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ON THE SELF-INTERSECTIONS OF AN IMMERSED SPHERE

ALBERT BORBELY

A closed curve / : S1 -> R2 in general position gives rise to a word whose letters
are the self-intersection points, each of them appearing exactly twice. Such a word
is called a Gauss code. The problem of determining whether a given Gauss code is
realisable or not was first proposed by Gauss and it has been settled a long time
ago. The analogous question for immersions / : S2 —»• R3 in general position is
settled only in a special case when the immersion has no triple points. We give a
necessary condition for a system of curves to be realisable by a general immersion
/ : S 2 - > R 3 .

0. INTRODUCTION

A double occurrence word over a finite alphabet is a word in which each letter
appears exactly twice. A closed curve / : S1 ->• R2 in general position (that is without
self-tangencies and finitely many double crossings) gives rise to a double occurrence word
whose letters are the self-intersection points, each of them appearing exactly twice, in
the order as the curve is traversed once. Such a word is called a Gauss code.

A closed curve / : S1 -»• R2 in general position is a realisation of a given Gauss
code if it gives rise to the same code up to cyclic permutation. The problem whether a
given word in which every letter appears exactly twice can be realised by a closed curve
was first proposed by Gauss [2] and was solved by P. Rosenstiehl [5]. Since then many
solutions have appeared, see for example [1, 3, 6].

The similar problem for smooth immersions of S2 into R3 in general position is
open and it is not even well formulated. Let / : S2 -t R3 be a smooth immersion in
general position and denote by T/ the set of multiple points given as F/ = {x € S2 :

f~1(f(x)) consists of more than one point j . Since the self-intersections of f(S2) are

transversal Tj contains only double and triple points. As a matter of fact there are
n

finitely many smooth closed curves 7* : S1 -*• S2, i = 1,.. . ,n such that Tf — IJlt-
All intersections of the curves ji are transversal including self-intersections. t = l

We call two points p,q € S2 conjugate if /(p) = f(q) and we call two curves
71 : [a,b] -> S2 and 72 : [a,b] -> S2 conjugate if /(71W) = /(72ft)) for all t 6 [a,b].
For every 7* : S1 —t S2 there is a unique curve jj : S1 -» S2 that is conjugate to 7J.
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The Gauss code of an immersion / : S2 —> R3 would consist of a system of curves
7i : S1 —• S2 in general position for i = 1,... , n together with the conjugate relations.

The analogous problem for immersed spheres would be to determine whether a
given system of curves together with a conjugate relation can be realised as the inverse
image of the self-intersection set of a smooth immersion. In general this problem is open
and not even well formulated because it is not specified exactly what one means by the
term conjugate relations. Clearly it would have to include all the obvious conditions
that must be satisfied by a multiple point set of an immersion in general position.

However in a special case when the immersion has no triple points the problem can
be formulated properly and in this case there is a complete characterisation [4].

The aim of this note is to look at the general case and give at least a necessary
condition. It can be considered to be the generalisation of the fact - known to Gauss
[2] already - that in a realisable Gauss code the length of the word between any two
identical letters is even. The statement is the following.

THEOREM. Let f : S2 -t R3 be a smooth immersion in general position and let
~fi : S1 -> S2 for i = 1,. . . ,n be the set of self-intersection curves. Suppose that
7ii 72 : S1 —> S2 are conjugate curves and p< = ji(to) for i = 1,2 are conjugate points.
Let s : [0,1] -¥ S2 be a curve connecting pi and jn such that if s intersects one of the
7i 's then the intersection is transversal. Denote by k, the number of intersections. If
the tangent vectors {7i(£o),s'(0)} and {?i(to). *'(!)} have the same orientation, then
k3 is even: otherwise it is odd.

This of course means that the parity of the number of intersections does not depend
on the choice of the curve s.

The condition that / : S2 —> R3 is a smooth immersion in general position is
important. Without that condition the multiple point set of the immersion can have a
complicated structure. It may also have a non-empty interior. For example the multiple
point set of the Boys surface (an immersion of S2 into R3 such that the antipodal points
are mapped into the same point or the immersion of the projective plain into R3) is
the whole of S2.

One of the possible ways to use this theorem is the following. Suppose we are
given 2n closed non-parameterised curves on S2 (in general position) together with
a pairing describing the conjugate pairs of curves. If this system of curves is actually
the self-intersection set of a smooth immersion in general position then an orientation
of one of the curves would induce an orientation on the conjugate pair. The theorem
above would tell us how the conjugate pair of a curve must be oriented in relation to
the orientation of the original curve.

Another possible application of this necessary condition is to show that the multiple
point set of an immersion / : S2 —• R3 in general position cannot be a simple closed
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curve.

COROLLARY. Let f : S2 —* R3 be a smooth immersion in general position. Then

Tf, the set of multiple points, cannot be one simple closed curve.

