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Abstract

We give several results concerning the simultaneous approximation of certain complex
numbers. For instance, we give lower bounds for | a—§&, |+| e*—¢, |, where a is any non-zero
complex number, and £, &, are two algebraic numbers. We also improve the estimate of the
so-called Franklin Schneider theorem concerning | b—&, |+| a—§&, |+| a®—§£, |. We deduce
these results from an estimate for linear forms in logarithms.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10 F 10; secondary 10 F 35,

1. Introduction

When « is an algebraic number, we denote by H(«) the height (in the usual sense)
of «. In the present paper we derive several consequences of the following result.

THEOREM 1.1, Let oy, ..., o, be non-zero algebraic numbers, and By, By, ..., B, be
algebraic numbers. For 1 < j<n, let log «; be any determination of the logarithm of o;.
Let D be a positive integer, and Ay, Ay, ..., A, B, E; be positive real numbers,
satisfying '

D ? [Q(al’ evey an’ BO’ LXET] ﬁn): Q]’
A;>max {H(x),exp|logo;|,e} (1<j<n),
B> max H(B;),
o<i<n

A,2A,12...24;, Ay=e
466
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21 Approximation of numbers connected with the exponential function 467

and
1< E;< min {e(Log 4,)/|log o] }.

1<jisn
If the number
A = }90+,3110ga1+ oo +13n log (s 79
does not vanish, then
|A|>exp{— Cyn) D**2.(Log Ay ... (Log4,).(Log B+LogLog 4, +Log E;)

.(LogLog A4, +Log E))(Log E)~"1},
where
C(1)<2%, Ci(2)<2% and Cy(n)<210m+83 p2n,
We will deduce this result from Theorem C of [Wa] in Section 2 below. The
connection with a previous result of Baker is the following. In [Ba], Baker sets
Q = T] Log max {H(x;), 4}
j=1
and
n—1
Q' = T] Logmax {H(x;), 4},
i=1
and proves that
| A|>exp{~—(16nD)**" Q(Log(BQ))LogQ’},
provided the logarithms are principal valued. This last requirement implies
|log «| <7+ Log(H(e) +1).

Therefore, by choosing E; = e in Theorem 1.1, we can replace (16nD)*%0% (in
Baker’s result) by 212743 pin_ Dn+2 However, several of our applications will
involve a large value for E;, which leads to an improved bound for |A|. For
instance, when the numbers |log«;| are bounded, we obtain the following result
(choosing Log 4; = RLogH;, E; = Log H).

COROLLARY 1.2. With the notations of Theorem 1.1, let Hy, H,, ..., H,, R satisfy

R>1+ max |log o),

1<igsn

H;>max{H(«), e} (1<j<n)
and
Ho = HIS ves an,
then
| A|>exp{— Cy(n, R) D*t¥LogH,) ... (Log H,) (Log B+ LogLog H,,)

-(LogLogH,,_;)(Log Log H)—"~1},
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468 Michel Waldschmidt [3]

with
Cy(n, < Cy(n). R*.(2+ Log R)%.

In the present paper, we first discuss a problem of K. Mahler on |e”—p|; we
then consider the simultaneous approximation of a and e%; then we deal with
Franklin Schneider’s theorem [S], and some of its generalizations. Finally, we
derive a connection between simultaneous approximations and algebraic inde-
pendence.

Here, we do not pay a special attention to the degree. Our results will be rather
sharp with this respect, but we could improve them by using the refined arguments
of [Wa], at the cost of complicating the statements.

This paper has been written at the Australian National University in Canberra

(Institute for Advanced Studies).

2. Auxiliary results
We first show how to deduce Theorem 1.1 from Theorem C of [Wa]. Let us

define
V;=Logd; (1<j<n),
W =1LlogB
and
E=(DE).

In view of the inequalities
W+LogV,+Log E+Log D<%(Log B+LogLogA,+ Log E, +Log D)

and
LogV, 1+Log E+Log D<$(LogLogA,_,+LogE, +Log D)

we will obtain C;(n) <37 124C(n)<22"+2C(n), (where C(n) is the constant of
Theorem C of [Wa]), provided that we prove

E<el,
Since
e.2P.D?log 4, < 43P,

it is sufficient to prove the following lemma.

LEMMA 2.1. Let « be a non-zero algebraic number of degree at most D and height
at most A, and let log o be a non-zero determination of the logarithm of «. Then

|loga|>2-P . (AD).
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PROOF OF LEMMA 2.1. Since 2P AD > 2, we may assume |logx|<} <Log2. From
the inequality |e*— 1| <|z| e for all ze C we deduce

a—1|<2]|logal.
Finally, we have (for example by using Lemma 3 of [M-W])
[a—1|=21-P(4 D).

