solution of Problem U from the class K.

Appendix A.

Here, we prove the following assertion.

Proposition A l . If F2 E C1>A, A G (0,1], then there is only the trivial solution of
the homogeneous Fredholm equation (4.9) in C°(F2).

We shall give a proof by a contradiction. Let n°(s) € C°(F2) be a non-trivial solution
of the homogeneous equation (4.9). The kernel of the integral term in (4.9) has a weak
singularity. It can be shown with the help of [9, § 51] that the integral term in (4.9)
belongs to C°'A/2(r2) in s, therefore fjP(s) £ C°'X/2{F2). Now we consider the function
W2[IJP}{X) introduced in (3.8). This function belongs to C°(V) f~l C2(V) and satisfies the
following homogeneous Dirichlet problem for the Laplace equation:

Aw2 = 0 i n D , w2\n=0- (Al)

Indeed, putting W2[^°]{x) in the boundary condition, we get the identity (4.9). According
to the uniqueness theorem for the Dirichlet problem (A 1), we obtain

(x) = 0, xeV. (A 2)

We consider the function

d N*

where V(x,y) is the kernel of the angular potential from (3.3). The function i
is connected with W2[/JP]{X) by the Cauchy-Riemann relations dXlW2 = dx2u>2>
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—dXlw2, and, consequently. w2[n°](x) = C = const, in V. It is clear from (A3) that
W2[/J,°](X) is a many-valued function, because the V(x,Yk) are many-valued functions
(k = 2,...,N2). Indeed, when passing round the point Yk, the value of the function
V(x,Yk) changes by 2TT. Evidently, W2\IJP}(X) can be constant in V only if w2[n°](x) is
single-valued. In order for W2[/JP](X) to be single-valued, the following (N2 — 1) conditions
must hold

f k=2,...,N2. (A4)

Under these conditions, w2[fj?](x) takes the form of the modified single-layer poten-
tial [9]

^\a)-^\n\x-y{a)\&o, (A 5)

and w2 [M°] (X) transforms to the ordinary double-layer potential

M ° ( ^ ) ^ - In |a; - y[a)\ da £ C°(^ \T^) n C2(i?2\r2). (A6)

Potentials (A 5) and (A 6) are connected by the Cauchy-Riemann relations in R2\F2.
Because of fi°(s) € C°'x^2(r2), the potential (A 5) is a harmonic function that belongs
to C°(R2) n C2(R2\r2) (see [9] for details). Note that (A 5) is continuous when passing
through F2 and is represented on F2 by a singular integral (for this, we stress that /x°(s)
is a Holder function).

As stated above, w^lfJ-^ix) = CinV.
We consider the internal domain Vk bounded by F\ (k = 2 , . . . , N2)- In this domain,

the potential (A 5) satisfies the following Dirichlet problem

which has unique solution

It follows from the Cauchy-Riemann relations and the smoothness of the double-layer
potential that

°(x) = c f c ) xeV~k, k = 2,...N2,

where c2,... ,c^2 are constants. Using (A 2) and the jump relation for the double-layer
potential W2[/JP](X) on F2, we get

fj.°(3)\rs = - c f e , k = 2,...N2.

According to (A4), ck = 0, k = 2 , . . . , N2, and, therefore,

M ° (s ) | r 2=0 , k=2,...N2. (A 7)
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We consider the external domain V\ bounded by F\. In this domain, the potential
(A 5) satisfies the following external Dirichlet problem

Aw? = 0 in Vi, w%\r2 = C, |iyj| < const, in X>i,

which has a unique solution u^M 0 ]^) = C. It follows from the Cauchy-Riemann relations
and the smoothness of the double-layer potential, that

w2\n°](x)=ci, x£V~u

where c\ is a constant. Because (A 6) tends to zero at infinity, we have c\ = 0 and
W2[n°](x) = 0 in T>\. Using (A2) and the theorem on the jump for the double-layer
potential [10], we obtain fj,0(s)\p2 = 0. Taking into account (A7), we have

M°(s) E O o n r2,

and we arrive at the contradiction to the assumption, that /i°(s) is a non-trivial solution
of the homogeneous equation (4.9). Hence, the homogeneous equation (4.9) has only a
trivial solution.

Because (4.9) is a Fredholm equation of the second kind, the following corollary holds.

Corollary A 2. Iff2 € Cxx, A 6 (0,1], then the inhomogeneous Fredholm equation
(4.9) is uniquely solvable in C°(F2) for any right-hand side from C°(r2).

The inhomogeneous equation (4.9) is a particular case of (3.12) if the domain V does

not contain cuts.
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