This fact would probably be not too difficult to prove by other methods. Our main
purpose here is to demonstrate how the above theorem might be applied in certain
situations.

We use a colouring procedure described in Section 1. The proof of the theorem
and of the Corollary is given in Section 2.

1. COLOURING THE SURFACE

Throughout the whole section / : S2 —• R3 will be an immersion in general position
and N : S 2 —• R3 denotes the co-orienting normal, defined as follows. For p € S2 let
u, v € TPS2 be tangent vectors such that {u, v} is positively oriented. Define N(p) to
be the normal vector to the surface f(S2) at / (p) such that {f'(u),f'(v),N(p)} is
positively oriented in R3.

First we construct a "two-colouring" of S2 — Tf, that is a function g : S2 -Tj

-» {0,1} which is constant on the connected components of S 2 — Tf and assumes
different values on neighbouring components.

We start by "two-colouring" the complement of the immersed surface according
to whether the winding number of the surface with respect to the given point is even
or odd. To be more precise let x e R3 — f(S2) and let e > 0 be small enough such
that Sx(e) the sphere of radius e around x does not intersect f(S2). Denote by
7rIi£ : R3 — {x} —>• Sx{s) the radial projection. Then 7rx>e o / : S 2 —• Sx(e) is a smooth
map and we define the winding number of / at the point x as the degree of this map,
that is Wf(x) = deg(7rxe o / ) . This is clearly independent of the choice of e. The
"two-colouring" of R3 - f(S2) is a map W : R3 - f(S2) -> {0,1} given by

W(x) = Wf(x) mod 2.

We call two components VJ and Vj of R3 — f(S2) neighbours if there is an open
set D C S2 such that /(£>) C dViddVj, where dVi denotes the boundary of Vj. Then
the following properties of the winding number are easy to show.

PROPOSITION 1 . 1 . Tie functions Wf and W are constant on the components

ofR3-f(S2).

If one moves from one connected component to a neighbouring one, then the value

of Wf and therefore the value of W changes. That is we have:

PROPOSITION 1.2 . IfVi and Vj are neighbouring components of R 3 - / ( 5 2 )

in the above sense, then Wf\v{ ^ WfWj and the same is true for W.
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We now define a "colouring" of the surface. If p e 52 - F / , then f(p) lies on the
boundary of exactly two connected components of R3 - f{S2). Then the co-orienting
normal vector N(p) at /(p) points "into" one of the components and we assign the
"colour" of that component to p.

To be more precise set U = S2 — Tf. Then U is an open set with the property
that each point in f(U) is covered by / exactly once. The "colouring" of U is a map
g : U ->• {0,1} given as follows. Let p € U and choose e > 0 small enough such that the
curve v(t) = f(p) + tN(p) for t 6 (0, e) does not intersect f(S2). Then i/(t) belongs to
the same connected component of R3 -f(S2) for t e (0,e) and define g(p) = W(y(t)).
Since by Proposition 2.1 IV is constant on the connected components of R3 — f(S2)
the definition does not depend on the value t € (0, e).

The following properties of g : U —• {0,1} follow from the corresponding properties
of W:R3-f(S2) ->{0,l}.

Since the self-intersections of f(S2) are transversal one can see that U has finitely
m

many open connected components. So we can write U = U Ui, where Ui are the
connected components. *=1

PROPOSITION 1 . 3 . The map g : U -»• {0,1} is constant on the connected
components of U.

PROOF: Let Ui be a connected component of U and p,q € U{. Then there is curve
t) : [0,1] -¥ Ui such that 77(0) = p and ??(1) = q. Then for a small enough e > 0 the
curve v{t) = f{ri(t))+eN^f(r](t))^ does not intersect f(S2) and g(j>) = W(v(0)) and
g(q) = W(t/(1)). This implies that v(0) and u(l) must belong to the same connected
component of R3 - f(S2), therefore by Proposition 1.1 we have W(u(0)) = W(v(l))
and the proof is complete.

We call two connected components U\ and t/2 of U neighbours if dU\ D dU2
contains an arc. Then we shall show the analog of Proposition 1.2 that g assumes
different values on neighbouring connected components.

PROPOSITION 1 .4 . If Ut and V2 are neighbouring components of U C S2 in
the above sense, then g\ut i1 g\u2 •

PROOF: Since all self-intersections are transversal the normal vectors to the inter-
secting surfaces are independent. This implies that at any point of the self-intersecting
set at most three surfaces can pass through and this can occur only at finitely many
points. In other words the number of triple points is finite.

Since dU\ n dUi contains an arc it will contain a point p g dU\ D dU2 such that
/(p) is a double point. Let p' 6 S2 be the conjugate of p, that is /~ l( /(p)) = {p,p'}•

Let Bp(e) and Bp>(e) be disjoint small geodesic balls of radius e > 0 in S2 centred
around the points p and p' respectively such that / : Bp(e) -¥ R3 and / : Bp(e) -*• R3
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are embeddings.