This completes the proof of Lemma 2.1.

The following simple lemma is proved in [Wa], Lemma 2.4.

LeMMA 2.2. Let v and w be two complex numbers satisfying
[w—e®|<}]e?.
Then'there exists a determination of the logarithm of w such that
|w—e®|>2%|e?||logw—0v].
We now prove several auxiliary lemmas which will be used in Section 6. We use

the notations of [Wal].

Lemma 2.3. Let PeZ[X,, ..., X,,] be a polynomial of degree at most N; with
respect to X;(0<j<m), let «y, ..., «, be algebraic numbers generating a field K of
degree at most D, such that the polynomial P(Xy, ay, ..., a,,) € C[ Xy] does not vanish
identically. Let t be a complex number.

There exist a positive integer k, and an algebraic number y of degree at most
DNy/k, such that

M()*<I(P)P.exp { Jg]le h(aj)}

and
ly—tfe<|P(t, oy, ..., a”)|2mM°.L(P)mN°+D‘1

.max{l,|¢|}oP-1) exp t(l + DNp) § N,h(aj)}.
i=1

ProoF oF LEMMA 2.3. For 1 <j<m, let a; be the leading coefficient of the minimal
polynomial of ;, with, say, a; >0, and let d; be the degree of «;. We denote by {c}
the set of the embeddings of K into C. The polynomial

m
0(1) = (i 18 11 P(Kevof, .o 5)
j=1 {o}

is not identically zero, and has coefficients in Z.
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Further,
1
M(Q) = (ﬁ a:I,.ViD/dj) Hexp (f Log|P(e?™, af, ..., 02) Ldu)

j=1 {a} 0

m m
< (FE ap2rs) 1 () i maxt, g1 )
j=1 {0} =1 /

< L(P)P. TT M(oy)M01s
i=1
Furthermore,

[OO| <[P, oy, ..., 0] (ﬁ a;y,»D/d,-) P, o, ..., 05)|
=t
<|P(t, s ... ay) | L(PYP—L. max {1,] 2| }Mo-1)

. exp {JéNj h(ozj)} .

Let y be a root of @ which is at minimal distance from ¢, and let k be its multiplicity.
Then (see, for example, the proof of Lemma 2.3 of [Wa], or [M-W] Lemma 9)

M(y)F < M(Q),
[Q(): Q1< DNyJk
[y—1]e < 4PN’ 2 DN, H(Q))YP¥e| Q(1)].

and

Since, for n integer >1,

47 (Qpyn . 27 < 2477,
and since
H(Q)<2PM M(Q),

the desired result follows.
We will use only a weaker form of Lemma 2.3.

COROLLARY 2.4. With the notations of Lemma 2.3, we have

[Q(»): Q]< DN,,

H(y) <(HyH, ... H,))®
and
I‘y—tlSIP((t, Ay s )| (Hy Hy ... Hp)O,
where
H, = max{e, H(P)}, H;=max{e, H(x))} (1<j<m),

and Cj, Cy depend only on D, N,, ..., N,
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LeMMA 2.5. Let PeC[X,, ..., X,,] be a polynomial of total degree at most N, and
let Xy, ... Xy V1s s Vi be complex numbers. Then

m
| P(xy, ..o Xp) — Py, ...,ym)l<NL(P)RN‘1j§1|xj—yj|.
with
R =max{L|x;},....|xpuls |31} -5 | Yl }-
Proor. Straightforward, using the identity

m hj—1
h = i schy-a ph k hi—k—1
X xhm_ |yl — El(xj—y,-) XL X YA Y on,- YL,

LEMMA 2.6. Let ¢: R, >Ry be a positive function defined over the set R, of
positive real numbers, such that

lim ¢(x)/x = +oo0.
x->+o0

Let 6,,...,0,, be complex numbers, and N a positive integer. There exist two
easily computable numbers Cs and H,, depending only on m, , N and maxo ;| 0;],
with the following property.

Let H be an integer with H> H,, let £,, ..., £, be algebraic numbers of degree at
most N and height at most H, and let PEZ[X,, ..., X,,] be a polynomial of degree
at most N and height at most H, such that the polynomial P(Xy, &, ..., £,,) € C[X,]
is not identically zero. Assume

|03— & |+ ... 4] Op— €] +| P(6y, 01, ..., 8,)| <exp{—yi(Log H)}.

Then there exists an algebraic number &, of degree at most N™+! and height at most

HO, such that
|66~ & <exp{—3(Log H)}.

PROOF OF LEMMA 2.6. By Lemma 2.5, we have

[P(By, £1, .. £,) =P8y, Oy ..., 0,
S(N+1)™2(14 max | 6,|)Y.H.exp{—y(Log H)}.
o0<h<sm

Since y(x)/x tends to infinity, for H sufficiently large we obtain

|P(80s &1 - €| <exp{—3i(Log H)}.

Using Corollary 2.4, we find an algebraic number ¢, of degree at most N™*! and
height at most H such that

| 60— ol <] P(O0, &1 -, €)| - H™O
<exp{~i(LogH)} for H>H,.

Another proof of Lemma 2.6 is given in [Bi] Lemma 4.5.
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LeMMA 2.7. Let : R, —R, be a positive function such that
lim (x)/x = +o0
z+4

and
Y(2x)/yf(x) is bounded when x—+ co.

Let 0,,...,0,, w,...,w;, be complex numbers, and N a positive integer. There exist
two numbers Hy, Cq, depending only on k, h, §, N, 0,,...,0,, w,,...,w; with the
Jfollowing property.

Assume that for all algebraic numbers o, ..., oy, of degree at most N*+h+l and
height at most H, with H> H,, we have

| 0g— o] + - +] O, — o] > exp { — y(Log H)}.

Assume that there exist an integer H, > H,, and algebraic numbers &, ..., &, with
m = h+k, of degree at most N and height at most H,, such that

[00— &+ +]| O — Ex| +H] w1 — €|+ H|wp— €] <exp{— Csi(Log H}.

Then 8, is transcendental over the field Q(0,, ..., 0, wy, ..., wy,).

PrOOF OF LEMMA 2.7. Let Xx,,...,x, be an algebraically independent subset of
{0, ..., Oy, wy, ..., 0p}, and, for 1<j<q, let n;e{,, ..., £,} be such that

q
EJ x;— ;| <exp{— Cgy(Log Hy)}.

Let PeZ[X,, X, ..., X,] be a polynomial such that P(6,, x;, ..., x,) = 0. By Lemma
2.5 we have
[ P(8, M, ---» 1) | < €xP{—3Cyh(Log Hy)}.

From Lemma 2.6 and from our assumption that 68, 0,, ..., 8, cannot be approxi-
mated simultaneously by algebraic numbers of bounded degree, we conclude

P(Xp, My, ---sng) =0.
Let us write

P(Xy, Xy, ..., X)) = é) pXy, ., X,) X3,
where p(X;, ..., X)) €Z[X,, ..., X,]. Since
P -y =0 for 0<SIKN,
we deduce from Lemma 2.5

|Pixss oo xg) | <exp{—y(Log H)} (0<I<N).
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The left-hand side does not depend on H,, and therefore for H, > H,, where H,
depends on P,
pxy, .. x) =0 for OSISN.
This proves that
P(X,, ..., X)=0.

3. On the difference between an algebraic number and the exponential
of an algebraic number

In 1953, Mahler [Ma 2] proved that if m and p are positive integers, then

|e™—p|>exp{—40(Logm) (Logp)}-

In 1967 [Ma 3], he succeeded to replace 40 by 33, and in 1973, Mignotte [Mi]
replaced it by 17.7. It is not yet known whether there exists an absolute constant
C, such that

| em— pl > p—Cv

for all positive integers m and p.
From Theorem 1.1 we deduce a lower bound for ¢*— B, when « and B are any
non-zero algebraic numbers:

|ef — a|>exp{—2% D3(Log 4)(Log B+ LogLog 4)},

where D = [Q(«,B): Q], 4 = max{H(«),e?} and B = H(B).
For instance if m, n, p, g are positive integers with p>3, then

3.) |e™™—plq|>exp{—2**(Logp) (Logm+Logn+LogLogp)}.

This result can be improved when m is relatively small: if m <n(Logp)!—* with
£>0, then

Logn
min __ —_ T T
(3.2) |e™/™~plq|>exp { Cy(e)(Logp) (1 *Toglog p)}’

where Cg(¢) is an easily computable constant depending only on . More precisely,
the case n =1 of Theorem 1.1 shows that

|eﬂ—a|>exp{—240,D3(L0gA1)(1+ LogB+LogLog4, )}’

1+ LogLog 4, — Log|B|

where A; = max{H(a),exp|B], e}
We can replace e by e” in (3.1): let m, n, p,q be positive integers, with p > 3. Then

|e™/» —plgq|>exp{—2"*.(Logp) (Logm+ Logn+Log Logp)}.
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This result can be deduced from Theorem 1.1 applied to the linear form
L —1og?
i~ log oy —log p

with logoy = im, 4, =e", Ay =p, D=2, B=mn and E,; =e.
The corresponding statement (3.2) for e” is not yet known, even form=n=1.