Then the inverse image of the intersection f(Bp(e)) n f{Bpi{e)) by the map

/ : Bp(e) -¥ R3 is a smooth embedded curve in : Bp(e) separating Bp(e) into two

parts Bp(e) n U{ and Bp{e) n Uj. Denote this curve by rj. Since 77 is smooth we can

select points qi € Bp{e)nUi and q2 € Bp{e)C\Ui such that the geodesic v : (0,1] -+ S2

connecting qi to 92 intersects 77 transversally exactly once. Then the curve f(v) in-

tersects the surface / (B p / (e) ) transversally in exactly one point. This remains so if

we replace f(u) by a curve that is sufficiently close (in the C 1 topology) to f{v). Let

vs : [0,1] -4 R3 be given as us(t) = f{v{t)) +5N(f(v{t))\. Then for a sufficiently small

S > 0 we have g(qi) — W(us(0)) and 5(92) = ^ ( ^ ( l ) ) • Moreover the curve i/g[Q, 1]
intersects f(Bpi(e)) transversally in exactly one point and has no other intersections
with the rest of / ( 5 2 ) . This implies that ^ ( 0 ) and 1/̂ (1) are in neighbouring con-
nected components of R3 - f(S2) therefore by Proposition 1.2 W(us(0)) ± W(us{l))
which yields ff(<h) ^ 3(92)- Since by Proposition 1.3 g is constant on the connected
components U\ and U2 the proof is complete.

2. P R O O F O F THE T H E O R E M

Let us first continue the curve s a little ways beyond the interval [0,1] such that
the extended part will not intersect F / . Denoting the extended curve by s as well we
now have a curve s : [0,1 + e] -> S2 such that s(0) = p i , s ( l ) = p2 and the segments
s((0,e]) and s ( ( l , l + £]) do not intersect T / .

By modifying the curve s in a sufficiently small neighbourhood of the points pi
and P2 if necessary we may assume without the loss of generality that s'(0) and s'(l)
are orthogonal to 7i(<o) and 72(^0) •

Let us choose an orientation on S 2 and assume first that {li(to),s'{O)} and
{7i('o)i *'(!)} are both positively oriented. Let Ni for t = 1,2 be the co-orienting
normals at 7*(to)- Let a be the rotation of R3 that leaves the vector /'(7i(<o))
= /'(72(^0)) fixed and rotates Ni into N2 by an angle less than n. Then a will carry
/ ' (s ' (0)) into / ' ( s ' ( l ) ) . Therefore Na(£) and Na(1+e), for a sufficiently small e > 0,
point into neighbouring connected components of R3 — f(S2). Prom the definition of
the colouring g : U -> {0,1} we conclude that s(e) and s( l + e) have different colours;
that is g(s(e)) ^ g(s(l + e)). This implies that s(e) and s ( l — e) must have the same
colour. Since the colour on the curve s changes every time one passes an intersection
point (Proposition 1.4) there have to be an even number of intersection points between
s(e) and s(l - e). Since e was chosen small enough such that s (0, e] and s [1 - e, 1)
does not intersect F / we have the same number of intersections between s(0) and s(l)
which proves the statement in this case.

The other case when {7i(*o)>s'(0)} a Q d {7i(*o),s ' ( l)} are oppositely oriented
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is very similar. In this case a will carry f'(s'(0)) into —/'(s'(l)). Therefore either
iVs(e) and JVs(1+e) or —Ng^ and —iVs(1+e) point into the same connected component
of R3 — f{S2). As a result s(e) and s(l + e) have the same colour and this implies
that s(e) and s(l — e) have different colours. Applying the same argument as before
we conclude that the number of intersections between s(e) and s(l - e) and therefore
between s(0) and s(l) must be odd. The proof of the theorem is complete.

PROOF OF THE COROLLARY: First we show that there are two different parame-
terisations of F/ that are conjugates.

Let p € F/ be an arbitrary point and let q € F/ be a conjugate point to p. Since
the self-intersection of / is transversal at f(p) = f(q) in a small neighbourhood of p
and q there are conjugate arcs passing through p and q. To be more precise there are
curves ex,i : (S,8) -¥ S2 with e^O) =p and e2(0) = q such that f(ei(t)) = f(e2(t))
for all t € (-6,5). Using a continuation argument one obtains two closed curves
7i,2 : [0,1] -> S2 such that 7i(0) = 7i(l) for i = 1,2, 7J(0) = p , 72(0) = q and 71 and
72 are conjugate curves. Clearly F/ = 71 = 72 as point sets.

Since F/ is a simple closed curve on S2 one can find a curve s : [0,1] -> S2

connecting p and q such that it does not intersect F/ apart from the points p and q.
Therefore ka = 0. It is a simple matter to check that {7i(0)>s'(0)} and {7i(0),s'(l)}
have different orientation. Therefore the Theorem implies that ka is odd which is a
contradiction. D
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