4. On the simultanecous approximation of a complex number and its exponential

Let a be a non-zero complex number, and £, £, two algebraic numbers of height
at most Hy, H; respectively, H;> ¢ In [C], Cijsouw proved

la— §0|+|ea— fll >exp {— Cy(Log Hy (Log Hy)}
and
|a—&|+]e*— &, |>exp{— Cy(Log H)*(Log Log H)~1},

where H = max{H,, Hy}, and C,, C}, depend only on a and [Q(&,, &,): Q).
Here we prove a slightly more general result.

THEOREM 4.1. Let a be a non-zero complex number, and &, &, be two algebraic
numbers. Let D, Hy, H, satisfy

D>[0(é, $D): Ql, Hy>H(§), Hy>max{H({),e}.
Then

Log H, )}

Ia—fol+le“—§1|>exp{—Cn(“) D¥(Log Hy (1+LogLogH1

where
Cn(a) = 28%(1 +|a|)2

ProoF OF THEOREM 4.1. There is no loss of generality to assume |e®— £, | <3| e9|.
By Lemma 2.2 we can choose log &; such that

|a"108 §1|<%|‘3_a|-|ea—fll°
Thus
| éo—log &|<(1 +%Ieﬁa|)(|a"fo|+|ea—§1|)
and
|log | <% +|al.
From 1.2 we conclude

Cu(@)<ECy(1,R) with R=3}+|al.
Finally, we remark that R(2+Log R)?<10(1 +| 4|)2
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5. On Franklin Schneider’s theorem

Let a and b be two complex numbers, with a#0, and let loga be a non-zero
determination of the logarithm of g. We consider lower bounds for

la—o|+]6—B|+[a*—y],

when o, B, y are algebraic numbers. From the work of Bijlsma [Bi] we know that
this number can be very small when B is rational, and we will consider here only
the case of irrational 8. This problem has been studied by Ricci, Franklin,
Schneider, Smelev, Bundschuh, and more recently in [Bi], [C-W], [M-W] and
[Wii]. The best known results were firstly [C-W]:

exp {— Cy(Log H* LogLog H},

where H is an upper bound for the heights of «, B, ¥ and C,, depends on loga, b,
and D = [Q(a, B,7): Q], and secondly [M-W]:

exp{~ Cy D*(Log H)*(Log Log H)™1},

where C,3 depends only on loga and b. (This last result has been slightly improved
with respect to D; see [M-~W]). Here we get a sharpening of these two estimates:

THEOREM 5.1. Let a and b be two complex numbers with a0, and let loga be any
non-zero determination of the logarithm of a.

Let o, B, y be algebraic numbers of height at most H, with H > ¢¢, and let D be the
degree of the field Q(a, B, y) over Q. Assume that B is irrational. Then

la—a|+[b—B|+|a®—y|>exp{— Cyy D{(Log H)* (Log Log H)~%}
with
Cu = Cyy(loga,b)<2Cy(2, 3 +|loga|+|blogal).
Several generalizations of the Franklin Schneider problems have been studied
by Wallisser, Meyer, Bundschuh, and more recently in [C-W], [Bi] and [Wii].

Our Theorem 1.1 leads to several improvements of these results. Here is one
example, which generalizes Theorem 5.1.

THEOREM 5.2, Let ay, ..., a,,, by, ..., by, be complex numbers, with a;#0 (1<j<m),
and let loga; denote an arbitrary value of the logarithm of a; such that loga;+#0.
Define

m
R=%+2|10ga,l+lbol+§|bj10gaj| and C15=2C2(m+1,R).
i i1

Let oy .-.s0, Boy - By be algebraic numbers of height <H, with H>et,
generating afield of degree D. Assume either by#0or 1,B,, ..., B,, linearly independent

https://doi.org/10.1017/51446788700021443 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021443

476 Michel Waldschmidt (11]

over Q. Then
m m
2 la= o]+ X |b— |+ ewar... 4~y
< P
>exp{— Cy5 D"+ Log H)y"+?(Log Log H)~™~1}.

ProOOF OF THEOREM 5.2. This result is a straightforward consequence of Lemma
2.2 and Corollary 1.2, withn =m+1, ;= ... = H, = B=H.

6. Simultaneous approximations and algebraic independence

The first connection between diophantine approximations and algebraic inde-
pendence goes back to Mahler in 1932 [Ma 1]. More recent results have been
obtained in special cases by Bijlsma [Bi], Laurent [L] and Va4ninen [V].

In [V], Viiininen gives a lower bound for |a— &)|+|b— £ | +|P(a, ®)| in terms
of the heights of &, & and P, when a and b are non-zero complex numbers.
Similarly, in his thesis [Bi], Bijlsma gives lower bounds for several expressions
like

|la~&|+|6— & |+| P(a, b,a®) — &|
in terms of the heights of &,, £;, &, and P, when a, b are non-zero complex numbers.

As remarked in [V], Viindnen’s result shows that if a and b are Liouville
numbers of a certain type, then a and e® are algebraically independent. In [L],
Laurent shows that the lower bound for linear forms of [M—W] implies the following
result of Feldman: if a is a Liouville number of a certain type, and if 8 is algebraic
irrational, then a and a# are algebraically independent.

We give here a rather straightforward consequence of Theorems 4.1 and 5.2
and Lemma 2.6.

THEOREM 6.1. Let m>0, h>0 be non-negative integers, ay,...,ay,, bo,..i,b,,,,
¢y, -5 Cp, be complex numbers, and N a positive integer. There exists an easily
computable number C,q, depending only on m, h, N and

max {|logay|,....|logan|s|Bols ---s| bl | €1y -5 €nl}

with the following property.

Let H be an integer, H>e®, let oy, ..., Bo - sPBms Y1---»¥n be algebraic
numbers of degree at most N and height at most H, and let PEZ[X, ..., Xopsptal
be a polynomial of degree at most N and height at most H. We assume either by#0
or 1B, ..., B,, Q-linearly independent. Moreover, we assume that the polynomial

P( Xy, 015 -5 Oy Bos s B Y15 -5 Y1) € CLXp)

is not identically zero.
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Then
m m h
X e~y + X [ 6= 8|+ X |ex—vil
i-1 =0 k=1
+|P(e®al...alr,ay, ..., Gy byy - s By €1y o5 1) |
>exp{— Cis(Log H)™+2(LogLog H)—™"1}.

A more careful estimation of the constants involved in the proofs of Lemma 2.6
and Theorem 4.1 shows the following. Let PeZ[X, Y] be a polynomial of height
at most Hy, and degree at most d,,d, with respect to X, Y. Let x,y be complex
numbers, and «, B be algebraic numbers of degree at most 4}, d, and height at most
H,, H, respectively, satisfying P(X,B)#£0 and a#0. For convenience we assume
Hy,>16 and H, > 16. Then

© |x—al+|y—Bl+| P, )]

LogH; }
> exp { Cy(Log Hy+Log Hy) ( 1+ Loz Log Hy + LogLog Hz) s

where
Cyp = 28.(1+] %) (dy + dg) (dy d)* d.
(Compare with [V].)

Similarly, it is easy to derive from the previous estimates the following results.
Let a;, a,, b be complex numbers, and N a positive integer. Assume @,7 0, and let
log a, be a determination of the logarithm of a,. Let oy, oy, B be algebraic numbers
of degree at most N and height at most H,, H,, H respectively. Let PEZ[X, Y]
be a polynomial of (total) degree at most N and height at most H,. Assume

H;>16 (i=0,1,2), ﬁ¢Q P(al, Y)#0.

We define
H* = max{HyH,,H,}, H, = min{H,H,, Hy}
and
Cis = 2%7.(1+|loga,|)?.(1+|bloga,| 2 N1,
Then

[ay— oy |+|aa—op|+| b—B|+| Pay, aY)]
>exp {— Cys(Log Hy+ Log Hy) (Log H) (Log Hy + Log Log H*)(Log Log H,)~%}.

Finally, we give a result of algebraic independence which is an easy consequence
of Theorem 6.1 (see Lemma 2.7).

THEOREM 6.2. Let m>0, h>0 be non-negative integers, ay,...,a,, by, ..., b,
15 -.-5 Cy, be complex numbers, and N a positive integer.
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Assume that there exists an increasing sequence H, of positive integers and, for
each 1, that there exist algebraic numbers off, ..., o, BP, .. BY, Y0, ..y, of
degree at most N and height at most H,, such that

3 ja;— “’|+z|b ﬁ;"|+z|ck P | <exp{—(Log Hy™+3}.
g=1

Assume moreover either by0, or 1,81, ..., BW Q-linearly independent for each I.
Then the number e®af: ... a% is transcendental over the field

Q@ s Uy By s Dy €4, -5 €1
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